/* * Copyright (C) 2011 Red Hat, Inc. * * This file is released under the GPL. */ #include "dm-space-map-common.h" #include "dm-transaction-manager.h" #include "dm-btree-internal.h" #include "dm-persistent-data-internal.h" #include #include #define DM_MSG_PREFIX "space map common" /*----------------------------------------------------------------*/ /* * Index validator. */ #define INDEX_CSUM_XOR 160478 static void index_prepare_for_write(struct dm_block_validator *v, struct dm_block *b, size_t block_size) { struct disk_metadata_index *mi_le = dm_block_data(b); mi_le->blocknr = cpu_to_le64(dm_block_location(b)); mi_le->csum = cpu_to_le32(dm_bm_checksum(&mi_le->padding, block_size - sizeof(__le32), INDEX_CSUM_XOR)); } static int index_check(struct dm_block_validator *v, struct dm_block *b, size_t block_size) { struct disk_metadata_index *mi_le = dm_block_data(b); __le32 csum_disk; if (dm_block_location(b) != le64_to_cpu(mi_le->blocknr)) { DMERR_LIMIT("index_check failed: blocknr %llu != wanted %llu", le64_to_cpu(mi_le->blocknr), dm_block_location(b)); return -ENOTBLK; } csum_disk = cpu_to_le32(dm_bm_checksum(&mi_le->padding, block_size - sizeof(__le32), INDEX_CSUM_XOR)); if (csum_disk != mi_le->csum) { DMERR_LIMIT("index_check failed: csum %u != wanted %u", le32_to_cpu(csum_disk), le32_to_cpu(mi_le->csum)); return -EILSEQ; } return 0; } static struct dm_block_validator index_validator = { .name = "index", .prepare_for_write = index_prepare_for_write, .check = index_check }; /*----------------------------------------------------------------*/ /* * Bitmap validator */ #define BITMAP_CSUM_XOR 240779 static void dm_bitmap_prepare_for_write(struct dm_block_validator *v, struct dm_block *b, size_t block_size) { struct disk_bitmap_header *disk_header = dm_block_data(b); disk_header->blocknr = cpu_to_le64(dm_block_location(b)); disk_header->csum = cpu_to_le32(dm_bm_checksum(&disk_header->not_used, block_size - sizeof(__le32), BITMAP_CSUM_XOR)); } static int dm_bitmap_check(struct dm_block_validator *v, struct dm_block *b, size_t block_size) { struct disk_bitmap_header *disk_header = dm_block_data(b); __le32 csum_disk; if (dm_block_location(b) != le64_to_cpu(disk_header->blocknr)) { DMERR_LIMIT("bitmap check failed: blocknr %llu != wanted %llu", le64_to_cpu(disk_header->blocknr), dm_block_location(b)); return -ENOTBLK; } csum_disk = cpu_to_le32(dm_bm_checksum(&disk_header->not_used, block_size - sizeof(__le32), BITMAP_CSUM_XOR)); if (csum_disk != disk_header->csum) { DMERR_LIMIT("bitmap check failed: csum %u != wanted %u", le32_to_cpu(csum_disk), le32_to_cpu(disk_header->csum)); return -EILSEQ; } return 0; } static struct dm_block_validator dm_sm_bitmap_validator = { .name = "sm_bitmap", .prepare_for_write = dm_bitmap_prepare_for_write, .check = dm_bitmap_check, }; /*----------------------------------------------------------------*/ #define ENTRIES_PER_WORD 32 #define ENTRIES_SHIFT 5 static void *dm_bitmap_data(struct dm_block *b) { return dm_block_data(b) + sizeof(struct disk_bitmap_header); } #define WORD_MASK_HIGH 0xAAAAAAAAAAAAAAAAULL static unsigned dm_bitmap_word_used(void *addr, unsigned b) { __le64 *words_le = addr; __le64 *w_le = words_le + (b >> ENTRIES_SHIFT); uint64_t bits = le64_to_cpu(*w_le); uint64_t mask = (bits + WORD_MASK_HIGH + 1) & WORD_MASK_HIGH; return !