/* SPDX-License-Identifier: GPL-2.0 * * Copyright 2016-2019 HabanaLabs, Ltd. * All Rights Reserved. * */ #ifndef HABANALABSP_H_ #define HABANALABSP_H_ #include "../include/common/cpucp_if.h" #include "../include/common/qman_if.h" #include "../include/hw_ip/mmu/mmu_general.h" #include #include #include #include #include #include #include #include #include #include #include #include #define HL_NAME "habanalabs" /* Use upper bits of mmap offset to store habana driver specific information. * bits[63:61] - Encode mmap type * bits[45:0] - mmap offset value * * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these * defines are w.r.t to PAGE_SIZE */ #define HL_MMAP_TYPE_SHIFT (61 - PAGE_SHIFT) #define HL_MMAP_TYPE_MASK (0x7ull << HL_MMAP_TYPE_SHIFT) #define HL_MMAP_TYPE_BLOCK (0x4ull << HL_MMAP_TYPE_SHIFT) #define HL_MMAP_TYPE_CB (0x2ull << HL_MMAP_TYPE_SHIFT) #define HL_MMAP_OFFSET_VALUE_MASK (0x1FFFFFFFFFFFull >> PAGE_SHIFT) #define HL_MMAP_OFFSET_VALUE_GET(off) (off & HL_MMAP_OFFSET_VALUE_MASK) #define HL_PENDING_RESET_PER_SEC 10 #define HL_PENDING_RESET_MAX_TRIALS 60 /* 10 minutes */ #define HL_PENDING_RESET_LONG_SEC 60 #define HL_HARD_RESET_MAX_TIMEOUT 120 #define HL_DEVICE_TIMEOUT_USEC 1000000 /* 1 s */ #define HL_HEARTBEAT_PER_USEC 5000000 /* 5 s */ #define HL_PLL_LOW_JOB_FREQ_USEC 5000000 /* 5 s */ #define HL_CPUCP_INFO_TIMEOUT_USEC 10000000 /* 10s */ #define HL_CPUCP_EEPROM_TIMEOUT_USEC 10000000 /* 10s */ #define HL_PCI_ELBI_TIMEOUT_MSEC 10 /* 10ms */ #define HL_SIM_MAX_TIMEOUT_US 10000000 /* 10s */ #define HL_IDLE_BUSY_TS_ARR_SIZE 4096 /* Memory */ #define MEM_HASH_TABLE_BITS 7 /* 1 << 7 buckets */ /* MMU */ #define MMU_HASH_TABLE_BITS 7 /* 1 << 7 buckets */ /** * enum hl_mmu_page_table_locaion - mmu page table location * @MMU_DR_PGT: page-table is located on device DRAM. * @MMU_HR_PGT: page-table is located on host memory. * @MMU_NUM_PGT_LOCATIONS: number of page-table locations currently supported. */ enum hl_mmu_page_table_location { MMU_DR_PGT = 0, /* device-dram-resident MMU PGT */ MMU_HR_PGT, /* host resident MMU PGT */ MMU_NUM_PGT_LOCATIONS /* num of PGT locations */ }; /* * HL_RSVD_SOBS 'sync stream' reserved sync objects per QMAN stream * HL_RSVD_MONS 'sync stream' reserved monitors per QMAN stream */ #define HL_RSVD_SOBS 2 #define HL_RSVD_MONS 1 /* * HL_COLLECTIVE_RSVD_MSTR_MONS 'collective' reserved monitors per QMAN stream */ #define HL_COLLECTIVE_RSVD_MSTR_MONS 2 #define HL_MAX_SOB_VAL (1 << 15) #define IS_POWER_OF_2(n) (n != 0 && ((n & (n - 1)) == 0)) #define IS_MAX_PENDING_CS_VALID(n) (IS_POWER_OF_2(n) && (n > 1)) #define HL_PCI_NUM_BARS 6 #define HL_MAX_DCORES 4 #define HL_MAX_SOBS_PER_MONITOR 8 /** * struct hl_gen_wait_properties - properties for generating a wait CB * @data: command buffer * @q_idx: queue id is used to extract fence register address * @size: offset in command buffer * @sob_base: SOB base to use in this wait CB * @sob_val: SOB value to wait for * @mon_id: monitor to use in this wait CB * @sob_mask: each bit represents a SOB offset from sob_base to be used */ struct hl_gen_wait_properties { void *data; u32 q_idx; u32 size; u16 sob_base; u16 sob_val; u16 mon_id; u8 sob_mask; }; /** * struct pgt_info - MMU hop page info. * @node: hash linked-list node for the pgts shadow hash of pgts. * @phys_addr: physical address of the pgt. * @shadow_addr: shadow hop in the host. * @ctx: pointer to the owner ctx. * @num_of_ptes: indicates how many ptes are used in the pgt. * * The MMU page tables hierarchy is placed on the DRAM. When a new level (hop) * is needed during mapping, a new page is allocated and this structure holds * its essential information. During unmapping, if no valid PTEs remained in the * page, it is freed with its pgt_info structure. */ struct pgt_info { struct hlist_node node; u64 phys_addr; u64 shadow_addr; struct hl_ctx *ctx; int num_of_ptes; }; struct hl_device; struct hl_fpriv; /** * enum hl_pci_match_mode - pci match mode per region * @PCI_ADDRESS_MATCH_MODE: address match mode * @PCI_BAR_MATCH_MODE: bar match mode */ enum hl_pci_match_mode { PCI_ADDRESS_MATCH_MODE, PCI_BAR_MATCH_MODE }; /** * enum hl_fw_component - F/W components to read version through registers. * @FW_COMP_UBOOT: u-boot. * @FW_COMP_PREBOOT: preboot. */ enum hl_fw_component { FW_COMP_UBOOT, FW_COMP_PREBOOT }; /** * enum hl_fw_types - F/W types to load * @FW_TYPE_LINUX: Linux image for device CPU * @FW_TYPE_BOOT_CPU: Boot image for device CPU * @FW_TYPE_ALL_TYPES: Mask for all types */ enum hl_fw_types { FW_TYPE_LINUX = 0x1, FW_TYPE_BOOT_CPU = 0x2, FW_TYPE_ALL_TYPES = (FW_TYPE_LINUX | FW_TYPE_BOOT_CPU) }; /** * enum hl_queue_type - Supported QUEUE types. * @QUEUE_TYPE_NA: