// SPDX-License-Identifier: GPL-2.0 /* * ad2s1210.c support for the ADI Resolver to Digital Converters: AD2S1210 * * Copyright (c) 2010-2010 Analog Devices Inc. * Copyright (c) 2023 BayLibre, SAS * * Device register to IIO ABI mapping: * * Register | Addr | IIO ABI (sysfs) * ----------------------------|------|------------------------------------------- * DOS Overrange Threshold | 0x89 | events/in_altvoltage0_thresh_rising_value * DOS Mismatch Threshold | 0x8A | events/in_altvoltage0_mag_rising_value * DOS Reset Maximum Threshold | 0x8B | events/in_altvoltage0_mag_rising_reset_max * DOS Reset Minimum Threshold | 0x8C | events/in_altvoltage0_mag_rising_reset_min * LOT High Threshold | 0x8D | events/in_angl1_thresh_rising_value * LOT Low Threshold [1] | 0x8E | events/in_angl1_thresh_rising_hysteresis * Excitation Frequency | 0x91 | out_altvoltage0_frequency * Control | 0x92 | *as bit fields* * Phase lock range | D5 | events/in_phase0_mag_rising_value * Hysteresis | D4 | in_angl0_hysteresis * Encoder resolution | D3:2 | *not implemented* * Resolution | D1:0 | *device tree: assigned-resolution-bits* * Soft Reset | 0xF0 | [2] * Fault | 0xFF | *not implemented* * * [1]: The value written to the LOT low register is high value minus the * hysteresis. * [2]: Soft reset is performed when `out_altvoltage0_frequency` is written. * * Fault to event mapping: * * Fault | | Channel | Type | Direction * ----------------------------------------|----|--------------------------------- * Sine/cosine inputs clipped [3] | D7 | altvoltage1 | mag | either * Sine/cosine inputs below LOS | D6 | altvoltage0 | thresh | falling * Sine/cosine inputs exceed DOS overrange | D5 | altvoltage0 | thresh | rising * Sine/cosine inputs exceed DOS mismatch | D4 | altvoltage0 | mag | rising * Tracking error exceeds LOT | D3 | angl1 | thresh | rising * Velocity exceeds maximum tracking rate | D2 | anglvel0 | mag | rising * Phase error exceeds phase lock range | D1 | phase0 | mag | rising * Configuration parity error | D0 | *writes to kernel log* * * [3]: The chip does not differentiate between fault on sine vs. cosine so * there will also be an event on the altvoltage2 channel. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* control register flags */ #define AD2S1210_ADDRESS_DATA BIT(7) #define AD2S1210_PHASE_LOCK_RANGE_44 BIT(5) #define AD2S1210_ENABLE_HYSTERESIS BIT(4) #define AD2S1210_SET_ENRES GENMASK(3, 2) #define AD2S1210_SET_RES GENMASK(1, 0) /* fault register flags */ #define AD2S1210_FAULT_CLIP BIT(7) #define AD2S1210_FAULT_LOS BIT(6) #define AD2S1210_FAULT_DOS_OVR BIT(5) #define AD2S1210_FAULT_DOS_MIS BIT(4) #define AD2S1210_FAULT_LOT BIT(3) #define AD2S1210_FAULT_VELOCITY BIT(2) #define AD2S1210_FAULT_PHASE BIT(1) #define AD2S1210_FAULT_CONFIG_PARITY BIT(0) #define AD2S1210_REG_POSITION_MSB 0x80 #define AD2S1210_REG_POSITION_LSB 0x81 #define AD2S1210_REG_VELOCITY_MSB 0x82 #define AD2S1210_REG_VELOCITY_LSB 0x83 #define AD2S1210_REG_LOS_THRD 0x88 #define AD2S1210_REG_DOS_OVR_THRD 0x89 #define AD2S1210_REG_DOS_MIS_THRD 0x8A #define AD2S1210_REG_DOS_RST_MAX_THRD 0x8B #define AD2S1210_REG_DOS_RST_MIN_THRD 0x8C #define AD2S1210_REG_LOT_HIGH_THRD 0x8D #define AD2S1210_REG_LOT_LOW_THRD 0x8E #define AD2S1210_REG_EXCIT_FREQ 0x91 #define AD2S1210_REG_CONTROL 0x92 #define AD2S1210_REG_SOFT_RESET 0xF0 #define AD2S1210_REG_FAULT 0xFF #define AD2S1210_MIN_CLKIN 6144000 #define AD2S1210_MAX_CLKIN 10240000 #define AD2S1210_MIN_EXCIT 2000 #define AD2S1210_DEF_EXCIT 10000 #define AD2S1210_MAX_EXCIT 20000 #define AD2S1210_MIN_FCW 0x4 #define AD2S1210_MAX_FCW 0x50 /* 44 degrees ~= 0.767945 radians */ #define PHASE_44_DEG_TO_RAD_INT 0 #define PHASE_44_DEG_TO_RAD_MICRO 767945 /* 360 degrees ~= 6.283185 radians */ #define PHASE_360_DEG_TO_RAD_INT 6 #define PHASE_360_DEG_TO_RAD_MICRO 283185 /* Threshold voltage registers have 1 LSB == 38 mV */ #define THRESHOLD_MILLIVOLT_PER_LSB 38 /* max voltage for threshold registers is 0x7F * 38 mV */ #define THRESHOLD_RANGE_STR "[0 38 4826]" #define FAULT_ONESHOT(bit, new, old) (new & bit && !(old & bit)) enum ad2s1210_mode { MOD_POS = 0b00, MOD_VEL = 0b01, MOD_RESERVED = 0b10, MOD_CONFIG = 0b11, }; enum ad2s1210_resolution { AD2S1210_RES_10 = 0b00, AD2S1210_RES_12 = 0b01, AD2S1210_RES_14 = 0b10, AD2S1210_RES_16 = 0b11, }; struct ad2s1210_state { struct mutex lock; struct spi_device *sdev; /** GPIO pin connected to SAMPLE line. */ struct gpio_desc *sample_gpio; /** GPIO pins connected to A0 and A1 lines (optional). */ struct gpio_descs *mode_gpios; /** Used to access config registers. */ struct regmap *regmap; /** The external oscillator frequency in Hz. */ unsigned long clkin_hz; /** Available raw hysteresis values based on resolution. */ int hysteresis_available[2]; /* adi,fixed-mode property - only valid when mode_gpios == NULL. */ enum ad2s1210_mode fixed_mode; /** The selected resolution */ enum ad2s1210_resolution resolution; /** Copy of fault register from the previous read. */ u8 prev_fault_flags; /** For reading raw sample value via SPI. */ struct { __be16 raw; u8 fault; } sample __aligned(IIO_DMA_MINALIGN); /** Scan buffer */ struct { __be16 chan[2]; /* Ensure timestamp is naturally aligned. */ s64 timestamp __aligned(8); } scan; /** SPI transmit buffer. */ u8 rx[2]; /** SPI receive buffer. */ u8 tx[2]; }; static int ad2s1210_set_mode(struct ad2s1210_state *st, enum ad2s1210_mode mode) { struct gpio_descs *gpios = st->mode_gpios; DECLARE_BITMAP(bitmap, 2); if (!gpios) return mode == st->fixed_mode ? 