(~bits & mask); } static unsigned sm_lookup_bitmap(void *addr, unsigned b) { __le64 *words_le = addr; __le64 *w_le = words_le + (b >> ENTRIES_SHIFT); unsigned hi, lo; b = (b & (ENTRIES_PER_WORD - 1)) << 1; hi = !!test_bit_le(b, (void *) w_le); lo = !!test_bit_le(b + 1, (void *) w_le); return (hi << 1) | lo; } static void sm_set_bitmap(void *addr, unsigned b, unsigned val) { __le64 *words_le = addr; __le64 *w_le = words_le + (b >> ENTRIES_SHIFT); b = (b & (ENTRIES_PER_WORD - 1)) << 1; if (val & 2) __set_bit_le(b, (void *) w_le); else __clear_bit_le(b, (void *) w_le); if (val & 1) __set_bit_le(b + 1, (void *) w_le); else __clear_bit_le(b + 1, (void *) w_le); } static int sm_find_free(void *addr, unsigned begin, unsigned end, unsigned *result) { while (begin < end) { if (!(begin & (ENTRIES_PER_WORD - 1)) && dm_bitmap_word_used(addr, begin)) { begin += ENTRIES_PER_WORD; continue; } if (!sm_lookup_bitmap(addr, begin)) { *result = begin; return 0; } begin++; } return -ENOSPC; } /*----------------------------------------------------------------*/ static int sm_ll_init(struct ll_disk *ll, struct dm_transaction_manager *tm) { memset(ll, 0, sizeof(struct ll_disk)); ll->tm = tm; ll->bitmap_info.tm = tm; ll->bitmap_info.levels = 1; /* * Because the new bitmap blocks are created via a shadow * operation, the old entry has already had its reference count * decremented and we don't need the btree to do any bookkeeping. */ ll->bitmap_info.value_type.size = sizeof(struct disk_index_entry); ll->bitmap_info.value_type.inc = NULL; ll->bitmap_info.value_type.dec = NULL; ll->bitmap_info.value_type.equal = NULL; ll->ref_count_info.tm = tm; ll->ref_count_info.levels = 1; ll->ref_count_info.value_type.size = sizeof(uint32_t); ll->ref_count_info.value_type.inc = NULL; ll->ref_count_info.value_type.dec = NULL; ll->ref_count_info.value_type.equal = NULL; ll->block_size = dm_bm_block_size(dm_tm_get_bm(tm)); if (ll->block_size > (1 << 30)) { DMERR("block size too big to hold bitmaps"); return -EINVAL; } ll->entries_per_block = (ll->block_size - sizeof(struct disk_bitmap_header)) * ENTRIES_PER_BYTE; ll->nr_blocks = 0; ll->bitmap_root = 0; ll->ref_count_root = 0; ll->bitmap_index_changed = false; return 0; } int sm_ll_extend(struct ll_disk *ll, dm_block_t extra_blocks) { int r; dm_block_t i, nr_blocks, nr_indexes; unsigned old_blocks, blocks; nr_blocks = ll->nr_blocks + extra_blocks; old_blocks = dm_sector_div_up(ll->nr_blocks, ll->entries_per_block); blocks = dm_sector_div_up(nr_blocks, ll->entries_per_block); nr_indexes = dm_sector_div_up(nr_blocks, ll->entries_per_block); if (nr_indexes > ll->max_entries(ll)) { DMERR("space map too large"); return -EINVAL; } /* * We need to set this before the dm_tm_new_block() call below. */ ll->nr_blocks = nr_blocks; for (i = old_blocks; i < blocks; i++) { struct dm_block *b; struct disk_index_entry idx; r = dm_tm_new_block(ll->tm, &dm_sm_bitmap_validator, &b); if (r < 0) return r; idx.blocknr = cpu_to_le64(dm_block_location(b)); dm_tm_unlock(ll->tm, b); idx.nr_free = cpu_to_le32(ll->entries_per_block); idx.none_free_before = 0; r = ll->save_ie(ll, i, &idx); if (r < 0) return r; } return 0; } int