queue is not available. * @QUEUE_TYPE_EXT: external queue which is a DMA channel that may access the * host. * @QUEUE_TYPE_INT: internal queue that performs DMA inside the device's * memories and/or operates the compute engines. * @QUEUE_TYPE_CPU: S/W queue for communication with the device's CPU. * @QUEUE_TYPE_HW: queue of DMA and compute engines jobs, for which completion * notifications are sent by H/W. */ enum hl_queue_type { QUEUE_TYPE_NA, QUEUE_TYPE_EXT, QUEUE_TYPE_INT, QUEUE_TYPE_CPU, QUEUE_TYPE_HW }; enum hl_cs_type { CS_TYPE_DEFAULT, CS_TYPE_SIGNAL, CS_TYPE_WAIT, CS_TYPE_COLLECTIVE_WAIT }; /* * struct hl_inbound_pci_region - inbound region descriptor * @mode: pci match mode for this region * @addr: region target address * @size: region size in bytes * @offset_in_bar: offset within bar (address match mode) * @bar: bar id */ struct hl_inbound_pci_region { enum hl_pci_match_mode mode; u64 addr; u64 size; u64 offset_in_bar; u8 bar; }; /* * struct hl_outbound_pci_region - outbound region descriptor * @addr: region target address * @size: region size in bytes */ struct hl_outbound_pci_region { u64 addr; u64 size; }; /* * enum queue_cb_alloc_flags - Indicates queue support for CBs that * allocated by Kernel or by User * @CB_ALLOC_KERNEL: support only CBs that allocated by Kernel * @CB_ALLOC_USER: support only CBs that allocated by User */ enum queue_cb_alloc_flags { CB_ALLOC_KERNEL = 0x1, CB_ALLOC_USER = 0x2 }; /* * struct hl_hw_sob - H/W SOB info. * @hdev: habanalabs device structure. * @kref: refcount of this SOB. The SOB will reset once the refcount is zero. * @sob_id: id of this SOB. * @q_idx: the H/W queue that uses this SOB. */ struct hl_hw_sob { struct hl_device *hdev; struct kref kref; u32 sob_id; u32 q_idx; }; enum hl_collective_mode { HL_COLLECTIVE_NOT_SUPPORTED = 0x0, HL_COLLECTIVE_MASTER = 0x1, HL_COLLECTIVE_SLAVE = 0x2 }; /** * struct hw_queue_properties - queue information. * @type: queue type. * @queue_cb_alloc_flags: bitmap which indicates if the hw queue supports CB * that allocated by the Kernel driver and therefore, * a CB handle can be provided for jobs on this queue. * Otherwise, a CB address must be provided. * @collective_mode: collective mode of current queue * @driver_only: true if only the driver is allowed to send a job to this queue, * false otherwise. * @supports_sync_stream: True if queue supports sync stream */ struct hw_queue_properties { enum hl_queue_type type; enum queue_cb_alloc_flags cb_alloc_flags; enum hl_collective_mode collective_mode; u8 driver_only; u8 supports_sync_stream; }; /** * enum vm_type_t - virtual memory mapping request information. * @VM_TYPE_USERPTR: mapping of user memory to device virtual address. * @VM_TYPE_PHYS_PACK: mapping of DRAM memory to device virtual address. */ enum vm_type_t { VM_TYPE_USERPTR = 0x1, VM_TYPE_PHYS_PACK = 0x2 }; /** * enum hl_device_hw_state - H/W device state. use this to understand whether * to do reset before hw_init or not * @HL_DEVICE_HW_STATE_CLEAN: H/W state is clean. i.e. after hard reset * @HL_DEVICE_HW_STATE_DIRTY: H/W state is dirty. i.e. we started to execute * hw_init */ enum hl_device_hw_state { HL_DEVICE_HW_STATE_CLEAN = 0, HL_DEVICE_HW_STATE_DIRTY }; #define HL_MMU_VA_ALIGNMENT_NOT_NEEDED 0 /** * struct hl_mmu_properties - ASIC specific MMU address translation properties. * @start_addr: virtual start address of the memory region. * @end_addr: virtual end address of the memory region. * @hop0_shift: shift of hop 0 mask. * @hop1_shift: shift of hop 1 mask. * @hop2_shift: shift of hop 2 mask. * @hop3_shift: shift of hop 3 mask. * @hop4_shift: shift of hop 4 mask. * @hop5_shift: shift of hop 5 mask. * @hop0_mask: mask to get the PTE address in hop 0. * @hop1_mask: mask to get the PTE address in hop 1. * @hop2_mask: mask to get the PTE address in hop 2. * @hop3_mask: mask to get the PTE address in hop 3. * @hop4_mask: mask to get the PTE address in hop 4. * @hop5_mask: mask to get the PTE address in hop 5. * @page_size: default page size used to allocate memory. * @num_hops: The amount of hops supported by the translation table. * @host_resident: Should the MMU page table reside in host memory or in the * device DRAM. */ struct hl_mmu_properties { u64 start_addr; u64 end_addr; u64 hop0_shift; u64 hop1_shift; u64 hop2_shift; u64 hop3_shift; u64 hop4_shift; u64 hop5_shift; u64 hop0_mask; u64 hop1_mask; u64 hop2_mask; u64 hop3_mask; u64 hop4_mask; u64 hop5_mask; u32 page_size; u32 num_hops; u8 host_resident; }; /** * struct asic_fixed_properties - ASIC specific immutable properties. * @hw_queues_props: H/W queues properties. * @cpucp_info: received various information from CPU-CP