0 : -EOPNOTSUPP; bitmap[0] = mode; return gpiod_set_array_value(gpios->ndescs, gpios->desc, gpios->info, bitmap); } /* * Writes the given data to the given register address. * * If the mode is configurable, the device will first be placed in * configuration mode. */ static int ad2s1210_regmap_reg_write(void *context, unsigned int reg, unsigned int val) { struct ad2s1210_state *st = context; struct spi_transfer xfers[] = { { .len = 1, .rx_buf = &st->rx[0], .tx_buf = &st->tx[0], .cs_change = 1, }, { .len = 1, .rx_buf = &st->rx[1], .tx_buf = &st->tx[1], }, }; int ret; /* values can only be 7 bits, the MSB indicates an address */ if (val & ~0x7F) return -EINVAL; st->tx[0] = reg; st->tx[1] = val; ret = ad2s1210_set_mode(st, MOD_CONFIG); if (ret < 0) return ret; ret = spi_sync_transfer(st->sdev, xfers, ARRAY_SIZE(xfers)); if (ret < 0) return ret; /* soft reset also clears the fault register */ if (reg == AD2S1210_REG_SOFT_RESET) st->prev_fault_flags = 0; return 0; } /* * Reads value from one of the registers. * * If the mode is configurable, the device will first be placed in * configuration mode. */ static int ad2s1210_regmap_reg_read(void *context, unsigned int reg, unsigned int *val) { struct ad2s1210_state *st = context; struct spi_transfer xfers[] = { { .len = 1, .rx_buf = &st->rx[0], .tx_buf = &st->tx[0], .cs_change = 1, }, { .len = 1, .rx_buf = &st->rx[1], .tx_buf = &st->tx[1], }, }; int ret; ret = ad2s1210_set_mode(st, MOD_CONFIG); if (ret < 0) return ret; st->tx[0] = reg; /* * Must be valid register address here otherwise this could write data. * It doesn't matter which one as long as reading doesn't have side- * effects. */ st->tx[1] = AD2S1210_REG_CONTROL; ret = spi_sync_transfer(st->sdev, xfers, ARRAY_SIZE(xfers)); if (ret < 0) return ret; /* reading the fault register also clears it */ if (reg == AD2S1210_REG_FAULT) st->prev_fault_flags = 0; /* * If the D7 bit is set on any read/write register, it indicates a * parity error. The fault register is read-only and the D7 bit means * something else there. */ if ((reg > AD2S1210_REG_VELOCITY_LSB && reg != AD2S1210_REG_FAULT) && st->rx[1] & AD2S1210_ADDRESS_DATA) return -EBADMSG; *val = st->rx[1]; return 0; } /* * Toggles the SAMPLE line on the AD2S1210 to latch in the current position, * velocity, and faults. * * Must be called with lock held. */ static void ad2s1210_toggle_sample_line(struct ad2s1210_state *st) { /* * Datasheet specifies minimum hold time t16 = 2 * tck + 20 ns. So the * longest time needed is when CLKIN is 6.144 MHz, in which case t16 * ~= 350 ns. The same delay is also needed before re-asserting the * SAMPLE line. */ gpiod_set_value(st->sample_gpio, 1); ndelay(350); gpiod_set_value(st->sample_gpio, 0); ndelay(350); } /* * Sets the excitation frequency and performs software reset. * * Must be called with lock held. */ static int ad2s1210_reinit_excitation_frequency(struct ad2s1210_state *st, u16 fexcit) { /* Map resolution to settle time in milliseconds. */ static const int track_time_ms[] = { 10, 20, 25, 60 }; unsigned int ignored; int ret; u8 fcw; fcw = fexcit * (1 << 15) / st->clkin_hz; if (fcw < AD2S1210_MIN_FCW || fcw > AD2S1210_MAX_FCW) return -ERANGE; ret = regmap_write(st->regmap, AD2S1210_REG_EXCIT_FREQ, fcw); if (ret < 0) return ret; /* * Software reset reinitializes the excitation frequency output. * It does not reset any of the configuration registers. */ ret = regmap_write(st->regmap, AD2S1210_REG_SOFT_RESET, 0); if (ret < 0) return ret; /* * Soft reset always triggers some faults due the change in the output * signal so clear the faults too. We need to delay for some time * (what datasheet calls t[track]) to allow things to settle before * clearing the faults. */ msleep(track_time_ms[st->resolution] * 8192000 / st->clkin_hz); /* Reading the fault register clears the faults. */ ret = regmap_read(st->regmap, AD2S1210_REG_FAULT, &ignored); if (ret < 0) return ret; /* Have to toggle sample line to get fault output pins to reset. */ ad2s1210_toggle_sample_line(st); return 0; } static void ad2s1210_push_events(struct iio_dev *indio_dev, u8 flags, s64 timestamp) { struct ad2s1210_state *st = iio_priv(indio_dev); /* Sine/cosine inputs clipped */ if (FAULT_ONESHOT(AD2S1210_FAULT_CLIP, flags, st->prev_fault_flags)) { /* * The chip does not differentiate between fault on sine vs. * cosine channel so we just send an event on both channels. */ iio_push_event(indio_dev, IIO_UNMOD_EVENT_CODE(IIO_ALTVOLTAGE, 1, IIO_EV_TYPE_MAG, IIO_EV_DIR_EITHER), timestamp); iio_push_event(indio_dev, IIO_UNMOD_EVENT_CODE(IIO_ALTVOLTAGE, 2, IIO_EV_TYPE_MAG, IIO_EV_DIR_EITHER), timestamp); } /* Sine/cosine inputs below LOS threshold */ if (FAULT_ONESHOT(AD2S1210_FAULT_LOS, flags, st->prev_fault_flags)) iio_push_event(indio_dev, IIO_UNMOD_EVENT_CODE(IIO_ALTVOLTAGE, 0, IIO_EV_TYPE_THRESH, IIO_EV_DIR_FALLING), timestamp); /* Sine/cosine inputs exceed DOS overrange threshold */ if (FAULT_ONESHOT(AD2S1210_FAULT_DOS_OVR, flags, st->prev_fault_flags)) iio_push_event(indio_dev, IIO_UNMOD_EVENT_CODE(IIO_ALTVOLTAGE, 0, IIO_EV_TYPE_THRESH, IIO_EV_DIR_RISING), timestamp); /* Sine/cosine inputs exceed DOS mismatch threshold */ if (FAULT_ONESHOT(AD2S1210_FAULT_DOS_MIS, flags, st->prev_fault_flags)) iio_push_event(indio_dev, IIO_UNMOD_EVENT_CODE(IIO_ALTVOLTAGE, 0, IIO_EV_TYPE_MAG, IIO_EV_DIR_RISING), timestamp); /* Tracking error exceeds LOT threshold */ if (FAULT_ONESHOT(AD2S1210_FAULT_LOT, flags, st->prev_fault_flags)) iio_push_event(indio_dev, IIO_UNMOD_EVENT_CODE(IIO_ANGL, 1, IIO_EV_TYPE_THRESH, IIO_EV_DIR_RISING), timestamp); /* Velocity exceeds maximum tracking rate */ if (FAULT_ONESHOT(AD2S1210_FAULT_VELOCITY, flags, st->prev_fault_flags)) iio_push_event(indio_dev, IIO_UNMOD_EVENT_CODE(IIO_ANGL_VEL, 0, IIO_EV_TYPE_THRESH, IIO_EV_DIR_RISING), timestamp); /* Phase error exceeds phase lock range */ if (FAULT_ONESHOT(AD2S1210_FAULT_PHASE, flags, st->prev_fault_flags)) iio_push_event(indio_dev, IIO_UNMOD_EVENT_CODE(IIO_PHASE, 0, IIO_EV_TYPE_MAG, IIO_EV_DIR_RISING), timestamp); /* Configuration parity error */ if (FAULT_ONESHOT(AD2S1210_FAULT_CONFIG_PARITY, flags, st->prev_fault_flags)) /* * Userspace should also get notified of this via error return * when trying to write to any attribute that writes a register. */ dev_err_ratelimited(&indio_dev->dev, "Configuration parity error\n"); st->prev_fault_flags = flags; } static int ad2s1210_single_conversion(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val) { struct ad2s1210_state *st = iio_priv(indio_dev); s64 timestamp; int ret; guard(mutex)(&st->lock); ad2s1210_toggle_sample_line(st); timestamp = iio_get_time_ns(indio_dev); if (st->fixed_mode == MOD_CONFIG) { unsigned int reg_val; switch (chan->type) { case IIO_ANGL: ret = regmap_bulk_read(st->regmap, AD2S1210_REG_POSITION_MSB, &st->sample.raw, 2); if (ret < 0) return ret; break; case IIO_ANGL_VEL: ret = regmap_bulk_read(st->regmap, AD2S1210_REG_VELOCITY_MSB, &st->sample.raw, 2); if (ret < 0) return ret; break; default: return -EINVAL; } ret = regmap_read(st->regmap, AD2S1210_REG_FAULT, ®_val); if (ret < 0) return ret; st->sample.fault = reg_val; } else { switch (chan->type) { case IIO_ANGL: ret = ad2s1210_set_mode(st, MOD_POS); break; case IIO_ANGL_VEL: ret = ad2s1210_set_mode(st, MOD_VEL); break; default: return -EINVAL; } if (ret < 0) return ret; ret = spi_read(st->sdev, &st->sample, 3); if (ret < 0) return ret; } switch (chan->type) { case IIO_ANGL: *val = be16_to_cpu(st->sample.raw); ret = IIO_VAL_INT; break; case IIO_ANGL_VEL: *val = (s16)be16_to_cpu(st->sample.raw); ret = IIO_VAL_INT; break; default: return -EINVAL; } ad2s1210_push_events(indio_dev, st->sample.fault, timestamp); return ret; } static int ad2s1210_get_hysteresis(struct ad2s1210_state *st, int *val) { int ret; guard(mutex)(&st->lock); ret = regmap_test_bits(st->regmap, AD2S1210_REG_CONTROL, AD2S1210_ENABLE_HYSTERESIS); if (ret < 0) return ret; *val = ret << (2 * (AD2S1210_RES_16 - st->resolution)); return IIO_VAL_INT; } static int ad2s1210_set_hysteresis(struct ad2s1210_state *st, int val) { guard(mutex)(&st->lock); return regmap_update_bits(st->regmap, AD2S1210_REG_CONTROL, AD2S1210_ENABLE_HYSTERESIS, val ? AD2S1210_ENABLE_HYSTERESIS : 0); } static int ad2s1210_get_phase_lock_range(struct ad2s1210_state *st, int *val, int *val2) { int ret; guard(mutex)(&st->lock); ret = regmap_test_bits(st->regmap, AD2S1210_REG_CONTROL, AD2S1210_PHASE_LOCK_RANGE_44); if (ret < 0) return ret; if (ret) { /* 44 degrees as radians */ *val = PHASE_44_DEG_TO_RAD_INT; *val2 = PHASE_44_DEG_TO_RAD_MICRO; } else { /* 360 degrees as radians */ *val = PHASE_360_DEG_TO_RAD_INT; *val2 = PHASE_360_DEG_TO_RAD_MICRO; } return IIO_VAL_INT_PLUS_MICRO; } static int ad2s1210_set_phase_lock_range(struct ad2s1210_state *st, int val, int val2) { int deg; /* convert radians to degrees - only two allowable values */ if (val == PHASE_44_DEG_TO_RAD_INT && val2 == PHASE_44_DEG_TO_RAD_MICRO) deg = 44; else if (val == PHASE_360_DEG_TO_RAD_INT && val2 == PHASE_360_DEG_TO_RAD_MICRO) deg = 360; else return -EINVAL; guard(mutex)(&st->lock); return regmap_update_bits(st->regmap, AD2S1210_REG_CONTROL, AD2S1210_PHASE_LOCK_RANGE_44, deg == 44 ? AD2S1210_PHASE_LOCK_RANGE_44 : 0); } /* map resolution to microradians/LSB for LOT registers */ static const int ad2s1210_lot_threshold_urad_per_lsb[] = { 6184, /* 10-bit: ~0.35 deg/LSB, 45 deg max */ 2473, /* 12-bit: ~0.14 deg/LSB, 18 deg max */ 1237, /* 14-bit: ~0.07 deg/LSB, 9 deg max */ 1237, /* 16-bit: same as 14-bit */ }; static int ad2s1210_get_voltage_threshold(struct ad2s1210_state *st, unsigned int reg, int *val) { unsigned int reg_val; int ret; guard(mutex)(&st->lock); ret = regmap_read(st->regmap, reg, ®_val); if (ret < 0) return ret; *val = reg_val * THRESHOLD_MILLIVOLT_PER_LSB; return