sm_ll_lookup_bitmap(struct ll_disk *ll, dm_block_t b, uint32_t *result) { int r; dm_block_t index = b; struct disk_index_entry ie_disk; struct dm_block *blk; b = do_div(index, ll->entries_per_block); r = ll->load_ie(ll, index, &ie_disk); if (r < 0) return r; r = dm_tm_read_lock(ll->tm, le64_to_cpu(ie_disk.blocknr), &dm_sm_bitmap_validator, &blk); if (r < 0) return r; *result = sm_lookup_bitmap(dm_bitmap_data(blk), b); dm_tm_unlock(ll->tm, blk); return 0; } static int sm_ll_lookup_big_ref_count(struct ll_disk *ll, dm_block_t b, uint32_t *result) { __le32 le_rc; int r; r = dm_btree_lookup(&ll->ref_count_info, ll->ref_count_root, &b, &le_rc); if (r < 0) return r; *result = le32_to_cpu(le_rc); return r; } int sm_ll_lookup(struct ll_disk *ll, dm_block_t b, uint32_t *result) { int r = sm_ll_lookup_bitmap(ll, b, result); if (r) return r; if (*result != 3) return r; return sm_ll_lookup_big_ref_count(ll, b, result); } int sm_ll_find_free_block(struct ll_disk *ll, dm_block_t begin, dm_block_t end, dm_block_t *result) { int r; struct disk_index_entry ie_disk; dm_block_t i, index_begin = begin; dm_block_t index_end = dm_sector_div_up(end, ll->entries_per_block); /* * FIXME: Use shifts */ begin = do_div(index_begin, ll->entries_per_block); end = do_div(end, ll->entries_per_block); if (end == 0) end = ll->entries_per_block; for (i = index_begin; i < index_end; i++, begin = 0) { struct dm_block *blk; unsigned position; uint32_t bit_end; r = ll->load_ie(ll, i, &ie_disk); if (r < 0) return r; if (le32_to_cpu(ie_disk.nr_free) == 0) continue; r = dm_tm_read_lock(ll->tm, le64_to_cpu(ie_disk.blocknr), &dm_sm_bitmap_validator, &blk); if (r < 0) return r; bit_end = (i == index_end - 1) ? end : ll->entries_per_block; r = sm_find_free(dm_bitmap_data(blk), max_t(unsigned, begin, le32_to_cpu(ie_disk.none_free_before)), bit_end, &position); if (r == -ENOSPC) { /* * This might happen because we started searching * part way through the bitmap. */ dm_tm_unlock(ll->tm, blk); continue; } dm_tm_unlock(ll->tm, blk); *result = i * ll->entries_per_block + (dm_block_t) position; return 0; } return -ENOSPC; } int sm_ll_find_common_free_block(struct ll_disk *old_ll, struct ll_disk *new_ll, dm_block_t begin, dm_block_t end, dm_block_t *b) { int r; uint32_t count; do { r = sm_ll_find_free_block(new_ll, begin, new_ll->nr_blocks, b); if (r) break; /* double check this block wasn't used in the old transaction */ if (*b >= old_ll->nr_blocks) count = 0; else { r = sm_ll_lookup(old_ll, *b, &count); if (r) break; if (count) begin = *b + 1; } } while (count); return r; } /*----------------------------------------------------------------*/ int sm_ll_insert(struct ll_disk *ll, dm_block_t b, uint32_t ref_count, int32_t *nr_allocations) { int r; uint32_t bit, old; struct dm_block *nb; dm_block_t index = b; struct disk_index_entry ie_disk; void *bm_le; int inc; bit = do_div(index, ll->entries_per_block); r = ll->load_ie(ll, index, &ie_disk); if (r < 0) return r; r = dm_tm_shadow_block(ll->tm, le64_to_cpu(ie_disk.blocknr), &dm_sm_bitmap_validator, &nb, &inc); if (r < 0) { DMERR("dm_tm_shadow_block() failed"); return r; } ie_disk.blocknr = cpu_to_le64(dm_block_location(nb)); bm_le = dm_bitmap_data(nb); old = sm_lookup_bitmap(bm_le, bit); if (old > 2) { r = sm_ll_lookup_big_ref_count(ll, b, &old); if (r < 0) { dm_tm_unlock(ll->tm, nb); return r; } } if (r) { dm_tm_unlock(ll->tm, nb); return r; } if (ref_count <= 2) { sm_set_bitmap(bm_le, bit, ref_count); dm_tm_unlock(ll->tm, nb); if (old > 2) { r = dm_btree_remove(&ll->ref_count_info, ll->ref_count_root, &b, &ll->ref_count_root); if (r) return r; } } else { __le32 le_rc = cpu_to_le32(ref_count); sm_set_bitmap(bm_le, bit, 3); dm_tm_unlock(ll->tm, nb); __dm_bless_for_disk(&le_rc); r = dm_btree_insert(&ll->ref_count_info, ll->ref_count_root, &b, &le_rc, &ll->ref_count_root); if (r < 0) { DMERR("ref count insert failed"); return r; } } if (ref_count && !old) { *nr_allocations = 1; ll->nr_allocated++; le32_add_cpu(&ie_disk.nr_free, -1); if (le32_to_cpu(ie_disk.none_free_before) == bit) ie_disk.none_free_before = cpu_to_le32(bit + 1); } else if (old && !ref_count) { *nr_allocations = -1; ll->nr_allocated--; le32_add_cpu(&ie_disk.nr_free, 1); ie_disk.none_free_before = cpu_to_le32(min(le32_to_cpu(ie_disk.none_free_before), bit)); } else *nr_allocations = 0; return ll->save_ie(ll, index, &ie_disk); } /*----------------------------------------------------------------*/ /* * Holds useful intermediate results for the range based inc and dec * operations. */ struct inc_context { struct disk_index_entry ie_disk; struct dm_block *bitmap_block; void *bitmap; struct dm_block *overflow_leaf; }; static inline void init_inc_context(struct inc_context *ic) { ic->bitmap_block = NULL; ic->bitmap = NULL; ic->overflow_leaf = NULL; } static inline void exit_inc_context(struct ll_disk *ll, struct inc_context *ic) { if (ic->bitmap_block) dm_tm_unlock(ll->tm, ic->bitmap_block); if (ic->overflow_leaf) dm_tm_unlock(ll->tm, ic->overflow_leaf); } static inline void reset_inc_context(struct ll_disk *ll, struct inc_context *ic) { exit_inc_context(ll, ic); init_inc_context(ic); } /* * Confirms a btree node contains a particular key at an index. */ static bool contains_key(struct btree_node *n, uint64_t key, int index) { return index >= 0 && index < le32_to_cpu(n->header.nr_entries) && le64_to_cpu(n->keys[index]) == key; } static int __sm_ll_inc_overflow(struct ll_disk *ll, dm_block_t b, struct inc_context *ic) { int r; int index; struct btree_node *n; __le32 *v_ptr; uint32_t rc; /* * bitmap_block needs to be unlocked because getting the * overflow_leaf may need to allocate, and thus use the space map. */ reset_inc_context(ll, ic); r = btree_get_overwrite_leaf(&ll->ref_count_info, ll->ref_count_root, b, &index, &ll->ref_count_root, &ic->overflow_leaf); if (r < 0) return r; n = dm_block_data(ic->overflow_leaf); if (!contains_key(n, b, index)) { DMERR("overflow btree is missing an entry"); return -EINVAL; } v_ptr = value_ptr(n, index); rc = le32_to_cpu(*v_ptr) + 1; *v_ptr = cpu_to_le32(rc); return 0; } static int sm_ll_inc_overflow(struct ll_disk *ll, dm_block_t b, struct inc_context *ic) { int index; struct btree_node *n; __le32 *v_ptr; uint32_t rc; /* * Do we already have the correct overflow leaf? */ if (ic->overflow_leaf) { n = dm_block_data(ic->overflow_leaf); index = lower_bound(n, b); if (contains_key(n, b, index)) { v_ptr = value_ptr(n, index); rc = le32_to_cpu(*v_ptr) + 1; *v_ptr = cpu_to_le32(rc); return 0; } } return __sm_ll_inc_overflow(ll, b, ic); } static inline int shadow_bitmap(struct ll_disk *ll, struct inc_context *ic) { int r, inc; r = dm_tm_shadow_block(ll->tm, le64_to_cpu(ic->ie_disk.blocknr), &dm_sm_bitmap_validator, &ic->bitmap_block, &inc); if (r < 0) { DMERR("dm_tm_shadow_block() failed"); return r; } ic->ie_disk.blocknr = cpu_to_le64(dm_block_location(ic->bitmap_block)); ic->bitmap = dm_bitmap_data(ic->bitmap_block); return 0; } /* * Once shadow_bitmap has been called, which always happens at the start of inc/dec, * we can reopen the bitmap with a simple write lock, rather than re calling * dm_tm_shadow_block(). */ static inline int ensure_bitmap(struct ll_disk *ll, struct inc_context *ic) { if (!ic->bitmap_block) { int r = dm_bm_write_lock(dm_tm_get_bm(ll->tm), le64_to_cpu(ic->ie_disk.blocknr), &dm_sm_bitmap_validator, &ic->bitmap_block); if (r) { DMERR("unable to re-get write lock for bitmap"); return r; } ic->bitmap = dm_bitmap_data(ic->bitmap_block); } return 0; } /* * Loops round incrementing entries in a single bitmap. */ static inline int sm_ll_inc_bitmap(struct ll_disk *ll, dm_block_t b, uint32_t bit, uint32_t bit_end, int32_t *nr_allocations, dm_block_t *new_b, struct inc_context *ic) { int r; __le32 le_rc; uint32_t old; for (; bit != bit_end; bit++, b++) { /* * We only need to drop the bitmap if we need to find a new btree * leaf for the overflow. So if it was dropped last iteration, * we now re-get it. */ r = ensure_bitmap(ll, ic); if (r) return r; old = sm_lookup_bitmap(ic->bitmap, bit); switch (old) { case 0: /* inc bitmap, adjust nr_allocated */ sm_set_bitmap(ic->bitmap, bit, 1); (*nr_allocations)++; ll->nr_allocated++; le32_add_cpu(&ic->ie_disk.nr_free, -1); if (le32_to_cpu(ic->ie_disk.none_free_before) == bit) ic->ie_disk.none_free_before = cpu_to_le32(bit + 1); break; case 1: /* inc bitmap */ sm_set_bitmap(ic->bitmap, bit, 2); break; case 2: /* inc bitmap and insert into overflow */ sm_set_bitmap(ic->bitmap, bit, 3); reset_inc_context(ll, ic); le_rc = cpu_to_le32(3); __dm_bless_for_disk(&le_rc); r = dm_btree_insert(&ll->ref_count_info, ll->ref_count_root, &b, &le_rc, &ll->ref_count_root); if (r < 0) { DMERR("ref count insert failed"); return r; } break; default: /* * inc within the overflow tree only. */ r = sm_ll_inc_overflow(ll, b, ic); if (r < 0) return r; } } *new_b = b; return 0; } /* * Finds a bitmap that contains entries in the block range, and increments * them. */ static int __sm_ll_inc(struct ll_disk *ll, dm_block_t b, dm_block_t e, int32_t *nr_allocations, dm_block_t *new_b) { int r; struct inc_context ic; uint32_t bit, bit_end; dm_block_t index = b; init_inc_context(&ic); bit = do_div(index, ll->entries_per_block); r = ll->load_ie(ll, index, &ic.ie_disk); if (r < 0) return r; r = shadow_bitmap(ll, &ic); if (r) return r; bit_end = min(bit + (e - b), (dm_block_t) ll->entries_per_block); r = sm_ll_inc_bitmap(ll, b, bit, bit_end, nr_allocations, new_b, &ic); exit_inc_context(ll, &ic); if (r) return r; return ll->save_ie(ll, index, &ic.ie_disk); } int sm_ll_inc(struct ll_disk *ll, dm_block_t b, dm_block_t e, int32_t *nr_allocations) { *nr_allocations = 0; while (b != e) { int r = __sm_ll_inc(ll, b, e, nr_allocations, &b); if (r) return r; } return 