regarding the H/W, e.g. * available sensors. * @uboot_ver: F/W U-boot version. * @preboot_ver: F/W Preboot version. * @dmmu: DRAM MMU address translation properties. * @pmmu: PCI (host) MMU address translation properties. * @pmmu_huge: PCI (host) MMU address translation properties for memory * allocated with huge pages. * @sram_base_address: SRAM physical start address. * @sram_end_address: SRAM physical end address. * @sram_user_base_address - SRAM physical start address for user access. * @dram_base_address: DRAM physical start address. * @dram_end_address: DRAM physical end address. * @dram_user_base_address: DRAM physical start address for user access. * @dram_size: DRAM total size. * @dram_pci_bar_size: size of PCI bar towards DRAM. * @max_power_default: max power of the device after reset * @dram_size_for_default_page_mapping: DRAM size needed to map to avoid page * fault. * @pcie_dbi_base_address: Base address of the PCIE_DBI block. * @pcie_aux_dbi_reg_addr: Address of the PCIE_AUX DBI register. * @mmu_pgt_addr: base physical address in DRAM of MMU page tables. * @mmu_dram_default_page_addr: DRAM default page physical address. * @cb_va_start_addr: virtual start address of command buffers which are mapped * to the device's MMU. * @cb_va_end_addr: virtual end address of command buffers which are mapped to * the device's MMU. * @mmu_pgt_size: MMU page tables total size. * @mmu_pte_size: PTE size in MMU page tables. * @mmu_hop_table_size: MMU hop table size. * @mmu_hop0_tables_total_size: total size of MMU hop0 tables. * @dram_page_size: page size for MMU DRAM allocation. * @cfg_size: configuration space size on SRAM. * @sram_size: total size of SRAM. * @max_asid: maximum number of open contexts (ASIDs). * @num_of_events: number of possible internal H/W IRQs. * @psoc_pci_pll_nr: PCI PLL NR value. * @psoc_pci_pll_nf: PCI PLL NF value. * @psoc_pci_pll_od: PCI PLL OD value. * @psoc_pci_pll_div_factor: PCI PLL DIV FACTOR 1 value. * @psoc_timestamp_frequency: frequency of the psoc timestamp clock. * @high_pll: high PLL frequency used by the device. * @cb_pool_cb_cnt: number of CBs in the CB pool. * @cb_pool_cb_size: size of each CB in the CB pool. * @max_pending_cs: maximum of concurrent pending command submissions * @max_queues: maximum amount of queues in the system * @fw_boot_cpu_security_map: bitmap representation of boot cpu security status * reported by FW, bit description can be found in * CPU_BOOT_DEV_STS* * @fw_app_security_map: bitmap representation of application security status * reported by FW, bit description can be found in * CPU_BOOT_DEV_STS* * @collective_first_sob: first sync object available for collective use * @collective_first_mon: first monitor available for collective use * @sync_stream_first_sob: first sync object available for sync stream use * @sync_stream_first_mon: first monitor available for sync stream use * @first_available_user_sob: first sob available for the user * @first_available_user_mon: first monitor available for the user * @first_available_user_msix_interrupt: first available msix interrupt * reserved for the user * @first_available_cq: first available CQ for the user. * @tpc_enabled_mask: which TPCs are enabled. * @completion_queues_count: number of completion queues. * @fw_security_disabled: true if security measures are disabled in firmware, * false otherwise * @fw_security_status_valid: security status bits are valid and can be fetched * from BOOT_DEV_STS0 * @dram_supports_virtual_memory: is there an MMU towards the DRAM * @hard_reset_done_by_fw: true if firmware is handling hard reset flow * @num_functional_hbms: number of functional HBMs in each DCORE. */ struct asic_fixed_properties { struct hw_queue_properties *hw_queues_props; struct cpucp_info cpucp_info; char uboot_ver[VERSION_MAX_LEN]; char preboot_ver[VERSION_MAX_LEN]; struct hl_mmu_properties dmmu; struct hl_mmu_properties pmmu; struct hl_mmu_properties pmmu_huge; u64 sram_base_address; u64 sram_end_address; u64 sram_user_base_address; u64 dram_base_address; u64 dram_end_address; u64 dram_user_base_address; u64 dram_size; u64 dram_pci_bar_size; u64 max_power_default; u64 dram_size_for_default_page_mapping; u64 pcie_dbi_base_address; u64 pcie_aux_dbi_reg_addr; u64 mmu_pgt_addr; u64 mmu_dram_default_page_addr; u64 cb_va_start_addr; u64 cb_va_end_addr; u32 mmu_pgt_size; u32 mmu_pte_size; u32 mmu_hop_table_size; u32 mmu_hop0_tables_total_size; u32 dram_page_size; u32 cfg_size; u32 sram_size; u32 max_asid; u32 num_of_events; u32 psoc_pci_pll_nr; u32 psoc_pci_pll_nf; u32 psoc_pci_pll_od; u32 psoc_pci_pll_div_factor; u32 psoc_timestamp_frequency; u32 high_pll; u32 cb_pool_cb_cnt; u32 