// SPDX-License-Identifier: GPL-2.0-or-later /* * Kinetic KTD2026/7 RGB/White LED driver with I2C interface * * Copyright 2023 AndrĂ© Apitzsch * * Datasheet: https://www.kinet-ic.com/uploads/KTD2026-7-04h.pdf */ #include #include #include #include #include #include #include #include #define KTD2026_NUM_LEDS 3 #define KTD2027_NUM_LEDS 4 #define KTD202X_MAX_LEDS 4 /* Register bank */ #define KTD202X_REG_RESET_CONTROL 0x00 #define KTD202X_REG_FLASH_PERIOD 0x01 #define KTD202X_REG_PWM1_TIMER 0x02 #define KTD202X_REG_PWM2_TIMER 0x03 #define KTD202X_REG_CHANNEL_CTRL 0x04 #define KTD202X_REG_TRISE_FALL 0x05 #define KTD202X_REG_LED_IOUT(x) (0x06 + (x)) /* Register 0 */ #define KTD202X_TIMER_SLOT_CONTROL_TSLOT1 0x00 #define KTD202X_TIMER_SLOT_CONTROL_TSLOT2 0x01 #define KTD202X_TIMER_SLOT_CONTROL_TSLOT3 0x02 #define KTD202X_TIMER_SLOT_CONTROL_TSLOT4 0x03 #define KTD202X_RSTR_RESET 0x07 #define KTD202X_ENABLE_CTRL_WAKE 0x00 /* SCL High & SDA High */ #define KTD202X_ENABLE_CTRL_SLEEP 0x08 /* SCL High & SDA Toggling */ #define KTD202X_TRISE_FALL_SCALE_NORMAL 0x00 #define KTD202X_TRISE_FALL_SCALE_SLOW_X2 0x20 #define KTD202X_TRISE_FALL_SCALE_SLOW_X4 0x40 #define KTD202X_TRISE_FALL_SCALE_FAST_X8 0x60 /* Register 1 */ #define KTD202X_FLASH_PERIOD_256_MS_LOG_RAMP 0x00 /* Register 2-3 */ #define KTD202X_FLASH_ON_TIME_0_4_PERCENT 0x01 /* Register 4 */ #define KTD202X_CHANNEL_CTRL_MASK(x) (BIT(2 * (x)) | BIT(2 * (x) + 1)) #define KTD202X_CHANNEL_CTRL_OFF 0x00 #define KTD202X_CHANNEL_CTRL_ON(x) BIT(2 * (x)) #define KTD202X_CHANNEL_CTRL_PWM1(x) BIT(2 * (x) + 1) #define KTD202X_CHANNEL_CTRL_PWM2(x) (BIT(2 * (x)) | BIT(2 * (x) + 1)) /* Register 5 */ #define KTD202X_RAMP_TIMES_2_MS 0x00 /* Register 6-9 */ #define KTD202X_LED_CURRENT_10_mA 0x4f #define KTD202X_FLASH_PERIOD_MIN_MS 256 #define KTD202X_FLASH_PERIOD_STEP_MS 128 #define KTD202X_FLASH_PERIOD_MAX_STEPS 126 #define KTD202X_FLASH_ON_MAX 256 #define KTD202X_MAX_BRIGHTNESS 192 static const struct reg_default ktd202x_reg_defaults[] = { { KTD202X_REG_RESET_CONTROL, KTD202X_TIMER_SLOT_CONTROL_TSLOT1 | KTD202X_ENABLE_CTRL_WAKE | KTD202X_TRISE_FALL_SCALE_NORMAL }, { KTD202X_REG_FLASH_PERIOD, KTD202X_FLASH_PERIOD_256_MS_LOG_RAMP }, { KTD202X_REG_PWM1_TIMER, KTD202X_FLASH_ON_TIME_0_4_PERCENT }, { KTD202X_REG_PWM2_TIMER, KTD202X_FLASH_ON_TIME_0_4_PERCENT }, { KTD202X_REG_CHANNEL_CTRL, KTD202X_CHANNEL_CTRL_OFF }, { KTD202X_REG_TRISE_FALL, KTD202X_RAMP_TIMES_2_MS }, { KTD202X_REG_LED_IOUT(0), KTD202X_LED_CURRENT_10_mA }, { KTD202X_REG_LED_IOUT(1), KTD202X_LED_CURRENT_10_mA }, { KTD202X_REG_LED_IOUT(2), KTD202X_LED_CURRENT_10_mA }, { KTD202X_REG_LED_IOUT(3), KTD202X_LED_CURRENT_10_mA }, }; struct ktd202x_led { struct ktd202x *chip; union { struct led_classdev cdev; struct led_classdev_mc mcdev; }; u32 index; }; struct ktd202x { struct mutex mutex; struct regulator_bulk_data regulators[2]; struct device *dev; struct regmap *regmap; bool enabled; int num_leds; struct ktd202x_led leds[] __counted_by(num_leds); }; static int ktd202x_chip_disable(struct ktd202x *chip) { int ret; if (!chip->enabled) return 0; regmap_write(chip->regmap, KTD202X_REG_RESET_CONTROL, KTD202X_ENABLE_CTRL_SLEEP); ret = regulator_bulk_disable(ARRAY_SIZE(chip->regulators), chip->regulators); if (ret) { dev_err(chip->dev, "Failed to disable regulators: %d\n", ret); return ret; } chip->enabled = false; return 0; } static int ktd202x_chip_enable(struct ktd202x *chip) { int ret; if (chip->enabled) return 0; ret = regulator_bulk_enable(ARRAY_SIZE(chip->regulators), chip->regulators); if (ret) { dev_err(chip->dev, "Failed to enable regulators: %d\n", ret); return ret; } chip->enabled = true; ret = regmap_write(chip->regmap, KTD202X_REG_RESET_CONTROL, KTD202X_ENABLE_CTRL_WAKE); if (ret) { dev_err(chip->dev, "Failed to enable the chip: %d\n", ret); ktd202x_chip_disable(chip); } return ret; } static bool ktd202x_chip_in_use(struct ktd202x *chip) { int i; for (i = 0; i < chip->num_leds; i++) { if (chip->leds[i].cdev.brightness) return true; } return false; } static int ktd202x_brightness_set(struct ktd202x_led *led, struct mc_subled *subleds, unsigned int num_channels) { bool mode_blink = false; int channel; int state; int ret; int i; if (ktd202x_chip_in_use(led->chip)) { ret = ktd202x_chip_enable(led->chip); if (ret) return ret; } ret = regmap_read(led->chip->regmap, KTD202X_REG_CHANNEL_CTRL, &state); if (ret) return ret; /* * In multicolor case, assume blink mode if PWM is set for at least one * channel because another channel cannot be in state ON at the same time */ for (i = 0; i < num_channels; i++) { int channel_state; channel = subleds[i].channel; channel_state = (state >> 2 * channel) & KTD202X_CHANNEL_CTRL_MASK(0); if (channel_state == KTD202X_CHANNEL_CTRL_OFF) continue; mode_blink = channel_state == KTD202X_CHANNEL_CTRL_PWM1(0); break; } for (i = 0; i < num_channels; i++) { enum led_brightness brightness; int mode; brightness = subleds[i].brightness; channel = subleds[i].channel; if (brightness) { /* Register expects brightness between 0 and MAX_BRIGHTNESS - 1 */ ret = regmap_write(led->chip->regmap, KTD202X_REG_LED_IOUT(channel), brightness - 1); if (ret) return ret; if (mode_blink) mode = KTD202X_CHANNEL_CTRL_PWM1(channel); else mode = KTD202X_CHANNEL_CTRL_ON(channel); } else { mode = KTD202X_CHANNEL_CTRL_OFF; } ret = regmap_update_bits(led->chip->regmap, KTD202X_REG_CHANNEL_CTRL, KTD202X_CHANNEL_CTRL_MASK(channel), mode); if (ret) return ret; } if (!ktd202x_chip_in_use(led->chip)) return ktd202x_chip_disable(led->chip); return 0; } static int ktd202x_brightness_single_set(struct led_classdev *cdev, enum led_brightness value) { struct ktd202x_led *led = container_of(cdev, struct ktd202x_led, cdev); struct mc_subled info; int ret; cdev->brightness = value; mutex_lock(&led->chip->mutex); info.brightness = value; info.channel = led->index; ret = ktd202x_brightness_set(led, &info, 1); mutex_unlock(&led->chip->mutex); return ret; } static int ktd202x_brightness_mc_set(struct led_classdev *cdev, enum led_brightness value) { struct led_classdev_mc *mc = lcdev_to_mccdev(cdev); struct ktd202x_led *led = container_of(mc, struct