// SPDX-License-Identifier: GPL-2.0-or-later /* * NXP TDA10071 + Conexant CX24118A DVB-S/S2 demodulator + tuner driver * * Copyright (C) 2011 Antti Palosaari */ #include "tda10071_priv.h" static const struct dvb_frontend_ops tda10071_ops; /* * XXX: regmap_update_bits() does not fit our needs as it does not support * partially volatile registers. Also it performs register read even mask is as * wide as register value. */ /* write single register with mask */ static int tda10071_wr_reg_mask(struct tda10071_dev *dev, u8 reg, u8 val, u8 mask) { int ret; u8 tmp; /* no need for read if whole reg is written */ if (mask != 0xff) { ret = regmap_bulk_read(dev->regmap, reg, &tmp, 1); if (ret) return ret; val &= mask; tmp &= ~mask; val |= tmp; } return regmap_bulk_write(dev->regmap, reg, &val, 1); } /* execute firmware command */ static int tda10071_cmd_execute(struct tda10071_dev *dev, struct tda10071_cmd *cmd) { struct i2c_client *client = dev->client; int ret, i; unsigned int uitmp; if (!dev->warm) { ret = -EFAULT; goto error; } mutex_lock(&dev->cmd_execute_mutex); /* write cmd and args for firmware */ ret = regmap_bulk_write(dev->regmap, 0x00, cmd->args, cmd->len); if (ret) goto error_mutex_unlock; /* start cmd execution */ ret = regmap_write(dev->regmap, 0x1f, 1); if (ret) goto error_mutex_unlock; /* wait cmd execution terminate */ for (i = 1000, uitmp = 1; i && uitmp; i--) { ret = regmap_read(dev->regmap, 0x1f, &uitmp); if (ret) goto error_mutex_unlock; usleep_range(200, 5000); } mutex_unlock(&dev->cmd_execute_mutex); dev_dbg(&client->dev, "loop=%d\n", i); if (i == 0) { ret = -ETIMEDOUT; goto error; } return ret; error_mutex_unlock: mutex_unlock(&dev->cmd_execute_mutex); error: dev_dbg(&client->dev, "failed=%d\n", ret); return ret; } static int tda10071_set_tone(struct dvb_frontend *fe, enum fe_sec_tone_mode fe_sec_tone_mode) { struct tda10071_dev *dev = fe->demodulator_priv; struct i2c_client *client = dev->client; struct tda10071_cmd cmd; int ret; u8 tone; if (!dev->warm) { ret = -EFAULT; goto error; } dev_dbg(&client->dev, "tone_mode=%d\n", fe_sec_tone_mode); switch (fe_sec_tone_mode) { case SEC_TONE_ON: tone = 1; break; case SEC_TONE_OFF: tone = 0; break; default: dev_dbg(&client->dev, "invalid fe_sec_tone_mode\n"); ret = -EINVAL; goto error; } cmd.args[0] = CMD_LNB_PCB_CONFIG; cmd.args[1] = 0; cmd.args[2] = 0x00; cmd.args[3] = 0x00; cmd.args[4] = tone; cmd.len = 5; ret = tda10071_cmd_execute(dev, &cmd); if (ret) goto error; return ret; error: dev_dbg(&client->dev, "failed=%d\n", ret); return ret; } static int tda10071_set_voltage(struct dvb_frontend *fe, enum fe_sec_voltage fe_sec_voltage) { struct tda10071_dev *dev = fe->demodulator_priv; struct i2c_client *client = dev->client; struct tda10071_cmd cmd; int ret; u8 voltage; if (!dev->warm) { ret = -EFAULT; goto error; } dev_dbg(&client->dev, "voltage=%d\n", fe_sec_voltage); switch (fe_sec_voltage) { case SEC_VOLTAGE_13: voltage = 0; break; case SEC_VOLTAGE_18: voltage = 1; break; case SEC_VOLTAGE_OFF: voltage = 0; break; default: dev_dbg(&client->dev, "invalid fe_sec_voltage\n"); ret = -EINVAL; goto error; } cmd.args[0] = CMD_LNB_SET_DC_LEVEL; cmd.args[1] = 0; cmd.args[2] = voltage; cmd.len = 3; ret = tda10071_cmd_execute(dev, &cmd); if (ret) goto error; return ret; error: dev_dbg(&client->dev, "failed=%d\n", ret); return ret; } static int tda10071_diseqc_send_master_cmd(struct dvb_frontend *fe, struct dvb_diseqc_master_cmd *diseqc_cmd) { struct tda10071_dev *dev = fe->demodulator_priv; struct i2c_client *client = dev->client; struct tda10071_cmd cmd; int ret, i; unsigned int uitmp; if (!dev->warm) { ret = -EFAULT; goto error; } dev_dbg(&client->dev, "msg_len=%d\n", diseqc_cmd->msg_len); if (diseqc_cmd->msg_len < 3 || diseqc_cmd->msg_len > 6) { ret = -EINVAL; goto error; } /* wait LNB TX */ for (i = 500, uitmp = 0; i && !uitmp; i--) { ret = regmap_read(dev->regmap, 0x47, &uitmp); if (ret) goto error; uitmp = (uitmp >> 0) & 1; usleep_range(10000, 20000); } dev_dbg(&client->dev, "loop=%d\n", i); if (i == 0) { ret = -ETIMEDOUT; goto error; } ret = regmap_update_bits(dev->regmap, 0x47, 0x01, 0x00); if (ret) goto error; cmd.args[0] = CMD_LNB_SEND_DISEQC; cmd.args[1] = 0; cmd.args[2] = 0; cmd.args[3] = 0; cmd.args[4] = 2; cmd.args[5] = 0; cmd.args[6] = diseqc_cmd->msg_len; memcpy(&cmd.args[7], diseqc_cmd->msg, diseqc_cmd->msg_len); cmd.len = 7 + diseqc_cmd->msg_len; ret = tda10071_cmd_execute(dev, &cmd); if (ret) goto error; return ret; error: dev_dbg(&client->dev, "failed=%d\n", ret); return ret; } static int tda10071_diseqc_recv_slave_reply(struct dvb_frontend *fe, struct dvb_diseqc_slave_reply *reply) { struct tda10071_dev *dev = fe->demodulator_priv; struct i2c_client *client = dev->client; struct tda10071_cmd cmd; int ret, i; unsigned int uitmp; if (!dev->warm) { ret = -EFAULT; goto error; } dev_dbg(&client->dev, "\n"); /* wait LNB RX */ for (i = 500, uitmp = 0; i && !uitmp; i--) { ret = regmap_read(dev->regmap, 0x47, &uitmp); if (ret) goto error; uitmp = (uitmp >> 1) & 1; usleep_range(10000, 20000); } dev_dbg(&client->dev, "loop=%d\n", i); if (i == 0) { ret = -ETIMEDOUT; goto error; } /* reply len */ ret = regmap_read(dev->regmap, 0x46, &uitmp); if (ret) goto error; reply->msg_len = uitmp & 0x1f; /* [4:0] */ if (reply->msg_len > sizeof(reply->msg)) reply->msg_len = sizeof(reply->msg); /* truncate API max */ /* read reply */ cmd.args[0] = CMD_LNB_UPDATE_REPLY; cmd.args[1] = 0; cmd.len = 2; ret = tda10071_cmd_execute(dev, &cmd); if (ret) goto error; ret = regmap_bulk_read(dev->regmap, cmd.len, reply->msg, reply->msg_len); if (ret) goto error; return ret; error: dev_dbg(&client->dev, "failed=%d\n", ret); return ret; } static int tda10071_diseqc_send_burst(struct dvb_frontend *fe, enum fe_sec_mini_cmd fe_sec_mini_cmd) { struct tda10071_dev *dev = fe->demodulator_priv; struct i2c_client *client = dev->client; struct tda10071_cmd cmd; int ret, i; unsigned int uitmp; u8 burst; if (!dev->warm) { ret = -EFAULT; goto error; } dev_dbg(&client->dev, "fe_sec_mini_cmd=%d\n", fe_sec_mini_cmd); switch (fe_sec_mini_cmd) { case SEC_MINI_A: burst = 0; break; case SEC_MINI_B: burst = 1; break; default: dev_dbg(&client->dev, "invalid fe_sec_mini_cmd\n"); ret = -EINVAL; goto error; } /* wait LNB TX */ for (i = 500, uitmp = 0; i && !uitmp; i--) { ret = regmap_read(dev->regmap, 0x47, &uitmp); if (ret) goto error; uitmp = (uitmp >> 0) & 1; usleep_range(10000, 20000); } dev_dbg(&client->dev, "loop=%d\n", i); if (i == 0) { ret = -ETIMEDOUT; goto