cb_pool_cb_size; u32 max_pending_cs; u32 max_queues; u32 fw_boot_cpu_security_map; u32 fw_app_security_map; u16 collective_first_sob; u16 collective_first_mon; u16 sync_stream_first_sob; u16 sync_stream_first_mon; u16 first_available_user_sob[HL_MAX_DCORES]; u16 first_available_user_mon[HL_MAX_DCORES]; u16 first_available_user_msix_interrupt; u16 first_available_cq[HL_MAX_DCORES]; u8 tpc_enabled_mask; u8 completion_queues_count; u8 fw_security_disabled; u8 fw_security_status_valid; u8 dram_supports_virtual_memory; u8 hard_reset_done_by_fw; u8 num_functional_hbms; }; /** * struct hl_fence - software synchronization primitive * @completion: fence is implemented using completion * @refcount: refcount for this fence * @cs_sequence: sequence of the corresponding command submission * @error: mark this fence with error * @timestamp: timestamp upon completion * */ struct hl_fence { struct completion completion; struct kref refcount; u64 cs_sequence; int error; ktime_t timestamp; }; /** * struct hl_cs_compl - command submission completion object. * @base_fence: hl fence object. * @lock: spinlock to protect fence. * @hdev: habanalabs device structure. * @hw_sob: the H/W SOB used in this signal/wait CS. * @cs_seq: command submission sequence number. * @type: type of the CS - signal/wait. * @sob_val: the SOB value that is used in this signal/wait CS. * @sob_group: the SOB group that is used in this collective wait CS. */ struct hl_cs_compl { struct hl_fence base_fence; spinlock_t lock; struct hl_device *hdev; struct hl_hw_sob *hw_sob; u64 cs_seq; enum hl_cs_type type; u16 sob_val; u16 sob_group; }; /* * Command Buffers */ /** * struct hl_cb_mgr - describes a Command Buffer Manager. * @cb_lock: protects cb_handles. * @cb_handles: an idr to hold all command buffer handles. */ struct hl_cb_mgr { spinlock_t cb_lock; struct idr cb_handles; /* protected by cb_lock */ }; /** * struct hl_cb - describes a Command Buffer. * @refcount: reference counter for usage of the CB. * @hdev: pointer to device this CB belongs to. * @ctx: pointer to the CB owner's context. * @lock: spinlock to protect mmap flows. * @debugfs_list: node in debugfs list of command buffers. * @pool_list: node in pool list of command buffers. * @va_block_list: list of virtual addresses blocks of the CB if it is mapped to * the device's MMU. * @id: the CB's ID. * @kernel_address: Holds the CB's kernel virtual address. * @bus_address: Holds the CB's DMA address. * @mmap_size: Holds the CB's size that was mmaped. * @size: holds the CB's size. * @cs_cnt: holds number of CS that this CB participates in. * @mmap: true if the CB is currently mmaped to user. * @is_pool: true if CB was acquired from the pool, false otherwise. * @is_internal: internaly allocated * @is_mmu_mapped: true if the CB is mapped to the device's MMU. */ struct hl_cb { struct kref refcount; struct hl_device *hdev; struct hl_ctx *ctx; spinlock_t lock; struct list_head debugfs_list; struct list_head pool_list; struct list_head va_block_list; u64 id; void *kernel_address; dma_addr_t bus_address; u32 mmap_size; u32 size; atomic_t cs_cnt; u8 mmap; u8 is_pool; u8 is_internal; u8 is_mmu_mapped; }; /* * QUEUES */ struct hl_cs; struct hl_cs_job; /* Queue length of external and HW queues */ #define HL_QUEUE_LENGTH 4096 #define HL_QUEUE_SIZE_IN_BYTES (HL_QUEUE_LENGTH * HL_BD_SIZE) #if (HL_MAX_JOBS_PER_CS > HL_QUEUE_LENGTH) #error "HL_QUEUE_LENGTH must be greater than HL_MAX_JOBS_PER_CS" #endif /* HL_CQ_LENGTH is in units of struct hl_cq_entry */ #define HL_CQ_LENGTH HL_QUEUE_LENGTH #define HL_CQ_SIZE_IN_BYTES (HL_CQ_LENGTH * HL_CQ_ENTRY_SIZE) /* Must be power of 2 */ #define HL_EQ_LENGTH 64 #define HL_EQ_SIZE_IN_BYTES (HL_EQ_LENGTH * HL_EQ_ENTRY_SIZE) /* Host <-> CPU-CP shared memory size */ #define HL_CPU_ACCESSIBLE_MEM_SIZE SZ_2M /** * struct hl_sync_stream_properties - * describes a H/W queue sync stream properties * @hw_sob: array of the used H/W SOBs by this H/W queue. * @next_sob_val: the next value to use for the currently used SOB. * @base_sob_id: the base SOB id of the SOBs used by this queue. * @base_mon_id: the base MON id of the MONs used by this queue. * @collective_mstr_mon_id: the MON ids of the MONs used by this master queue * in order to sync with all slave queues. * @collective_slave_mon_id: the MON id used by this slave queue in order to * sync with its master queue. * @collective_sob_id: current SOB id used by this collective slave queue * to signal its collective master queue upon completion. * @curr_sob_offset: the id offset to the currently used SOB from the * HL_RSVD_SOBS that are being used by this queue. */ struct hl_sync_stream_properties { struct hl_hw_sob