IIO_VAL_INT; } static int ad2s1210_set_voltage_threshold(struct ad2s1210_state *st, unsigned int reg, int val) { unsigned int reg_val; reg_val = val / THRESHOLD_MILLIVOLT_PER_LSB; guard(mutex)(&st->lock); return regmap_write(st->regmap, reg, reg_val); } static int ad2s1210_get_lot_high_threshold(struct ad2s1210_state *st, int *val, int *val2) { unsigned int reg_val; int ret; guard(mutex)(&st->lock); ret = regmap_read(st->regmap, AD2S1210_REG_LOT_HIGH_THRD, ®_val); if (ret < 0) return ret; *val = 0; *val2 = reg_val * ad2s1210_lot_threshold_urad_per_lsb[st->resolution]; return IIO_VAL_INT_PLUS_MICRO; } static int ad2s1210_set_lot_high_threshold(struct ad2s1210_state *st, int val, int val2) { unsigned int high_reg_val, low_reg_val, hysteresis; int ret; /* all valid values are between 0 and pi/4 radians */ if (val != 0) return -EINVAL; guard(mutex)(&st->lock); /* * We need to read both high and low registers first so we can preserve * the hysteresis. */ ret = regmap_read(st->regmap, AD2S1210_REG_LOT_HIGH_THRD, &high_reg_val); if (ret < 0) return ret; ret = regmap_read(st->regmap, AD2S1210_REG_LOT_LOW_THRD, &low_reg_val); if (ret < 0) return ret; hysteresis = high_reg_val - low_reg_val; high_reg_val = val2 / ad2s1210_lot_threshold_urad_per_lsb[st->resolution]; low_reg_val = high_reg_val - hysteresis; ret = regmap_write(st->regmap, AD2S1210_REG_LOT_HIGH_THRD, high_reg_val); if (ret < 0) return ret; return regmap_write(st->regmap, AD2S1210_REG_LOT_LOW_THRD, low_reg_val); } static int ad2s1210_get_lot_low_threshold(struct ad2s1210_state *st, int *val, int *val2) { unsigned int high_reg_val, low_reg_val; int ret; guard(mutex)(&st->lock); ret = regmap_read(st->regmap, AD2S1210_REG_LOT_HIGH_THRD, &high_reg_val); if (ret < 0) return ret; ret = regmap_read(st->regmap, AD2S1210_REG_LOT_LOW_THRD, &low_reg_val); if (ret < 0) return ret; /* sysfs value is hysteresis rather than actual low value */ *val = 0; *val2 = (high_reg_val - low_reg_val) * ad2s1210_lot_threshold_urad_per_lsb[st->resolution]; return IIO_VAL_INT_PLUS_MICRO; } static int ad2s1210_set_lot_low_threshold(struct ad2s1210_state *st, int val, int val2) { unsigned int reg_val, hysteresis; int ret; /* all valid values are between 0 and pi/4 radians */ if (val != 0) return -EINVAL; hysteresis = val2 / ad2s1210_lot_threshold_urad_per_lsb[st->resolution]; guard(mutex)(&st->lock); ret = regmap_read(st->regmap, AD2S1210_REG_LOT_HIGH_THRD, ®_val); if (ret < 0) return ret; return regmap_write(st->regmap, AD2S1210_REG_LOT_LOW_THRD, reg_val - hysteresis); } static int ad2s1210_get_excitation_frequency(struct ad2s1210_state *st, int *val) { unsigned int reg_val; int ret; guard(mutex)(&st->lock); ret = regmap_read(st->regmap, AD2S1210_REG_EXCIT_FREQ, ®_val); if (ret < 0) return ret; *val = reg_val * st->clkin_hz / (1 << 15); return IIO_VAL_INT; } static int ad2s1210_set_excitation_frequency(struct ad2s1210_state *st, int val) { if (val < AD2S1210_MIN_EXCIT || val > AD2S1210_MAX_EXCIT) return -EINVAL; guard(mutex)(&st->lock); return ad2s1210_reinit_excitation_frequency(st, val); } static const int ad2s1210_velocity_scale[] = { 17089132, /* 8.192MHz / (2*pi * 2500 / 2^15) */ 42722830, /* 8.192MHz / (2*pi * 1000 / 2^15) */ 85445659, /* 8.192MHz / (2*pi * 500 / 2^15) */ 341782638, /* 8.192MHz / (2*pi * 125 / 2^15) */ }; static int ad2s1210_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct ad2s1210_state *st = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_RAW: return ad2s1210_single_conversion(indio_dev, chan, val); case IIO_CHAN_INFO_SCALE: switch (chan->type) { case IIO_ANGL: /* approx 0.3 arc min converted to radians */ *val = 0; *val2 = 95874; return IIO_VAL_INT_PLUS_NANO; case IIO_ANGL_VEL: *val = st->clkin_hz; *val2 = ad2s1210_velocity_scale[st->resolution]; return IIO_VAL_FRACTIONAL; default: return -EINVAL; } case IIO_CHAN_INFO_FREQUENCY: switch (chan->type) { case IIO_ALTVOLTAGE: return ad2s1210_get_excitation_frequency(st, val); default: return -EINVAL; } case IIO_CHAN_INFO_HYSTERESIS: switch (chan->type) { case IIO_ANGL: return ad2s1210_get_hysteresis(st, val); default: return -EINVAL; } default: return -EINVAL; } } static int ad2s1210_read_avail(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, const int **vals, int *type, int *length, long mask) { static const int excitation_frequency_available[] = { AD2S1210_MIN_EXCIT, 250, /* step */ AD2S1210_MAX_EXCIT, }; struct ad2s1210_state *st = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_FREQUENCY: switch (chan->type) { case IIO_ALTVOLTAGE: *type = IIO_VAL_INT; *vals = excitation_frequency_available; return IIO_AVAIL_RANGE; default: return -EINVAL; } case IIO_CHAN_INFO_HYSTERESIS: switch (chan->type) { case IIO_ANGL: *vals = st->hysteresis_available; *type = IIO_VAL_INT; *length = ARRAY_SIZE(st->hysteresis_available); return IIO_AVAIL_LIST; default: return -EINVAL; } default: return -EINVAL; } } static int ad2s1210_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct ad2s1210_state *st = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_FREQUENCY: switch (chan->type) { case IIO_ALTVOLTAGE: return ad2s1210_set_excitation_frequency(st, val); default: return -EINVAL; } case IIO_CHAN_INFO_HYSTERESIS: switch (chan->type) { case IIO_ANGL: return ad2s1210_set_hysteresis(st, val); default: return -EINVAL; } default: return -EINVAL; } } static const struct iio_event_spec ad2s1210_position_event_spec[] = { { /* Tracking error exceeds LOT threshold fault. */ .