0; } /*----------------------------------------------------------------*/ static int __sm_ll_del_overflow(struct ll_disk *ll, dm_block_t b, struct inc_context *ic) { reset_inc_context(ll, ic); return dm_btree_remove(&ll->ref_count_info, ll->ref_count_root, &b, &ll->ref_count_root); } static int __sm_ll_dec_overflow(struct ll_disk *ll, dm_block_t b, struct inc_context *ic, uint32_t *old_rc) { int r; int index = -1; struct btree_node *n; __le32 *v_ptr; uint32_t rc; reset_inc_context(ll, ic); r = btree_get_overwrite_leaf(&ll->ref_count_info, ll->ref_count_root, b, &index, &ll->ref_count_root, &ic->overflow_leaf); if (r < 0) return r; n = dm_block_data(ic->overflow_leaf); if (!contains_key(n, b, index)) { DMERR("overflow btree is missing an entry"); return -EINVAL; } v_ptr = value_ptr(n, index); rc = le32_to_cpu(*v_ptr); *old_rc = rc; if (rc == 3) { return __sm_ll_del_overflow(ll, b, ic); } else { rc--; *v_ptr = cpu_to_le32(rc); return 0; } } static int sm_ll_dec_overflow(struct ll_disk *ll, dm_block_t b, struct inc_context *ic, uint32_t *old_rc) { /* * Do we already have the correct overflow leaf? */ if (ic->overflow_leaf) { int index; struct btree_node *n; __le32 *v_ptr; uint32_t rc; n = dm_block_data(ic->overflow_leaf); index = lower_bound(n, b); if (contains_key(n, b, index)) { v_ptr = value_ptr(n, index); rc = le32_to_cpu(*v_ptr); *old_rc = rc; if (rc > 3) { rc--; *v_ptr = cpu_to_le32(rc); return 0; } else { return __sm_ll_del_overflow(ll, b, ic); } } } return __sm_ll_dec_overflow(ll, b, ic, old_rc); } /* * Loops round incrementing entries in a single bitmap. */ static inline int sm_ll_dec_bitmap(struct ll_disk *ll, dm_block_t b, uint32_t bit, uint32_t bit_end, struct inc_context *ic, int32_t *nr_allocations, dm_block_t *new_b) { int r; uint32_t old; for (; bit != bit_end; bit++, b++) { /* * We only need to drop the bitmap if we need to find a new btree * leaf for the overflow. So if it was dropped last iteration, * we now re-get it. */ r = ensure_bitmap(ll, ic); if (r) return r; old = sm_lookup_bitmap(ic->bitmap, bit); switch (old) { case 0: DMERR("unable to decrement block"); return -EINVAL; case 1: /* dec bitmap */ sm_set_bitmap(ic->bitmap, bit, 0); (*nr_allocations)--; ll->nr_allocated--; le32_add_cpu(&ic->ie_disk.nr_free, 1); ic->ie_disk.none_free_before = cpu_to_le32(min(le32_to_cpu(ic->ie_disk.none_free_before), bit)); break; case 2: /* dec bitmap and insert into overflow */ sm_set_bitmap(ic->bitmap, bit, 1); break; case 3: r = sm_ll_dec_overflow(ll, b, ic, &old); if (r < 0) return r; if (old == 3) { r = ensure_bitmap(ll, ic); if (r) return r; sm_set_bitmap(ic->bitmap, bit, 2); } break; } } *new_b = b; return 0; } static int __sm_ll_dec(struct ll_disk *ll, dm_block_t b, dm_block_t e, int32_t *nr_allocations, dm_block_t *new_b) { int r; uint32_t bit, bit_end; struct inc_context ic; dm_block_t index = b; init_inc_context(&ic); bit = do_div(index, ll->entries_per_block); r = ll->load_ie(ll, index, &ic.ie_disk); if (r < 0) return r; r = shadow_bitmap(ll, &ic); if (r) return r; bit_end = min(bit + (e - b), (dm_block_t) ll->entries_per_block); r = sm_ll_dec_bitmap(ll, b, bit, bit_end, &ic, nr_allocations, new_b); exit_inc_context(ll, &ic); if (r) return r; return ll->save_ie(ll, index, &ic.ie_disk); } int