error; } ret = regmap_update_bits(dev->regmap, 0x47, 0x01, 0x00); if (ret) goto error; cmd.args[0] = CMD_LNB_SEND_TONEBURST; cmd.args[1] = 0; cmd.args[2] = burst; cmd.len = 3; ret = tda10071_cmd_execute(dev, &cmd); if (ret) goto error; return ret; error: dev_dbg(&client->dev, "failed=%d\n", ret); return ret; } static int tda10071_read_status(struct dvb_frontend *fe, enum fe_status *status) { struct tda10071_dev *dev = fe->demodulator_priv; struct i2c_client *client = dev->client; struct dtv_frontend_properties *c = &fe->dtv_property_cache; struct tda10071_cmd cmd; int ret; unsigned int uitmp; u8 buf[8]; *status = 0; if (!dev->warm) { ret = 0; goto error; } ret = regmap_read(dev->regmap, 0x39, &uitmp); if (ret) goto error; /* 0x39[0] tuner PLL */ if (uitmp & 0x02) /* demod PLL */ *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER; if (uitmp & 0x04) /* viterbi or LDPC*/ *status |= FE_HAS_VITERBI; if (uitmp & 0x08) /* RS or BCH */ *status |= FE_HAS_SYNC | FE_HAS_LOCK; dev->fe_status = *status; /* signal strength */ if (dev->fe_status & FE_HAS_SIGNAL) { cmd.args[0] = CMD_GET_AGCACC; cmd.args[1] = 0; cmd.len = 2; ret = tda10071_cmd_execute(dev, &cmd); if (ret) goto error; /* input power estimate dBm */ ret = regmap_read(dev->regmap, 0x50, &uitmp); if (ret) goto error; c->strength.stat[0].scale = FE_SCALE_DECIBEL; c->strength.stat[0].svalue = (int) (uitmp - 256) * 1000; } else { c->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE; } /* CNR */ if (dev->fe_status & FE_HAS_VITERBI) { /* Es/No */ ret = regmap_bulk_read(dev->regmap, 0x3a, buf, 2); if (ret) goto error; c->cnr.stat[0].scale = FE_SCALE_DECIBEL; c->cnr.stat[0].svalue = (buf[0] << 8 | buf[1] << 0) * 100; } else { c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE; } /* UCB/PER/BER */ if (dev->fe_status & FE_HAS_LOCK) { /* TODO: report total bits/packets */ u8 delivery_system, reg, len; switch (dev->delivery_system) { case SYS_DVBS: reg = 0x4c; len = 8; delivery_system = 1; break; case SYS_DVBS2: reg = 0x4d; len = 4; delivery_system = 0; break; default: ret = -EINVAL; goto error; } ret = regmap_read(dev->regmap, reg, &uitmp); if (ret) goto error; if (dev->meas_count == uitmp) { dev_dbg(&client->dev, "meas not ready=%02x\n", uitmp); ret = 0; goto error; } else { dev->meas_count = uitmp; } cmd.args[0] = CMD_BER_UPDATE_COUNTERS; cmd.args[1] = 0; cmd.args[2] = delivery_system; cmd.len = 3; ret = tda10071_cmd_execute(dev, &cmd); if (ret) goto error; ret = regmap_bulk_read(dev->regmap, cmd.len, buf, len); if (ret) goto error; if (dev->delivery_system == SYS_DVBS) { u32 bit_error = buf[0] << 24 | buf[1] << 16 | buf[2] << 8 | buf[3] << 0; dev->dvbv3_ber = bit_error; dev->post_bit_error += bit_error; c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER; c->post_bit_error.stat[0].uvalue = dev->post_bit_error; dev->block_error += buf[4] << 8 | buf[5] << 0; c->block_error.stat[0].scale = FE_SCALE_COUNTER; c->block_error.stat[0].uvalue = dev->block_error; } else { dev->dvbv3_ber = buf[0] << 8 | buf[1] << 0; dev->post_bit_error += buf[0] << 8 | buf[1] << 0; c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER; c->post_bit_error.stat[0].uvalue = dev->post_bit_error; c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; } } else { c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; } return ret; error: dev_dbg(&client->dev, "failed=%d\n", ret); return ret; } static int tda10071_read_snr(struct dvb_frontend *fe, u16 *snr) { struct dtv_frontend_properties *c = &fe->dtv_property_cache; if (c->cnr.stat[0].scale == FE_SCALE_DECIBEL) *snr = div_s64(c->cnr.stat[0].svalue, 100); else *snr = 0; return 0; } static int tda10071_read_signal_strength(struct dvb_frontend *fe, u16 *strength) { struct dtv_frontend_properties *c = &fe->dtv_property_cache; unsigned int uitmp; if (c->strength.stat[0].scale == FE_SCALE_DECIBEL) { uitmp = div_s64(c->strength.stat[0].svalue, 1000) + 256; uitmp = clamp(uitmp, 181U, 236U); /* -75dBm - -20dBm */ /* scale value to 0x0000-0xffff */ *strength = (uitmp-181) * 0xffff / (236-181); } else { *strength = 0; } return 0; } static int tda10071_read_ber(struct dvb_frontend *fe, u32 *ber) { struct tda10071_dev *dev = fe->demodulator_priv; *ber = dev->dvbv3_ber; return 0; } static int tda10071_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks) { struct dtv_frontend_properties *c = &fe->dtv_property_cache; if (c->block_error.stat[0].scale == FE_SCALE_COUNTER) *ucblocks = c->block_error.stat[0].uvalue; else *ucblocks = 0; return 0; } static int tda10071_set_frontend(struct dvb_frontend *fe) { struct tda10071_dev *dev = fe->demodulator_priv; struct i2c_client *client = dev->client; struct tda10071_cmd cmd; struct dtv_frontend_properties *c = &fe->dtv_property_cache; int ret, i; u8 mode, rolloff, pilot, inversion, div; enum fe_modulation modulation; dev_dbg(&client->dev, "delivery_system=%d modulation=%d frequency=%u symbol_rate=%d inversion=%d pilot=%d rolloff=%d\n", c->delivery_system, c->modulation, c->frequency, c->symbol_rate, c->inversion, c->pilot, c->rolloff); dev->delivery_system = SYS_UNDEFINED; if (!dev->warm) { ret = -EFAULT; goto error; } switch (c->inversion) { case INVERSION_OFF: inversion = 1; break; case INVERSION_ON: inversion = 0; break; case INVERSION_AUTO: /* 2 = auto; try first on then off * 3 = auto; try first off then on */ inversion = 3; break; default: dev_dbg(&client->dev, "invalid inversion\n"); ret = -EINVAL; goto error; } switch (c->delivery_system) { case SYS_DVBS: modulation = QPSK; rolloff = 0; pilot = 2; break; case SYS_DVBS2: modulation = c->modulation; switch (c->rolloff) { case ROLLOFF_20: rolloff = 2; break; case ROLLOFF_25: rolloff = 1; break; case ROLLOFF_35: rolloff = 0; break; case ROLLOFF_AUTO: default: dev_dbg(&client->dev, "invalid rolloff\n"); ret = -EINVAL; goto error; } switch (c->pilot) { case PILOT_OFF: pilot = 0; break; case PILOT_ON: pilot = 1; break; case PILOT_AUTO: pilot = 2; break; default: dev_dbg(&client->dev, "invalid pilot\n"); ret = -EINVAL; goto error; } break; default: dev_dbg(&client->dev, "invalid delivery_system\n"); ret = -EINVAL; goto error; } for (i = 0, mode = 0xff; i < ARRAY_SIZE(TDA10071_MODCOD); i++) { if (c->delivery_system == TDA10071_MODCOD[i].delivery_system && modulation == TDA10071_MODCOD[i].modulation && c->fec_inner == TDA10071_MODCOD[i].fec) { mode = TDA10071_MODCOD[i].val; dev_dbg(&client->dev, "mode found=%02x\n", mode); break; } } if (mode == 0xff) { dev_dbg(&client->dev, "invalid parameter combination\n"); ret = -EINVAL; goto error; } if (c->symbol_rate <= 5000000) div = 14; else div = 4; ret = regmap_write(dev->regmap, 0x81, div); if (ret) goto error; ret = regmap_write(dev->regmap, 0xe3, div); if (ret) goto error; cmd.args[0] = CMD_CHANGE_CHANNEL; cmd.args[1] = 0; cmd.args[2] = mode; cmd.args[3] = (c->frequency >> 16) & 0xff; cmd.args[4] = (c->frequency >> 8) & 0xff; cmd.args[5] = (c->frequency >> 0) & 0xff; cmd.args[6] = ((c->symbol_rate / 1000) >> 8) & 0xff; cmd.args[7] = ((c->symbol_rate / 1000) >> 0) & 0xff; cmd.args[8] = ((tda10071_ops.info.frequency_tolerance_hz / 1000) >> 8) & 0xff; cmd.args[9] = ((tda10071_ops.info.frequency_tolerance_hz / 1000) >> 0) & 0xff; cmd.args[10] = rolloff; cmd.args[11] = inversion; cmd.args[12] = pilot; cmd.args[13] = 0x00; cmd.args[14] = 0x00; cmd.len = 15; ret = tda10071_cmd_execute(dev, &cmd); if (ret) goto error; dev->delivery_system = c->delivery_system; return ret; error: dev_dbg(&client->dev, "failed=%d\n", ret); return ret; } static int tda10071_get_frontend(struct dvb_frontend *fe, struct dtv_frontend_properties *c) { struct tda10071_dev *dev = fe->demodulator_priv; struct i2c_client *client = dev->client; int ret, i; u8 buf[5], tmp; if (!dev->warm || !(dev->fe_status & FE_HAS_LOCK)) { ret = 0; goto error; } ret = regmap_bulk_read(dev->regmap, 0x30, buf, 5); if (ret) goto error; tmp = buf[0] & 0x3f; for (i = 0; i < ARRAY_SIZE(TDA10071_MODCOD); i++) { if (tmp == TDA10071_MODCOD[i].val) { c->modulation = TDA10071_MODCOD[i].modulation; c->fec_inner = TDA10071_MODCOD[i].fec; c->delivery_system = TDA10071_MODCOD[i].delivery_system; } } switch ((buf[1] >> 0) & 0x01) { case 0: c->inversion = INVERSION_ON; break; case 1: c->inversion = INVERSION_OFF; break; } switch ((buf[1] >> 7) & 0x01) { case 0: c->pilot = PILOT_OFF; break; case 1: c->pilot = PILOT_ON; break; } c->frequency = (buf[2] << 16) | (buf[3] << 8) | (buf[4] << 0); ret = regmap_bulk_read(dev->regmap, 0x52, buf, 3); if (ret) goto error; c->symbol_rate = ((buf[0] << 16) | (buf[1] << 8) | (buf[2] << 0)) * 1000; return ret; error: dev_dbg(&client->dev, "failed=%d\n", ret); return ret; } static int tda10071_init(struct dvb_frontend *fe) { struct tda10071_dev *dev = fe->demodulator_priv; struct i2c_client *client = dev->client; struct dtv_frontend_properties *c = &fe->dtv_property_cache; struct tda10071_cmd cmd; int ret, i, len, remaining, fw_size; unsigned int uitmp; const struct firmware *fw; u8 *fw_file = TDA10071_FIRMWARE; u8 tmp, buf[4]; struct tda10071_reg_val_mask tab[] = { { 0xcd, 0x00, 0x07 }, { 0x80, 0x00, 0x02 }, { 0xcd, 0x00, 0xc0 }, { 0xce, 0x00, 0x1b }, { 0x9d, 0x00, 0x01 }, { 0x9d, 0x00, 0x02 }, { 0x9e, 0x00, 0x01 }, { 0x87, 0x00, 0x80 }, { 0xce, 0x00, 0x08 }, { 0xce, 0x00, 0x10 }, }; struct tda10071_reg_val_mask tab2[] = { { 0xf1, 0x70, 0xff }, { 0x88, dev->pll_multiplier, 0x3f }, { 0x89, 0x00, 0x10 }, { 0x89, 0x10, 0x10 }, { 0xc0, 0x01, 0x01 }, { 0xc0, 0x00, 0x01 }, { 0xe0, 0xff, 0xff }, { 0xe0, 0x00, 0xff }, { 0x96, 0x1e, 0x7e }, { 0x8b, 0x08, 0x08 }, { 0x8b, 0x00, 0x08 }, { 0x8f, 0x1a, 0x7e }, { 0x8c, 0x68, 0xff }, { 0x8d, 0x08, 0xff }, { 0x8e, 0x4c, 0xff }, { 0x8f, 0x01, 0x01 }, { 0x8b, 0x04, 0x04 }, { 0x8b, 0x00, 0x04 }, { 0x87, 0x05, 0x07 }, { 0x80, 0x00, 0x20 }, { 0xc8, 0x01, 0xff }, { 0xb4, 0x47, 0xff }, { 0xb5, 0x9c, 0xff }, { 0xb6, 0x7d, 0xff }, { 0xba, 0x00, 0x03 }, { 0xb7, 0x47, 0xff }, { 0xb8, 0x9c, 0xff }, { 0xb9, 0x7d, 0xff }, { 0xba, 0x00, 0x0c }, { 0xc8, 0x00, 0xff }, { 0xcd, 0x00, 0x04 }, { 0xcd, 0x00, 0x20 }, { 0xe8, 0x02, 0xff }, { 0xcf, 0x20, 0xff }, { 0x9b, 0xd7, 0xff }, { 0x9a, 0x01, 0x03 }, { 0xa8, 0x05, 0x0f }, { 0xa8, 0x65, 0xf0 }, { 0xa6, 0xa0, 0xf0 }, { 0x9d, 0x50, 0xfc }, { 0x9e, 0x20, 0xe0 }, { 0xa3, 0x1c, 0x7c }, { 0xd5, 0x03, 0x03 }, }; if (dev->warm) { /* warm state - wake up device from sleep */ for (i = 0; i < ARRAY_SIZE(tab); i++) { ret = tda10071_wr_reg_mask(dev, tab[i].reg, tab[i].val, tab[i].mask); if (ret) goto error; } cmd.args[0] = CMD_SET_SLEEP_MODE; cmd.args[1] = 0; cmd.args[2] = 0; cmd.len = 3; ret = tda10071_cmd_execute(dev, &cmd); if (ret) goto error; } else { /* cold state - try to download firmware */ /* request the firmware, this will block and timeout */ ret = request_firmware(&fw, fw_file, &client->dev); if (ret) { dev_err(&client->dev, "did not find the firmware file '%s' (status %d). You can use /scripts/get_dvb_firmware to get the firmware\n", fw_file, ret); goto error; } /* init */ for (i = 0; i < ARRAY_SIZE(tab2); i++) { ret = tda10071_wr_reg_mask(dev, tab2[i].reg, tab2[i].val, tab2[i].mask); if (ret) goto error_release_firmware; } /* download firmware */ ret = regmap_write(dev->regmap, 0xe0, 0x7f); if (ret) goto error_release_firmware; ret = regmap_write(dev->regmap, 0xf7, 0x81); if (ret) goto error_release_firmware; ret = regmap_write(dev->regmap, 0xf8, 0x00); if (ret) goto error_release_firmware; ret = regmap_write(dev->regmap, 0xf9, 0x00); if (ret) goto error_release_firmware; dev_info(&client->dev, "found a '%s' in cold state, will try to load a firmware\n", tda10071_ops.info.name); dev_info(&client->dev, "downloading firmware from file '%s'\n", fw_file); /* do not download last byte */ fw_size = fw->size - 1; for (remaining = fw_size; remaining > 0; remaining -= (dev->i2c_wr_max - 1)) { len = remaining; if (len > (dev->i2c_wr_max - 1)) len = (dev->i2c_wr_max - 1); ret = regmap_bulk_write(dev->regmap, 0xfa, (u8 *) &fw->data[fw_size - remaining], len); if (ret) { dev_err(&client->dev, "firmware download failed=%d\n", ret); goto error_release_firmware; } } release_firmware(fw); ret = regmap_write(dev->regmap, 0xf7, 0x0c); if (ret) goto error; ret = regmap_write(dev->regmap, 0xe0, 0x00); if (ret) goto error; /* wait firmware start */ msleep(250); /* firmware status */ ret = regmap_read(dev->regmap, 0x51, &uitmp); if (ret) goto error; if (uitmp) { dev_info(&client->dev, "firmware did not run\n"); ret = -EFAULT; goto error; } else { dev->warm = true; } cmd.args[0] = CMD_GET_FW_VERSION; cmd.len = 1; ret = tda10071_cmd_execute(dev, &cmd); if (ret) goto error; ret = regmap_bulk_read(dev->regmap, cmd.len, buf, 4); if (ret) goto error; dev_info(&client->dev, "firmware version %d.%d.%d.