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_RISING, .mask_separate = /* Loss of tracking high threshold. */ BIT(IIO_EV_INFO_VALUE) | /* Loss of tracking low threshold. */ BIT(IIO_EV_INFO_HYSTERESIS), }, }; static const struct iio_event_spec ad2s1210_velocity_event_spec[] = { { /* Velocity exceeds maximum tracking rate fault. */ .type = IIO_EV_TYPE_MAG, .dir = IIO_EV_DIR_RISING, }, }; static const struct iio_event_spec ad2s1210_phase_event_spec[] = { { /* Phase error fault. */ .type = IIO_EV_TYPE_MAG, .dir = IIO_EV_DIR_RISING, /* Phase lock range. */ .mask_separate = BIT(IIO_EV_INFO_VALUE), }, }; static const struct iio_event_spec ad2s1210_monitor_signal_event_spec[] = { { /* Sine/cosine below LOS threshold fault. */ .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_FALLING, /* Loss of signal threshold. */ .mask_separate = BIT(IIO_EV_INFO_VALUE), }, { /* Sine/cosine DOS overrange fault.*/ .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_RISING, /* Degredation of signal overrange threshold. */ .mask_separate = BIT(IIO_EV_INFO_VALUE), }, { /* Sine/cosine DOS mismatch fault.*/ .type = IIO_EV_TYPE_MAG, .dir = IIO_EV_DIR_RISING, .mask_separate = BIT(IIO_EV_INFO_VALUE), }, }; static const struct iio_event_spec ad2s1210_sin_cos_event_spec[] = { { /* Sine/cosine clipping fault. */ .type = IIO_EV_TYPE_MAG, .dir = IIO_EV_DIR_EITHER, }, }; static const struct iio_chan_spec ad2s1210_channels[] = { { .type = IIO_ANGL, .indexed = 1, .channel = 0, .scan_index = 0, .scan_type = { .sign = 'u', .realbits = 16, .storagebits = 16, .endianness = IIO_BE, }, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_HYSTERESIS), .info_mask_separate_available = BIT(IIO_CHAN_INFO_HYSTERESIS), }, { .type = IIO_ANGL_VEL, .indexed = 1, .channel = 0, .scan_index = 1, .scan_type = { .sign = 's', .realbits = 16, .storagebits = 16, .endianness = IIO_BE, }, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), .event_spec = ad2s1210_velocity_event_spec, .num_event_specs = ARRAY_SIZE(ad2s1210_velocity_event_spec), }, IIO_CHAN_SOFT_TIMESTAMP(2), { /* used to configure LOT thresholds and get tracking error */ .type = IIO_ANGL, .indexed = 1, .channel = 1, .scan_index = -1, .event_spec = ad2s1210_position_event_spec, .num_event_specs = ARRAY_SIZE(ad2s1210_position_event_spec), }, { /* used to configure phase lock range and get phase lock error */ .type = IIO_PHASE, .indexed = 1, .channel = 0, .scan_index = -1, .event_spec = ad2s1210_phase_event_spec, .num_event_specs = ARRAY_SIZE(ad2s1210_phase_event_spec), }, { /* excitation frequency output */ .type = IIO_ALTVOLTAGE, .indexed = 1, .channel = 0, .output = 1, .scan_index = -1, .info_mask_separate = BIT(IIO_CHAN_INFO_FREQUENCY), .info_mask_separate_available = BIT(IIO_CHAN_INFO_FREQUENCY), }, { /* monitor signal */ .type = IIO_ALTVOLTAGE, .indexed = 1, .channel = 0, .scan_index = -1, .event_spec = ad2s1210_monitor_signal_event_spec, .num_event_specs = ARRAY_SIZE(ad2s1210_monitor_signal_event_spec), }, { /* sine input */ .type = IIO_ALTVOLTAGE, .indexed = 1, .channel = 1, .scan_index = -1, .event_spec = ad2s1210_sin_cos_event_spec, .num_event_specs = ARRAY_SIZE(ad2s1210_sin_cos_event_spec), }, { /* cosine input */ .type = IIO_ALTVOLTAGE, .indexed = 1, .channel = 2, .scan_index = -1, .event_spec = ad2s1210_sin_cos_event_spec, .num_event_specs = ARRAY_SIZE(ad2s1210_sin_cos_event_spec), }, }; static ssize_t event_attr_voltage_reg_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ad2s1210_state *st = iio_priv(dev_to_iio_dev(dev)); struct iio_dev_attr *iattr = to_iio_dev_attr(attr); unsigned int value; int ret; guard(mutex)(&st->lock); ret = regmap_read(st->regmap, iattr->address, &value); if (ret < 0) return ret; return sprintf(buf, "%d\n", value * THRESHOLD_MILLIVOLT_PER_LSB); } static ssize_t event_attr_voltage_reg_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct ad2s1210_state *st = iio_priv(dev_to_iio_dev(dev)); struct iio_dev_attr *iattr = to_iio_dev_attr(attr); u16 data; int ret; ret = kstrtou16(buf, 10, &data); if (ret) return -EINVAL; guard(mutex)(&st->lock); ret = regmap_write(st->regmap, iattr->address, data / THRESHOLD_MILLIVOLT_PER_LSB); if (ret < 0) return ret; return len; } static ssize_t in_angl1_thresh_rising_value_available_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ad2s1210_state *st = iio_priv(dev_to_iio_dev(dev)); int step = ad2s1210_lot_threshold_urad_per_lsb[st->resolution]; return sysfs_emit(buf, "[0 0.%06d 0.%06d]\n", step, step * 0x7F); } static ssize_t in_angl1_thresh_rising_hysteresis_available_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ad2s1210_state *st = iio_priv(dev_to_iio_dev(dev)); int step = ad2s1210_lot_threshold_urad_per_lsb[st->resolution]; return sysfs_emit(buf, "[0 0.