sm_ll_dec(struct ll_disk *ll, dm_block_t b, dm_block_t e, int32_t *nr_allocations) { *nr_allocations = 0; while (b != e) { int r = __sm_ll_dec(ll, b, e, nr_allocations, &b); if (r) return r; } return 0; } /*----------------------------------------------------------------*/ int sm_ll_commit(struct ll_disk *ll) { int r = 0; if (ll->bitmap_index_changed) { r = ll->commit(ll); if (!r) ll->bitmap_index_changed = false; } return r; } /*----------------------------------------------------------------*/ static int metadata_ll_load_ie(struct ll_disk *ll, dm_block_t index, struct disk_index_entry *ie) { memcpy(ie, ll->mi_le.index + index, sizeof(*ie)); return 0; } static int metadata_ll_save_ie(struct ll_disk *ll, dm_block_t index, struct disk_index_entry *ie) { ll->bitmap_index_changed = true; memcpy(ll->mi_le.index + index, ie, sizeof(*ie)); return 0; } static int metadata_ll_init_index(struct ll_disk *ll) { int r; struct dm_block *b; r = dm_tm_new_block(ll->tm, &index_validator, &b); if (r < 0) return r; ll->bitmap_root = dm_block_location(b); dm_tm_unlock(ll->tm, b); return 0; } static int metadata_ll_open(struct ll_disk *ll) { int r; struct dm_block *block; r = dm_tm_read_lock(ll->tm, ll->bitmap_root, &index_validator, &block); if (r) return r; memcpy(&ll->mi_le, dm_block_data(block), sizeof(ll->mi_le)); dm_tm_unlock(ll->tm, block); return 0; } static dm_block_t metadata_ll_max_entries(struct ll_disk *ll) { return MAX_METADATA_BITMAPS; } static int metadata_ll_commit(struct ll_disk *ll) { int r, inc; struct dm_block *b; r = dm_tm_shadow_block(ll->tm, ll->bitmap_root, &index_validator, &b, &inc); if (r) return r; memcpy(dm_block_data(b), &ll->mi_le, sizeof(ll->mi_le)); ll->bitmap_root = dm_block_location(b); dm_tm_unlock(ll->tm, b); return 0; } int sm_ll_new_metadata(struct ll_disk *ll, struct dm_transaction_manager *tm) { int r; r = sm_ll_init(ll, tm); if (r < 0) return r; ll->load_ie = metadata_ll_load_ie; ll->save_ie = metadata_ll_save_ie; ll->init_index = metadata_ll_init_index; ll->open_index = metadata_ll_open; ll->max_entries = metadata_ll_max_entries; ll->commit = metadata_ll_commit; ll->nr_blocks = 0; ll->nr_allocated = 0; r = ll->init_index(ll); if (r < 0) return r; r = dm_btree_empty(&ll->ref_count_info, &ll->ref_count_root); if (r < 0) return r; return 0; } int sm_ll_open_metadata(struct ll_disk *ll, struct dm_transaction_manager *tm, void *root_le, size_t len) { int r; struct disk_sm_root smr; if (len < sizeof(struct disk_sm_root)) { DMERR("sm_metadata root too small"); return -ENOMEM; } /* * We don't know the alignment of the root_le buffer, so need to * copy into a new structure. */ memcpy(&smr, root_le, sizeof(smr)); r = sm_ll_init(ll, tm); if (r < 0) return r; ll->load_ie = metadata_ll_load_ie; ll->save_ie = metadata_ll_save_ie; ll->init_index = metadata_ll_init_index; ll->open_index = metadata_ll_open; ll->max_entries = metadata_ll_max_entries; ll->commit = metadata_ll_commit; ll->nr_blocks = le64_to_cpu(smr.nr_blocks); ll->nr_allocated = le64_to_cpu(smr.nr_allocated); ll->bitmap_root = le64_to_cpu(smr.bitmap_root); ll->ref_count_root = le64_to_cpu(smr.ref_count_root); return ll->open_index(ll); } /*----------------------------------------------------------------*/ static