ktd202x_led, mcdev); int ret; cdev->brightness = value; mutex_lock(&led->chip->mutex); led_mc_calc_color_components(mc, value); ret = ktd202x_brightness_set(led, mc->subled_info, mc->num_colors); mutex_unlock(&led->chip->mutex); return ret; } static int ktd202x_blink_set(struct ktd202x_led *led, unsigned long *delay_on, unsigned long *delay_off, struct mc_subled *subleds, unsigned int num_channels) { unsigned long delay_total_ms; int ret, num_steps, on; u8 ctrl_mask = 0; u8 ctrl_pwm1 = 0; u8 ctrl_on = 0; int i; mutex_lock(&led->chip->mutex); for (i = 0; i < num_channels; i++) { int channel = subleds[i].channel; ctrl_mask |= KTD202X_CHANNEL_CTRL_MASK(channel); ctrl_on |= KTD202X_CHANNEL_CTRL_ON(channel); ctrl_pwm1 |= KTD202X_CHANNEL_CTRL_PWM1(channel); } /* Never off - brightness is already set, disable blinking */ if (!*delay_off) { ret = regmap_update_bits(led->chip->regmap, KTD202X_REG_CHANNEL_CTRL, ctrl_mask, ctrl_on); goto out; } /* Convert into values the HW will understand. */ /* Integer representation of time of flash period */ num_steps = (*delay_on + *delay_off - KTD202X_FLASH_PERIOD_MIN_MS) / KTD202X_FLASH_PERIOD_STEP_MS; num_steps = clamp(num_steps, 0, KTD202X_FLASH_PERIOD_MAX_STEPS); /* Integer representation of percentage of LED ON time */ on = (*delay_on * KTD202X_FLASH_ON_MAX) / (*delay_on + *delay_off); /* Actually used delay_{on,off} values */ delay_total_ms = num_steps * KTD202X_FLASH_PERIOD_STEP_MS + KTD202X_FLASH_PERIOD_MIN_MS; *delay_on = (delay_total_ms * on) / KTD202X_FLASH_ON_MAX; *delay_off = delay_total_ms - *delay_on; /* Set timings */ ret = regmap_write(led->chip->regmap, KTD202X_REG_FLASH_PERIOD, num_steps); if (ret) goto out; ret = regmap_write(led->chip->regmap, KTD202X_REG_PWM1_TIMER, on); if (ret) goto out; ret = regmap_update_bits(led->chip->regmap, KTD202X_REG_CHANNEL_CTRL, ctrl_mask, ctrl_pwm1); out: mutex_unlock(&led->chip->mutex); return ret; } static int ktd202x_blink_single_set(struct led_classdev *cdev, unsigned long *delay_on, unsigned long *delay_off) { struct ktd202x_led *led = container_of(cdev, struct ktd202x_led, cdev); struct mc_subled info; int ret; if (!cdev->brightness) { ret = ktd202x_brightness_single_set(cdev, KTD202X_MAX_BRIGHTNESS); if (ret) return ret; } /* If no blink specified, default to 1 Hz. */ if (!*delay_off && !*delay_on) { *delay_off = 500; *delay_on = 500; } /* Never on - just set to off */ if (!*delay_on) return ktd202x_brightness_single_set(cdev, LED_OFF); info.channel = led->index; return ktd202x_blink_set(led, delay_on, delay_off, &info, 1); } static int ktd202x_blink_mc_set(struct led_classdev *cdev, unsigned long *delay_on, unsigned long *delay_off) { struct led_classdev_mc *mc = lcdev_to_mccdev(cdev); struct ktd202x_led *led = container_of(mc, struct ktd202x_led, mcdev); int ret; if (!cdev->brightness) { ret = ktd202x_brightness_mc_set(cdev, KTD202X_MAX_BRIGHTNESS); if (ret) return ret; } /* If no blink specified, default to 1 Hz. */ if (!*delay_off && !*delay_on) { *delay_off = 500; *delay_on = 500; } /* Never on - just set to off */ if (!