%06d 0.%06d]\n", step, step * 0x7F); } static IIO_CONST_ATTR(in_phase0_mag_rising_value_available, __stringify(PHASE_44_DEG_TO_RAD_INT) "." __stringify(PHASE_44_DEG_TO_RAD_MICRO) " " __stringify(PHASE_360_DEG_TO_RAD_INT) "." __stringify(PHASE_360_DEG_TO_RAD_MICRO)); static IIO_CONST_ATTR(in_altvoltage0_thresh_falling_value_available, THRESHOLD_RANGE_STR); static IIO_CONST_ATTR(in_altvoltage0_thresh_rising_value_available, THRESHOLD_RANGE_STR); static IIO_CONST_ATTR(in_altvoltage0_mag_rising_value_available, THRESHOLD_RANGE_STR); static IIO_DEVICE_ATTR(in_altvoltage0_mag_rising_reset_max, 0644, event_attr_voltage_reg_show, event_attr_voltage_reg_store, AD2S1210_REG_DOS_RST_MAX_THRD); static IIO_CONST_ATTR(in_altvoltage0_mag_rising_reset_max_available, THRESHOLD_RANGE_STR); static IIO_DEVICE_ATTR(in_altvoltage0_mag_rising_reset_min, 0644, event_attr_voltage_reg_show, event_attr_voltage_reg_store, AD2S1210_REG_DOS_RST_MIN_THRD); static IIO_CONST_ATTR(in_altvoltage0_mag_rising_reset_min_available, THRESHOLD_RANGE_STR); static IIO_DEVICE_ATTR_RO(in_angl1_thresh_rising_value_available, 0); static IIO_DEVICE_ATTR_RO(in_angl1_thresh_rising_hysteresis_available, 0); static struct attribute *ad2s1210_event_attributes[] = { &iio_const_attr_in_phase0_mag_rising_value_available.dev_attr.attr, &iio_const_attr_in_altvoltage0_thresh_falling_value_available.dev_attr.attr, &iio_const_attr_in_altvoltage0_thresh_rising_value_available.dev_attr.attr, &iio_const_attr_in_altvoltage0_mag_rising_value_available.dev_attr.attr, &iio_dev_attr_in_altvoltage0_mag_rising_reset_max.dev_attr.attr, &iio_const_attr_in_altvoltage0_mag_rising_reset_max_available.dev_attr.attr, &iio_dev_attr_in_altvoltage0_mag_rising_reset_min.dev_attr.attr, &iio_const_attr_in_altvoltage0_mag_rising_reset_min_available.dev_attr.attr, &iio_dev_attr_in_angl1_thresh_rising_value_available.dev_attr.attr, &iio_dev_attr_in_angl1_thresh_rising_hysteresis_available.dev_attr.attr, NULL, }; static const struct attribute_group ad2s1210_event_attribute_group = { .attrs = ad2s1210_event_attributes, }; static int ad2s1210_initial(struct ad2s1210_state *st) { unsigned int data; int ret; guard(mutex)(&st->lock); /* Use default config register value plus resolution from devicetree. */ data = FIELD_PREP(AD2S1210_PHASE_LOCK_RANGE_44, 1); data |= FIELD_PREP(AD2S1210_ENABLE_HYSTERESIS, 1); data |= FIELD_PREP(AD2S1210_SET_ENRES, 0x3); data |= FIELD_PREP(AD2S1210_SET_RES, st->resolution); ret = regmap_write(st->regmap, AD2S1210_REG_CONTROL, data); if (ret < 0) return ret; return ad2s1210_reinit_excitation_frequency(st, AD2S1210_DEF_EXCIT); } static int ad2s1210_read_label(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, char *label) { if (chan->type == IIO_ANGL) { if (chan->channel == 0) return sprintf(label, "position\n"); if (chan->channel == 1) return sprintf(label, "tracking error\n"); } if (chan->type == IIO_ANGL_VEL) return sprintf(label, "velocity\n"); if (chan->type == IIO_PHASE) return sprintf(label, "synthetic reference\n"); if (chan->type == IIO_ALTVOLTAGE) { if (chan->output) return sprintf(label, "excitation\n"); if (chan->channel == 0) return sprintf(label, "monitor signal\n"); if (chan->channel == 1) return sprintf(label, "cosine\n"); if (chan->channel == 2) return sprintf(label, "sine\n"); } return -EINVAL; } static int ad2s1210_read_event_value(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int *val, int *val2) { struct ad2s1210_state *st = iio_priv(indio_dev); switch (chan->type) { case IIO_ANGL: switch (info) { case IIO_EV_INFO_VALUE: return ad2s1210_get_lot_high_threshold(st, val, val2); case IIO_EV_INFO_HYSTERESIS: return ad2s1210_get_lot_low_threshold(st, val, val2); default: return -EINVAL; } case IIO_ALTVOLTAGE: if (chan->output) return -EINVAL; if (type == IIO_EV_TYPE_THRESH && dir == IIO_EV_DIR_FALLING) return ad2s1210_get_voltage_threshold(st, AD2S1210_REG_LOS_THRD, val); if (type == IIO_EV_TYPE_THRESH && dir == IIO_EV_DIR_RISING) return ad2s1210_get_voltage_threshold(st, AD2S1210_REG_DOS_OVR_THRD, val); if (type == IIO_EV_TYPE_MAG) return ad2s1210_get_voltage_threshold(st, AD2S1210_REG_DOS_MIS_THRD, val); return -EINVAL; case IIO_PHASE: return ad2s1210_get_phase_lock_range(st, val, val2); default: return -EINVAL; } } static int ad2s1210_write_event_value(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int val, int val2) { struct ad2s1210_state *st = iio_priv(indio_dev); switch (chan->type) { case IIO_ANGL: switch (info) { case IIO_EV_INFO_VALUE: return ad2s1210_set_lot_high_threshold(st, val, val2); case IIO_EV_INFO_HYSTERESIS: return ad2s1210_set_lot_low_threshold(st, val, val2); default: return -EINVAL; } case IIO_ALTVOLTAGE: if (chan->output) return -EINVAL; if (type == IIO_EV_TYPE_THRESH && dir == IIO_EV_DIR_FALLING) return ad2s1210_set_voltage_threshold(st, AD2S1210_REG_LOS_THRD, val); if (type == IIO_EV_TYPE_THRESH && dir == IIO_EV_DIR_RISING) return ad2s1210_set_voltage_threshold(st, AD2S1210_REG_DOS_OVR_THRD, val); if (type == IIO_EV_TYPE_MAG) return