inline int ie_cache_writeback(struct ll_disk *ll, struct ie_cache *iec) { iec->dirty = false; __dm_bless_for_disk(iec->ie); return dm_btree_insert(&ll->bitmap_info, ll->bitmap_root, &iec->index, &iec->ie, &ll->bitmap_root); } static inline unsigned hash_index(dm_block_t index) { return dm_hash_block(index, IE_CACHE_MASK); } static int disk_ll_load_ie(struct ll_disk *ll, dm_block_t index, struct disk_index_entry *ie) { int r; unsigned h = hash_index(index); struct ie_cache *iec = ll->ie_cache + h; if (iec->valid) { if (iec->index == index) { memcpy(ie, &iec->ie, sizeof(*ie)); return 0; } if (iec->dirty) { r = ie_cache_writeback(ll, iec); if (r) return r; } } r = dm_btree_lookup(&ll->bitmap_info, ll->bitmap_root, &index, ie); if (!r) { iec->valid = true; iec->dirty = false; iec->index = index; memcpy(&iec->ie, ie, sizeof(*ie)); } return r; } static int disk_ll_save_ie(struct ll_disk *ll, dm_block_t index, struct disk_index_entry *ie) { int r; unsigned h = hash_index(index); struct ie_cache *iec = ll->ie_cache + h; ll->bitmap_index_changed = true; if (iec->valid) { if (iec->index == index) { memcpy(&iec->ie, ie, sizeof(*ie)); iec->dirty = true; return 0; } if (iec->dirty) { r = ie_cache_writeback(ll, iec); if (r) return r; } } iec->valid = true; iec->dirty = true; iec->index = index; memcpy(&iec->ie, ie, sizeof(*ie)); return 0; } static int disk_ll_init_index(struct ll_disk *ll) { unsigned i; for (i = 0; i < IE_CACHE_SIZE; i++) { struct ie_cache *iec = ll->ie_cache + i; iec->valid = false; iec->dirty = false; } return dm_btree_empty(&ll->bitmap_info, &ll->bitmap_root); } static int disk_ll_open(struct ll_disk *ll) { return 0; } static dm_block_t disk_ll_max_entries(struct ll_disk *ll) { return -1ULL; } static int disk_ll_commit(struct ll_disk *ll) { int r = 0; unsigned i; for (i = 0; i < IE_CACHE_SIZE; i++) { struct ie_cache *iec = ll->ie_cache + i; if (iec->valid && iec->dirty) r = ie_cache_writeback(ll, iec); } return r; } int sm_ll_new_disk(struct ll_disk *ll, struct dm_transaction_manager *tm) { int r; r = sm_ll_init(ll, tm); if (r < 0) return r; ll->load_ie = disk_ll_load_ie; ll->save_ie = disk_ll_save_ie; ll->init_index = disk_ll_init_index; ll->open_index = disk_ll_open; ll->max_entries = disk_ll_max_entries; ll->commit = disk_ll_commit; ll->nr_blocks = 0; ll->nr_allocated = 0; r = ll->init_index(ll); if (r < 0) return r; r = dm_btree_empty(&ll->ref_count_info, &ll->ref_count_root); if (r < 0) return r; return 0; } int sm_ll_open_disk(struct ll_disk *ll, struct dm_transaction_manager *tm, void *root_le, size_t len) { int r; struct disk_sm_root *smr = root_le; if (len < sizeof(struct disk_sm_root)) { DMERR("sm_metadata root too small"); return -ENOMEM; } r = sm_ll_init(ll, tm); if (r < 0) return r; ll->load_ie = disk_ll_load_ie; ll->save_ie = disk_ll_save_ie; ll->init_index = disk_ll_init_index; ll->open_index = disk_ll_open; ll->max_entries = disk_ll_max_entries; ll->commit = disk_ll_commit; ll->nr_blocks = le64_to_cpu(smr->nr_blocks); ll->nr_allocated = le64_to_cpu(smr->nr_allocated); ll->bitmap_root = le64_to_cpu(smr->bitmap_root); ll->ref_count_root = le64_to_cpu(smr->ref_count_root); return ll->open_index(ll); } /*----------------------------------------------------------------*/