*delay_on) return ktd202x_brightness_mc_set(cdev, LED_OFF); return ktd202x_blink_set(led, delay_on, delay_off, mc->subled_info, mc->num_colors); } static int ktd202x_setup_led_rgb(struct ktd202x *chip, struct device_node *np, struct ktd202x_led *led, struct led_init_data *init_data) { struct led_classdev *cdev; struct device_node *child; struct mc_subled *info; int num_channels; int i = 0; num_channels = of_get_available_child_count(np); if (!num_channels || num_channels > chip->num_leds) return -EINVAL; info = devm_kcalloc(chip->dev, num_channels, sizeof(*info), GFP_KERNEL); if (!info) return -ENOMEM; for_each_available_child_of_node(np, child) { u32 mono_color; u32 reg; int ret; ret = of_property_read_u32(child, "reg", ®); if (ret != 0 || reg >= chip->num_leds) { dev_err(chip->dev, "invalid 'reg' of %pOFn\n", child); of_node_put(child); return -EINVAL; } ret = of_property_read_u32(child, "color", &mono_color); if (ret < 0 && ret != -EINVAL) { dev_err(chip->dev, "failed to parse 'color' of %pOF\n", child); of_node_put(child); return ret; } info[i].color_index = mono_color; info[i].channel = reg; info[i].intensity = KTD202X_MAX_BRIGHTNESS; i++; } led->mcdev.subled_info = info; led->mcdev.num_colors = num_channels; cdev = &led->mcdev.led_cdev; cdev->brightness_set_blocking = ktd202x_brightness_mc_set; cdev->blink_set = ktd202x_blink_mc_set; return devm_led_classdev_multicolor_register_ext(chip->dev, &led->mcdev, init_data); } static int ktd202x_setup_led_single(struct ktd202x *chip, struct device_node *np, struct ktd202x_led *led, struct led_init_data *init_data) { struct led_classdev *cdev; u32 reg; int ret; ret = of_property_read_u32(np, "reg", ®); if (ret != 0 || reg >= chip->num_leds) { dev_err(chip->dev, "invalid 'reg' of %pOFn\n", np); return -EINVAL; } led->index = reg; cdev = &led->cdev; cdev->brightness_set_blocking = ktd202x_brightness_single_set; cdev->blink_set = ktd202x_blink_single_set; return devm_led_classdev_register_ext(chip->dev, &led->cdev, init_data); } static int ktd202x_add_led(struct ktd202x *chip, struct device_node *np, unsigned int index) { struct ktd202x_led *led = &chip->leds[index]; struct led_init_data init_data = {}; struct led_classdev *cdev; u32 color; int ret; /* Color property is optional in single color case */ ret = of_property_read_u32(np, "color", &color); if (ret < 0 && ret != -EINVAL) { dev_err(chip->dev, "failed to parse 'color' of %pOF\n", np); return ret; } led->chip = chip; init_data.fwnode = of_fwnode_handle(np); if (color == LED_COLOR_ID_RGB) { cdev = &led->mcdev.led_cdev; ret = ktd202x_setup_led_rgb(chip, np, led, &init_data); } else { cdev = &led->cdev; ret = ktd202x_setup_led_single(chip, np, led, &init_data); } if (ret) { dev_err(chip->dev, "unable to register %s\n", cdev->name); return ret; } cdev->max_brightness = KTD202X_MAX_BRIGHTNESS; return 0; } static int ktd202x_probe_dt(struct ktd202x *chip) { struct device_node *np = dev_of_node(chip->dev), *child; int count; int i = 0; chip->num_leds = (int)(unsigned long)of_device_get_match_data(chip->dev); count = of_get_available_child_count(np); if (!count || count > chip->num_leds) return -EINVAL; regmap_write(chip->regmap, KTD202X_REG_RESET_CONTROL, KTD202X_RSTR_RESET); /* Allow the device to execute the complete reset */ usleep_range(200, 300); for_each_available_child_of_node(np, child) { int ret = ktd202x_add_led(chip, child, i); if (ret) { of_node_put(child); return ret; } i++; } return 0; } static const struct regmap_config ktd202x_regmap_config = { .reg_bits = 8, .val_bits = 8, .max_register = 0x09, .cache_type = REGCACHE_FLAT, .reg_defaults = ktd202x_reg_defaults, .num_reg_defaults = ARRAY_SIZE(ktd202x_reg_defaults), }; static int ktd202x_probe(struct i2c_client *client) { struct device *dev = &client->dev; struct ktd202x *chip; int count; int ret; count = device_get_child_node_count(dev); if (!count || count > KTD202X_MAX_LEDS) return dev_err_probe(dev, -EINVAL, "Incorrect number of leds (%d)", count); chip = devm_kzalloc(dev, struct_size(chip, leds, count), GFP_KERNEL); if (!chip) return -ENOMEM; chip->dev = dev; i2c_set_clientdata(client, chip); chip->regmap = devm_regmap_init_i2c(client, &ktd202x_regmap_config); if (IS_ERR(chip->regmap)) { ret = dev_err_probe(dev, PTR_ERR(chip->regmap), "Failed to allocate register map.\n"); return ret; } chip->regulators[0].supply = "vin"; chip->regulators[1].supply = "vio"; ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(chip->regulators), chip->regulators); if (ret < 0) { dev_err_probe(dev, ret, "Failed to request regulators.\n"); return ret; } ret = regulator_bulk_enable(ARRAY_SIZE(chip->regulators), chip->regulators); if (ret) { dev_err_probe(dev, ret, "Failed to enable regulators.\n"); return ret; } ret = ktd202x_probe_dt(chip); if (ret < 0) { regulator_bulk_disable(ARRAY_SIZE(chip->regulators), chip->regulators); return ret; } ret = regulator_bulk_disable(ARRAY_SIZE(chip->regulators), chip->regulators); if (ret) { dev_err_probe(dev, ret, "Failed to disable regulators.\n"); return ret; } mutex_init(&chip->mutex); return 0; } static void ktd202x_remove(struct i2c_client *client) { struct ktd202x *chip = i2c_get_clientdata(client); ktd202x_chip_disable(chip); mutex_destroy(&chip->mutex); } static void ktd202x_shutdown(struct i2c_client *client) { struct ktd202x *chip = i2c_get_clientdata(client); /* Reset registers to make sure all LEDs are off before shutdown */ regmap_write(chip->regmap, KTD202X_REG_RESET_CONTROL, KTD202X_RSTR_RESET); } static const struct of_device_id ktd202x_match_table[] = { { .compatible = "kinetic,ktd2026", .data = (void *)KTD2026_NUM_LEDS }, { .compatible = "kinetic,ktd2027", .data = (void *)KTD2027_NUM_LEDS }, {}, }; MODULE_DEVICE_TABLE(of, ktd202x_match_table); static struct i2c_driver ktd202x_driver = { .driver = { .name = "leds-ktd202x", .of_match_table = ktd202x_match_table, }, .probe = ktd202x_probe, .remove = ktd202x_remove, .shutdown = ktd202x_shutdown, }; module_i2c_driver(ktd202x_driver); MODULE_AUTHOR("AndrĂ© Apitzsch "); MODULE_DESCRIPTION("Kinetic KTD2026/7 LED driver"); MODULE_LICENSE("GPL");