ad2s1210_set_voltage_threshold(st, AD2S1210_REG_DOS_MIS_THRD, val); return -EINVAL; case IIO_PHASE: return ad2s1210_set_phase_lock_range(st, val, val2); default: return -EINVAL; } } static int ad2s1210_read_event_label(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, enum iio_event_type type, enum iio_event_direction dir, char *label) { if (chan->type == IIO_ANGL) return sprintf(label, "LOT\n"); if (chan->type == IIO_ANGL_VEL) return sprintf(label, "max tracking rate\n"); if (chan->type == IIO_PHASE) return sprintf(label, "phase lock\n"); if (chan->type == IIO_ALTVOLTAGE) { if (chan->channel == 0) { if (type == IIO_EV_TYPE_THRESH && dir == IIO_EV_DIR_FALLING) return sprintf(label, "LOS\n"); if (type == IIO_EV_TYPE_THRESH && dir == IIO_EV_DIR_RISING) return sprintf(label, "DOS overrange\n"); if (type == IIO_EV_TYPE_MAG) return sprintf(label, "DOS mismatch\n"); } if (chan->channel == 1 || chan->channel == 2) return sprintf(label, "clipped\n"); } return -EINVAL; } static int ad2s1210_debugfs_reg_access(struct iio_dev *indio_dev, unsigned int reg, unsigned int writeval, unsigned int *readval) { struct ad2s1210_state *st = iio_priv(indio_dev); guard(mutex)(&st->lock); if (readval) return regmap_read(st->regmap, reg, readval); return regmap_write(st->regmap, reg, writeval); } static irqreturn_t ad2s1210_trigger_handler(int irq, void *p) { struct iio_poll_func *pf = p; struct iio_dev *indio_dev = pf->indio_dev; struct ad2s1210_state *st = iio_priv(indio_dev); size_t chan = 0; int ret; guard(mutex)(&st->lock); memset(&st->scan, 0, sizeof(st->scan)); ad2s1210_toggle_sample_line(st); if (test_bit(0, indio_dev->active_scan_mask)) { if (st->fixed_mode == MOD_CONFIG) { ret = regmap_bulk_read(st->regmap, AD2S1210_REG_POSITION_MSB, &st->sample.raw, 2); if (ret < 0) goto error_ret; } else { ret = ad2s1210_set_mode(st, MOD_POS); if (ret < 0) goto error_ret; ret = spi_read(st->sdev, &st->sample, 3); if (ret < 0) goto error_ret; } memcpy(&st->scan.chan[chan++], &st->sample.raw, 2); } if (test_bit(1, indio_dev->active_scan_mask)) { if (st->fixed_mode == MOD_CONFIG) { ret = regmap_bulk_read(st->regmap, AD2S1210_REG_VELOCITY_MSB, &st->sample.raw, 2); if (ret < 0) goto error_ret; } else { ret = ad2s1210_set_mode(st, MOD_VEL); if (ret < 0) goto error_ret; ret = spi_read(st->sdev, &st->sample, 3); if (ret < 0) goto error_ret; } memcpy(&st->scan.chan[chan++], &st->sample.raw, 2); } if (st->fixed_mode == MOD_CONFIG) { unsigned int reg_val; ret = regmap_read(st->regmap, AD2S1210_REG_FAULT, ®_val); if (ret < 0) return ret; st->sample.fault = reg_val; } ad2s1210_push_events(indio_dev, st->sample.fault, pf->timestamp); iio_push_to_buffers_with_timestamp(indio_dev, &st->scan, pf->timestamp); error_ret: iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } static const struct iio_info ad2s1210_info = { .event_attrs = &ad2s1210_event_attribute_group, .read_raw = ad2s1210_read_raw, .read_avail = ad2s1210_read_avail, .write_raw = ad2s1210_write_raw, .read_label = ad2s1210_read_label, .read_event_value = ad2s1210_read_event_value, .write_event_value = ad2s1210_write_event_value, .read_event_label = ad2s1210_read_event_label, .debugfs_reg_access = &ad2s1210_debugfs_reg_access, }; static int ad2s1210_setup_properties(struct ad2s1210_state *st) { struct device *dev = &st->sdev->dev; const char *str_val; u32 val; int ret; ret = device_property_read_string(dev, "adi,fixed-mode", &str_val); if (ret == -EINVAL) st->fixed_mode = -1; else if (ret < 0) return dev_err_probe(dev, ret, "failed to read adi,fixed-mode property\n"); else { if (strcmp(str_val, "config")) return dev_err_probe(dev, -EINVAL, "only adi,fixed-mode=\"config\" is supported\n"); st->fixed_mode = MOD_CONFIG; } ret = device_property_read_u32(dev, "assigned-resolution-bits", &val); if (ret < 0) return dev_err_probe(dev, ret, "failed to read assigned-resolution-bits property\n"); if (val < 10 || val > 16) return dev_err_probe(dev, -EINVAL, "resolution out of range: %u\n", val); st->resolution = (val - 10) >> 1; /* * These are values that correlate to the hysteresis bit in the Control * register. 0 = disabled, 1 = enabled. When enabled, the actual * hysteresis is +/- 1 LSB of the raw position value. Which bit is the * LSB depends on the specified resolution. */ st->hysteresis_available[0] = 0; st->hysteresis_available[1] = 1 << (2 * (AD2S1210_RES_16 - st->resolution)); return 0; } static int ad2s1210_setup_clocks(struct ad2s1210_state *st) { struct device *dev = &st->sdev->dev; struct clk *clk; clk = devm_clk_get_enabled(dev, NULL); if (IS_ERR(clk)) return dev_err_probe(dev, PTR_ERR(clk), "failed to get clock\n"); st->clkin_hz = clk_get_rate(clk); if (st->clkin_hz < AD2S1210_MIN_CLKIN || st->clkin_hz > AD2S1210_MAX_CLKIN) return dev_err_probe(dev, -EINVAL, "clock frequency out of range: %lu\n", st->clkin_hz); return 0; } static int ad2s1210_setup_gpios(struct ad2s1210_state *st) { struct device *dev = &st->sdev->dev; struct gpio_descs *resolution_gpios; struct gpio_desc *reset_gpio; DECLARE_BITMAP(bitmap, 2); int ret; /* should not be sampling on startup */ st->sample_gpio = devm_gpiod_get(dev, "sample", GPIOD_OUT_LOW); if (IS_ERR(st->sample_gpio)) return dev_err_probe(dev, PTR_ERR(st->sample_gpio), "failed to request sample GPIO\n"); /* both pins high means that we start in config mode */ st->mode_gpios = devm_gpiod_get_array_optional(dev, "mode", GPIOD_OUT_HIGH); if (IS_ERR(st->mode_gpios)) return dev_err_probe(dev, PTR_ERR(st->mode_gpios), "failed to request mode GPIOs\n"); if (!st->mode_gpios && st->fixed_mode == -1) return dev_err_probe(dev, -EINVAL, "must specify either adi,fixed-mode or mode-gpios\n"); if (st->mode_gpios && st->fixed_mode != -1) return dev_err_probe(dev, -EINVAL, "must specify only one of adi,fixed-mode or mode-gpios\n"); if (st->mode_gpios && st->mode_gpios->ndescs != 2) return dev_err_probe(dev, -EINVAL, "requires exactly 2 mode-gpios\n"); /* * If resolution gpios are provided, they get set to the required * resolution, otherwise it is assumed the RES0 and RES1 pins are * hard-wired to match the resolution indicated in the devicetree. */ resolution_gpios = devm_gpiod_get_array_optional(dev, "resolution", GPIOD_ASIS); if (IS_ERR(resolution_gpios)) return dev_err_probe(dev, PTR_ERR(resolution_gpios), "failed to request resolution GPIOs\n"); if (resolution_gpios) { if (resolution_gpios->ndescs != 2) return dev_err_probe(dev, -EINVAL, "requires exactly 2 resolution-gpios\n"); bitmap[0] = st->resolution; ret = gpiod_set_array_value(resolution_gpios->ndescs, resolution_gpios->desc, resolution_gpios->info, bitmap); if (ret < 0) return dev_err_probe(dev, ret, "failed to set resolution gpios\n"); } /* If the optional reset GPIO is present, toggle it to do a hard reset. */ reset_gpio = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH); if (IS_ERR(reset_gpio)) return dev_err_probe(dev, PTR_ERR(reset_gpio), "failed to request reset GPIO\n"); if (reset_gpio) { udelay(10); gpiod_set_value(reset_gpio, 0); } return 0; } static const struct regmap_range ad2s1210_regmap_readable_ranges[] = { regmap_reg_range(AD2S1210_REG_POSITION_MSB, AD2S1210_REG_VELOCITY_LSB), regmap_reg_range(AD2S1210_REG_LOS_THRD, AD2S1210_REG_LOT_LOW_THRD), regmap_reg_range(AD2S1210_REG_EXCIT_FREQ, AD2S1210_REG_CONTROL), regmap_reg_range(AD2S1210_REG_FAULT, AD2S1210_REG_FAULT), }; static const struct regmap_access_table ad2s1210_regmap_rd_table = { .yes_ranges = ad2s1210_regmap_readable_ranges, .n_yes_ranges = ARRAY_SIZE(ad2s1210_regmap_readable_ranges), }; static const struct regmap_range ad2s1210_regmap_writeable_ranges[] = { regmap_reg_range(AD2S1210_REG_LOS_THRD, AD2S1210_REG_LOT_LOW_THRD), regmap_reg_range(AD2S1210_REG_EXCIT_FREQ, AD2S1210_REG_CONTROL), regmap_reg_range(AD2S1210_REG_SOFT_RESET, AD2S1210_REG_SOFT_RESET), regmap_reg_range(AD2S1210_REG_FAULT, AD2S1210_REG_FAULT), }; static const struct regmap_access_table ad2s1210_regmap_wr_table = { .yes_ranges = ad2s1210_regmap_writeable_ranges, .n_yes_ranges = ARRAY_SIZE(ad2s1210_regmap_writeable_ranges), }; static int ad2s1210_setup_regmap(struct ad2s1210_state *st) { struct device *dev = &st->sdev->dev; const struct regmap_config config = { .reg_bits = 8, .val_bits = 8, .disable_locking = true, .reg_read = ad2s1210_regmap_reg_read, .reg_write = ad2s1210_regmap_reg_write, .rd_table = &ad2s1210_regmap_rd_table, .wr_table = &ad2s1210_regmap_wr_table, .can_sleep = true, }; st->regmap = devm_regmap_init(dev, NULL, st, &config); if (IS_ERR(st->regmap)) return dev_err_probe(dev, PTR_ERR(st->regmap), "failed to allocate register map\n"); return 0; } static int ad2s1210_probe(struct spi_device *spi) { struct iio_dev *indio_dev; struct ad2s1210_state *st; int ret; indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st)); if (!indio_dev) return -ENOMEM; st = iio_priv(indio_dev); mutex_init(&st->lock); st->sdev = spi; ret = ad2s1210_setup_properties(st); if (ret < 0) return ret; ret = ad2s1210_setup_clocks(st); if (ret < 0) return ret; ret = ad2s1210_setup_gpios(st); if (ret < 0) return ret; ret = ad2s1210_setup_regmap(st); if (ret < 0) return ret; ret = ad2s1210_initial(st); if (ret < 0) return ret; indio_dev->info = &ad2s1210_info; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->channels = ad2s1210_channels; indio_dev->num_channels = ARRAY_SIZE(ad2s1210_channels); indio_dev->name = spi_get_device_id(spi)->name; ret = devm_iio_triggered_buffer_setup(&spi->dev, indio_dev, &iio_pollfunc_store_time, &ad2s1210_trigger_handler, NULL); if (ret < 0) return dev_err_probe(&spi->dev, ret, "iio triggered buffer setup failed\n"); return devm_iio_device_register(&spi->dev, indio_dev); } static const struct of_device_id ad2s1210_of_match[] = { { .compatible = "adi,ad2s1210", }, { } }; MODULE_DEVICE_TABLE(of, ad2s1210_of_match); static const struct spi_device_id ad2s1210_id[] = { { "ad2s1210" }, {} }; MODULE_DEVICE_TABLE(spi, ad2s1210_id); static struct spi_driver ad2s1210_driver = { .driver = { .name = "ad2s1210", .of_match_table = ad2s1210_of_match, }, .probe = ad2s1210_probe, .id_table = ad2s1210_id, }; module_spi_driver(ad2s1210_driver); MODULE_AUTHOR("Graff Yang "); MODULE_DESCRIPTION("Analog Devices AD2S1210 Resolver to Digital SPI driver"); MODULE_LICENSE("GPL v2");