%d\n", buf[0], buf[1], buf[2], buf[3]); dev_info(&client->dev, "found a '%s' in warm state\n", tda10071_ops.info.name); ret = regmap_bulk_read(dev->regmap, 0x81, buf, 2); if (ret) goto error; cmd.args[0] = CMD_DEMOD_INIT; cmd.args[1] = ((dev->clk / 1000) >> 8) & 0xff; cmd.args[2] = ((dev->clk / 1000) >> 0) & 0xff; cmd.args[3] = buf[0]; cmd.args[4] = buf[1]; cmd.args[5] = dev->pll_multiplier; cmd.args[6] = dev->spec_inv; cmd.args[7] = 0x00; cmd.len = 8; ret = tda10071_cmd_execute(dev, &cmd); if (ret) goto error; if (dev->tuner_i2c_addr) tmp = dev->tuner_i2c_addr; else tmp = 0x14; cmd.args[0] = CMD_TUNER_INIT; cmd.args[1] = 0x00; cmd.args[2] = 0x00; cmd.args[3] = 0x00; cmd.args[4] = 0x00; cmd.args[5] = tmp; cmd.args[6] = 0x00; cmd.args[7] = 0x03; cmd.args[8] = 0x02; cmd.args[9] = 0x02; cmd.args[10] = 0x00; cmd.args[11] = 0x00; cmd.args[12] = 0x00; cmd.args[13] = 0x00; cmd.args[14] = 0x00; cmd.len = 15; ret = tda10071_cmd_execute(dev, &cmd); if (ret) goto error; cmd.args[0] = CMD_MPEG_CONFIG; cmd.args[1] = 0; cmd.args[2] = dev->ts_mode; cmd.args[3] = 0x00; cmd.args[4] = 0x04; cmd.args[5] = 0x00; cmd.len = 6; ret = tda10071_cmd_execute(dev, &cmd); if (ret) goto error; ret = regmap_update_bits(dev->regmap, 0xf0, 0x01, 0x01); if (ret) goto error; cmd.args[0] = CMD_LNB_CONFIG; cmd.args[1] = 0; cmd.args[2] = 150; cmd.args[3] = 3; cmd.args[4] = 22; cmd.args[5] = 1; cmd.args[6] = 1; cmd.args[7] = 30; cmd.args[8] = 30; cmd.args[9] = 30; cmd.args[10] = 30; cmd.len = 11; ret = tda10071_cmd_execute(dev, &cmd); if (ret) goto error; cmd.args[0] = CMD_BER_CONTROL; cmd.args[1] = 0; cmd.args[2] = 14; cmd.args[3] = 14; cmd.len = 4; ret = tda10071_cmd_execute(dev, &cmd); if (ret) goto error; } /* init stats here in order signal app which stats are supported */ c->strength.len = 1; c->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE; c->cnr.len = 1; c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE; c->post_bit_error.len = 1; c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; c->block_error.len = 1; c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; return ret; error_release_firmware: release_firmware(fw); error: dev_dbg(&client->dev, "failed=%d\n", ret); return ret; } static int tda10071_sleep(struct dvb_frontend *fe) { struct tda10071_dev *dev = fe->demodulator_priv; struct i2c_client *client = dev->client; struct tda10071_cmd cmd; int ret, i; struct tda10071_reg_val_mask tab[] = { { 0xcd, 0x07, 0x07 }, { 0x80, 0x02, 0x02 }, { 0xcd, 0xc0, 0xc0 }, { 0xce, 0x1b, 0x1b }, { 0x9d, 0x01, 0x01 }, { 0x9d, 0x02, 0x02 }, { 0x9e, 0x01, 0x01 }, { 0x87, 0x80, 0x80 }, { 0xce, 0x08, 0x08 }, { 0xce, 0x10, 0x10 }, }; if (!dev->warm) { ret = -EFAULT; goto error; } cmd.args[0] = CMD_SET_SLEEP_MODE; cmd.args[1] = 0; cmd.args[2] = 1; cmd.len = 3; ret = tda10071_cmd_execute(dev, &cmd); if (ret) goto error; for (i = 0; i < ARRAY_SIZE(tab); i++) { ret = tda10071_wr_reg_mask(dev, tab[i].reg, tab[i].val, tab[i].mask); if (ret) goto error; } return ret; error: dev_dbg(&client->dev, "failed=%d\n", ret); return ret; } static int tda10071_get_tune_settings(struct dvb_frontend *fe, struct dvb_frontend_tune_settings *s) { s->min_delay_ms = 8000; s->step_size = 0; s->max_drift = 0; return 0; } static const struct dvb_frontend_ops tda10071_ops = { .delsys = { SYS_DVBS, SYS_DVBS2 }, .info = { .name = "NXP TDA10071", .frequency_min_hz = 950 * MHz, .frequency_max_hz = 2150 * MHz, .frequency_tolerance_hz = 5 * MHz, .symbol_rate_min = 1000000, .symbol_rate_max = 45000000, .caps = FE_CAN_INVERSION_AUTO | FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | FE_CAN_FEC_4_5 | FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 | FE_CAN_FEC_7_8 | FE_CAN_FEC_8_9 | FE_CAN_FEC_AUTO | FE_CAN_QPSK | FE_CAN_RECOVER | FE_CAN_2G_MODULATION }, .get_tune_settings = tda10071_get_tune_settings, .init = tda10071_init, .sleep = tda10071_sleep, .set_frontend = tda10071_set_frontend, .get_frontend = tda10071_get_frontend, .read_status = tda10071_read_status, .read_snr = tda10071_read_snr, .read_signal_strength = tda10071_read_signal_strength, .read_ber = tda10071_read_ber, .read_ucblocks = tda10071_read_ucblocks, .diseqc_send_master_cmd = tda10071_diseqc_send_master_cmd, .diseqc_recv_slave_reply = tda10071_diseqc_recv_slave_reply, .diseqc_send_burst = tda10071_diseqc_send_burst, .set_tone = tda10071_set_tone, .set_voltage = tda10071_set_voltage, }; static struct dvb_frontend *tda10071_get_dvb_frontend(struct i2c_client *client) { struct tda10071_dev *dev = i2c_get_clientdata(client); dev_dbg(&client->dev, "\n"); return &dev->fe; } static int tda10071_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct tda10071_dev *dev; struct tda10071_platform_data *pdata = client->dev.platform_data; int ret; unsigned int uitmp; static const struct regmap_config regmap_config = { .reg_bits = 8, .val_bits = 8, }; dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) { ret = -ENOMEM; goto err; } dev->client = client; mutex_init(&dev->cmd_execute_mutex); dev->clk = pdata->clk; dev->i2c_wr_max = pdata->i2c_wr_max; dev->ts_mode = pdata->ts_mode; dev->spec_inv = pdata->spec_inv; dev->pll_multiplier = pdata->pll_multiplier; dev->tuner_i2c_addr = pdata->tuner_i2c_addr; dev->regmap = devm_regmap_init_i2c(client, ®map_config); if (IS_ERR(dev->regmap)) { ret = PTR_ERR(dev->regmap); goto err_kfree; } /* chip ID */ ret = regmap_read(dev->regmap, 0xff, &uitmp); if (ret) goto err_kfree; if (uitmp != 0x0f) { ret = -ENODEV; goto err_kfree; } /* chip type */ ret = regmap_read(dev->regmap, 0xdd, &uitmp); if (ret) goto err_kfree; if (uitmp != 0x00) { ret = -ENODEV; goto err_kfree; } /* chip version */ ret = regmap_read(dev->regmap, 0xfe, &uitmp); if (ret) goto err_kfree; if (uitmp != 0x01) { ret = -ENODEV; goto err_kfree; } /* create dvb_frontend */ memcpy(&dev->fe.ops, &tda10071_ops, sizeof(struct dvb_frontend_ops)); dev->fe.demodulator_priv = dev; i2c_set_clientdata(client, dev); /* setup callbacks */ pdata->get_dvb_frontend = tda10071_get_dvb_frontend; dev_info(&client->dev, "NXP TDA10071 successfully identified\n"); return 0; err_kfree: kfree(dev); err: dev_dbg(&client->dev, "failed=%d\n", ret); return ret; } static int tda10071_remove(struct i2c_client *client) { struct tda10071_dev *dev = i2c_get_clientdata(client); dev_dbg(&client->dev, "\n"); kfree(dev); return 0; } static const struct i2c_device_id tda10071_id_table[] = { {"tda10071_cx24118", 0}, {} }; MODULE_DEVICE_TABLE(i2c, tda10071_id_table); static struct i2c_driver tda10071_driver = { .driver = { .name = "tda10071", .suppress_bind_attrs = true, }, .probe = tda10071_probe, .remove = tda10071_remove, .id_table = tda10071_id_table, }; module_i2c_driver(tda10071_driver); MODULE_AUTHOR("Antti Palosaari "); MODULE_DESCRIPTION("NXP TDA10071 DVB-S/S2 demodulator driver"); MODULE_LICENSE("GPL"); MODULE_FIRMWARE(TDA10071_FIRMWARE);