hw_sob[HL_RSVD_SOBS]; u16 next_sob_val; u16 base_sob_id; u16 base_mon_id; u16 collective_mstr_mon_id[HL_COLLECTIVE_RSVD_MSTR_MONS]; u16 collective_slave_mon_id; u16 collective_sob_id; u8 curr_sob_offset; }; /** * struct hl_hw_queue - describes a H/W transport queue. * @shadow_queue: pointer to a shadow queue that holds pointers to jobs. * @sync_stream_prop: sync stream queue properties * @queue_type: type of queue. * @collective_mode: collective mode of current queue * @kernel_address: holds the queue's kernel virtual address. * @bus_address: holds the queue's DMA address. * @pi: holds the queue's pi value. * @ci: holds the queue's ci value, AS CALCULATED BY THE DRIVER (not real ci). * @hw_queue_id: the id of the H/W queue. * @cq_id: the id for the corresponding CQ for this H/W queue. * @msi_vec: the IRQ number of the H/W queue. * @int_queue_len: length of internal queue (number of entries). * @valid: is the queue valid (we have array of 32 queues, not all of them * exist). * @supports_sync_stream: True if queue supports sync stream */ struct hl_hw_queue { struct hl_cs_job **shadow_queue; struct hl_sync_stream_properties sync_stream_prop; enum hl_queue_type queue_type; enum hl_collective_mode collective_mode; void *kernel_address; dma_addr_t bus_address; u32 pi; atomic_t ci; u32 hw_queue_id; u32 cq_id; u32 msi_vec; u16 int_queue_len; u8 valid; u8 supports_sync_stream; }; /** * struct hl_cq - describes a completion queue * @hdev: pointer to the device structure * @kernel_address: holds the queue's kernel virtual address * @bus_address: holds the queue's DMA address * @cq_idx: completion queue index in array * @hw_queue_id: the id of the matching H/W queue * @ci: ci inside the queue * @pi: pi inside the queue * @free_slots_cnt: counter of free slots in queue */ struct hl_cq { struct hl_device *hdev; void *kernel_address; dma_addr_t bus_address; u32 cq_idx; u32 hw_queue_id; u32 ci; u32 pi; atomic_t free_slots_cnt; }; /** * struct hl_eq - describes the event queue (single one per device) * @hdev: pointer to the device structure * @kernel_address: holds the queue's kernel virtual address * @bus_address: holds the queue's DMA address * @ci: ci inside the queue */ struct hl_eq { struct hl_device *hdev; void *kernel_address; dma_addr_t bus_address; u32 ci; }; /* * ASICs */ /** * enum hl_asic_type - supported ASIC types. * @ASIC_INVALID: Invalid ASIC type. * @ASIC_GOYA: Goya device. * @ASIC_GAUDI: Gaudi device. */ enum hl_asic_type { ASIC_INVALID, ASIC_GOYA, ASIC_GAUDI }; struct hl_cs_parser; /** * enum hl_pm_mng_profile - power management profile. * @PM_AUTO: internal clock is set by the Linux driver. * @PM_MANUAL: internal clock is set by the user. * @PM_LAST: last power management type. */ enum hl_pm_mng_profile { PM_AUTO = 1, PM_MANUAL, PM_LAST }; /** * enum hl_pll_frequency - PLL frequency. * @PLL_HIGH: high frequency. * @PLL_LOW: low frequency. * @PLL_LAST: last frequency values that were configured by the user. */ enum hl_pll_frequency { PLL_HIGH = 1, PLL_LOW, PLL_LAST }; #define PLL_REF_CLK 50 enum div_select_defs { DIV_SEL_REF_CLK = 0, DIV_SEL_PLL_CLK = 1, DIV_SEL_DIVIDED_REF = 2, DIV_SEL_DIVIDED_PLL = 3, }; /** * struct hl_asic_funcs - ASIC specific functions that are can be called from * common code. * @early_init: sets up early driver state (pre sw_init), doesn't configure H/W. * @early_fini: tears down what was done in early_init. * @late_init: sets up late driver/hw state (post hw_init) - Optional. * @late_fini: tears down what was done in late_init (pre hw_fini) - Optional. * @sw_init: sets up driver state, does not configure H/W. * @sw_fini: tears down driver state, does not configure H/W. * @hw_init: sets up the H/W state. * @hw_fini: tears down the H/W state. * @halt_engines: halt engines, needed for reset sequence. This also disables * interrupts from the device. Should be called before * hw_fini and before CS rollback. * @suspend: handles IP specific H/W or SW changes for suspend. * @resume: handles IP specific H/W or SW changes for resume. * @cb_mmap: maps a CB. * @ring_doorbell: increment PI on a given QMAN. * @pqe_write: Write the PQ entry to the PQ. This is ASIC-specific * function because the PQs are located in different memory areas * per ASIC (SRAM, DRAM, Host memory) and therefore, the method of * writing the PQE must match the destination memory area * properties. * @asic_dma_alloc_coherent: Allocate coherent DMA memory by calling * dma_alloc_coherent(). This is ASIC function because * its implementation is not trivial when the driver * is loaded in simulation mode (not upstreamed). * @asic_dma_free_coherent: Free coherent DMA memory by calling * dma_free_coherent(). This is ASIC function because * its implementation is not trivial when the driver * is loaded in simulation mode (not upstreamed). * @scrub_device_mem: Scrub device memory given an address and size * @get_int_queue_base: get the internal queue base address. * @test_queues: run simple test on all queues for sanity check. * @asic_dma_pool_zalloc: small DMA allocation of coherent memory from DMA pool. * size of allocation is HL_DMA_POOL_BLK_SIZE. * @asic_dma_pool_free: free small DMA allocation from pool. * @cpu_accessible_dma_pool_alloc: allocate CPU PQ packet from DMA pool. * @cpu_accessible_dma_pool_free: free CPU PQ packet from DMA pool. * @hl_dma_unmap_sg: DMA unmap scatter-gather list. * @cs_parser: parse Command Submission. * @asic_dma_map_sg: DMA map scatter-gather list. * @get_dma_desc_list_size: get number of LIN_DMA packets required for CB. * @add_end_of_cb_packets: Add packets to the end of CB, if device requires it. * @update_eq_ci: update event queue CI. * @context_switch: called upon ASID context switch. * @restore_phase_topology: clear all SOBs amd MONs. * @debugfs_read32: debug interface for reading u32 from DRAM/SRAM. * @debugfs_write32: debug interface for writing u32 to DRAM/SRAM. * @add_device_attr: add ASIC specific device attributes. * @handle_eqe: handle event queue entry (IRQ) from CPU-CP. * @set_pll_profile: change PLL profile (manual/automatic). * @get_events_stat: retrieve event queue entries histogram. * @read_pte: read MMU page table entry from DRAM. * @write_pte: write MMU page table entry to DRAM. * @mmu_invalidate_cache: flush MMU STLB host/DRAM cache, either with soft * (L1 only) or hard (L0 & L1) flush. * @mmu_invalidate_cache_range: flush specific MMU STLB cache lines with * ASID-VA-size mask. * @send_heartbeat: send is-alive packet to CPU-CP and verify response. * @set_clock_gating: enable/disable clock gating per engine according to * clock gating mask in hdev * @disable_clock_gating: disable clock gating completely * @debug_coresight: perform certain actions on Coresight for debugging. * @is_device_idle: return true if device is idle, false otherwise. * @soft_reset_late_init: perform certain actions needed after soft reset. * @hw_queues_lock: acquire H/W queues lock. * @hw_queues_unlock: release H/W queues lock. * @get_pci_id: retrieve PCI ID. * @get_eeprom_data: retrieve EEPROM data from F/W. * @send_cpu_message: send message to F/W. If the message is timedout, the * driver will eventually reset the device. The timeout can * be determined by the calling function or it can be 0 and * then the timeout is the default timeout for the specific * ASIC * @get_hw_state: retrieve the H/W state * @pci_bars_map: Map PCI BARs. * @init_iatu: Initialize the iATU unit inside the PCI controller. * @rreg: Read a register. Needed for simulator support. * @wreg: Write a register. Needed for simulator support. * @halt_coresight: stop the ETF and ETR traces. * @ctx_init: context dependent initialization. * @ctx_fini: context dependent cleanup. * @get_clk_rate: Retrieve the ASIC current and maximum clock rate in MHz * @get_queue_id_for_cq: Get the H/W queue id related to the given CQ index. * @read_device_fw_version: read the device's firmware versions that are * contained in registers * @load_firmware_to_device: load the firmware to the device's memory * @load_boot_fit_to_device: load boot fit to device's memory * @get_signal_cb_size: Get signal CB size. * @get_wait_cb_size: Get wait CB size. * @gen_signal_cb: Generate a signal CB. * @gen_wait_cb: Generate a wait CB. * @reset_sob: Reset a SOB. * @reset_sob_group: Reset SOB group * @set_dma_mask_from_fw: set the DMA mask in the driver according to the * firmware configuration * @get_device_time: Get the device time. * @collective_wait_init_cs: Generate collective master/slave packets * and place them in the relevant cs jobs * @collective_wait_create_jobs: allocate collective wait cs jobs * @scramble_addr: Routine to scramble the address prior of mapping it * in the MMU. * @descramble_addr: Routine to de-scramble the address prior of * showing it to users. * @ack_protection_bits_errors: ack and dump all security violations * @get_hw_block_id: retrieve a HW block id to be used by the user to mmap it. * also returns the size of the block if caller supplies * a valid pointer for it * @hw_block_mmap: mmap a HW block with a given id. * @enable_events_from_fw: send interrupt to firmware to notify them the * driver is ready to receive asynchronous events. This * function should be called during the first init and * after every hard-reset of the device */ struct hl_asic_funcs { int (*early_init)(struct hl_device *hdev); int (*early_fini)(struct hl_device *hdev); int (*late_init)(struct hl_device *hdev); void (*late_fini)(struct hl_device *hdev); int (*sw_init)(struct hl_device *hdev); int (*sw_fini)(struct hl_device *hdev); int (*hw_init)(struct hl_device *hdev); void (*hw_fini)(struct hl_device *hdev, bool hard_reset); void (*halt_engines)(struct hl_device *hdev, bool hard_reset); int (*suspend)(struct hl_device *hdev); int (*resume)(struct hl_device *hdev); int (*cb_mmap)(struct hl_device *hdev, struct vm_area_struct *vma, void *cpu_addr, dma_addr_t dma_addr, size_t size); void (*ring_doorbell)(struct hl_device *hdev, u32 hw_queue_id, u32 pi); void (*pqe_write)(struct hl_device *hdev, __le64 *pqe, struct hl_bd *bd); void* (*asic_dma_alloc_coherent)(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle, gfp_t flag); void (*asic_dma_free_coherent)(struct hl_device *hdev, size_t size, void *cpu_addr, dma_addr_t dma_handle); int (*scrub_device_mem)(struct hl_device *hdev, u64 addr, u64 size); void* (*get_int_queue_base)(struct hl_device *hdev, u32 queue_id, dma_addr_t *dma_handle, u16 *queue_len); int (*test_queues)(struct hl_device *hdev); void* (*asic_dma_pool_zalloc)(struct hl_device *hdev, size_t size, gfp_t mem_flags, dma_addr_t *dma_handle); void (*asic_dma_pool_free)(struct hl_device *hdev, void *vaddr, dma_addr_t dma_addr); void* (*cpu_accessible_dma_pool_alloc)(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle); void (*cpu_accessible_dma_pool_free)(struct hl_device *hdev, size_t size, void *vaddr); void (*hl_dma_unmap_sg)(struct hl_device *hdev, struct scatterlist *sgl, int nents, enum dma_data_direction dir); int (*cs_parser)(struct hl_device *hdev, struct hl_cs_parser *parser); int (*asic_dma_map_sg)(struct hl_device *hdev, struct scatterlist *sgl, int nents, enum dma_data_direction dir); u32 (*get_dma_desc_list_size)(struct hl_device *hdev, struct sg_table *sgt); void (*add_end_of_cb_packets)(struct hl_device *hdev, void *kernel_address, u32 len, u64 cq_addr, u32 cq_val, u32 msix_num, bool eb); void (*update_eq_ci)(struct hl_device *hdev, u32 val); int (*context_switch)(struct hl_device *hdev, u32 asid); void (*restore_phase_topology)(struct hl_device *hdev); int (*debugfs_read32)(struct hl_device *hdev, u64 addr, u32 *val); int (*debugfs_write32)(struct hl_device *hdev, u64 addr, u32 val); int (*debugfs_read64)(struct hl_device *hdev, u64 addr, u64 *val); int (*debugfs_write64)(struct hl_device *hdev, u64 addr, u64 val); void (*add_device_attr)(struct hl_device *hdev, struct attribute_group *dev_attr_grp); void (*handle_eqe)(struct hl_device *hdev, struct hl_eq_entry *eq_entry); void (*set_pll_profile)(struct hl_device *hdev, enum hl_pll_frequency freq); void* (*get_events_stat)(struct hl_device *hdev, bool aggregate, u32 *size); u64 (*read_pte)(struct hl_device *hdev, u64 addr); void (*write_pte)(struct hl_device *hdev, u64 addr, u64 val); int (*mmu_invalidate_cache)(struct hl_device *hdev, bool is_hard, u32 flags); int (*mmu_invalidate_cache_range)(struct hl_device *hdev, bool is_hard, u32 asid, u64 va, u64 size); int (*send_heartbeat)(struct hl_device *hdev); void (*set_clock_gating)(struct hl_device *hdev); void (*disable_clock_gating)(struct hl_device *hdev); int (*debug_coresight)(struct hl_device *hdev, void *data); bool (*is_device_idle)(struct hl_device *hdev, u64 *mask_arr, u8 mask_len, struct seq_file *s); int (*soft_reset_late_init)(struct hl_device *hdev); void (*hw_queues_lock)(struct hl_device *hdev); void (*hw_queues_unlock)(struct hl_device *hdev); u32 (*get_pci_id)(struct hl_device *hdev); int (*get_eeprom_data)(struct hl_device *hdev, void *data, size_t max_size); int (*send_cpu_message)(struct hl_device *hdev, u32 *msg, u16 len, u32 timeout, u64 *result); int (*pci_bars_map)(struct hl_device *hdev); int (*init_iatu)(struct hl_device *hdev); u32 (*rreg)(struct hl_device *hdev, u32 reg); void (*wreg)(struct hl_device *hdev, u32 reg, u32 val); void (*halt_coresight)(struct hl_device *hdev); int (*ctx_init)(struct hl_ctx *ctx); void (*ctx_fini)(struct hl_ctx *ctx); int (*get_clk_rate)(struct hl_device *hdev, u32 *cur_clk, u32 *max_clk); u32 (*get_queue_id_for_cq)(struct hl_device *hdev, u32 cq_idx); int (*read_device_fw_version)(struct hl_device *hdev, enum hl_fw_component fwc); int (*load_firmware_to_device)(struct hl_device *hdev); int (*load_boot_fit_to_device)(struct hl_device *hdev); u32 (*get_signal_cb_size)(struct hl_device *hdev); u32 (*get_wait_cb_size)(struct hl_device *hdev); u32 (*gen_signal_cb)(struct hl_device *hdev, void *data, u16 sob_id, u32 size, bool eb); u32 (*gen_wait_cb)(struct hl_device *hdev, struct hl_gen_wait_properties *prop); void (*reset_sob)(struct hl_device *hdev, void *data); void (*reset_sob_group)(struct hl_device *hdev, u16 sob_group); void (*set_dma_mask_from_fw)(struct hl_device *hdev); u64 (*get_device_time)(struct hl_device *hdev); void (*collective_wait_init_cs)(struct hl_cs *cs); int (*collective_wait_create_jobs)(struct hl_device *hdev, struct hl_ctx *ctx, struct hl_cs *cs, u32 wait_queue_id, u32 collective_engine_id); u64 (*scramble_addr)(struct hl_device *hdev, u64 addr); u64 (*descramble_addr)(struct hl_device *hdev, u64 addr); void (*ack_protection_bits_errors)(struct hl_device *hdev); int (*get_hw_block_id)(struct hl_device *hdev, u64 block_addr, u32 *block_size, u32 *block_id); int (*hw_block_mmap)(struct hl_device *hdev, struct vm_area_struct *vma, u32 block_id, u32 block_size); void (*enable_events_from_fw)(struct hl_device *hdev); }; /* * CONTEXTS */ #define HL_KERNEL_ASID_ID 0 /** * enum hl_va_range_type - virtual address range type. * @HL_VA_RANGE_TYPE_HOST: range type of host pages * @HL_VA_RANGE_TYPE_HOST_HUGE: range type of host huge pages * @HL_VA_RANGE_TYPE_DRAM: range type of dram pages */ enum hl_va_range_type { HL_VA_RANGE_TYPE_HOST, HL_VA_RANGE_TYPE_HOST_HUGE, HL_VA_RANGE_TYPE_DRAM, HL_VA_RANGE_TYPE_MAX }; /** * struct hl_va_range - virtual addresses range. * @lock: protects the virtual addresses list. * @list: list of virtual addresses blocks available for mappings. * @start_addr: range start address. * @end_addr: range end address. * @page_size: page size of this va range. */ struct hl_va_range { struct mutex lock; struct list_head list; u64 start_addr; u64 end_addr; u32 page_size; }; /** * struct hl_cs_counters_atomic - command submission counters * @out_of_mem_drop_cnt: dropped due to memory allocation issue * @parsing_drop_cnt: dropped due to error in packet parsing * @queue_full_drop_cnt: dropped due to queue full * @device_in_reset_drop_cnt: dropped due to device in reset * @max_cs_in_flight_drop_cnt: dropped due to maximum CS in-flight * @validation_drop_cnt: dropped due to error in validation */ struct hl_cs_counters_atomic { atomic64_t out_of_mem_drop_cnt; atomic64_t parsing_drop_cnt; atomic64_t queue_full_drop_cnt; atomic64_t device_in_reset_drop_cnt; atomic64_t max_cs_in_flight_drop_cnt; atomic64_t validation_drop_cnt; }; /** * struct hl_pending_cb - pending command buffer structure * @cb_node: cb node in pending cb list * @cb: command buffer to send in next submission * @cb_size: command buffer size * @hw_queue_id: destination queue id */ struct hl_pending_cb { struct list_head cb_node; struct hl_cb *cb; u32 cb_size; u32 hw_queue_id; }; /** * struct hl_ctx - user/kernel context. * @mem_hash: holds mapping from virtual address to virtual memory area * descriptor (hl_vm_phys_pg_list or hl_userptr). * @mmu_shadow_hash: holds a mapping from shadow address to pgt_info structure. * @hpriv: pointer to the private (Kernel Driver) data of the process (fd). * @hdev: pointer to the device structure. * @refcount: reference counter for the context. Context is released only when * this hits 0l. It is incremented on CS and CS_WAIT. * @cs_pending: array of hl fence objects representing pending CS. * @va_range: holds available virtual addresses for host and dram mappings. * @mem_hash_lock: protects the mem_hash. * @mmu_lock: protects the MMU page tables. Any change to the PGT, modifying the * MMU hash or walking the PGT requires talking this lock. * @debugfs_list: node in debugfs list of contexts. * pending_cb_list: list of pending command buffers waiting to be sent upon * next user command submission context. * @cs_counters: context command submission counters. * @cb_va_pool: device VA pool for command buffers which are mapped to the * device's MMU. * @cs_sequence: sequence number for CS. Value is assigned to a CS and passed * to user so user could inquire about CS. It is used as * index to cs_pending array. * @dram_default_hops: array that holds all hops addresses needed for default * DRAM mapping. * @pending_cb_lock: spinlock to protect pending cb list * @cs_lock: spinlock to protect cs_sequence. * @dram_phys_mem: amount of used physical DRAM memory by this context. * @thread_ctx_switch_token: token to prevent multiple threads of the same * context from running the context switch phase. * Only a single thread should run it. * @thread_pending_cb_token: token to prevent multiple threads from processing * the pending CB list. Only a single thread should * process the list since it is protected by a * spinlock and we don't want to halt the entire * command submission sequence. * @thread_ctx_switch_wait_token: token to prevent the threads that didn't run * the context switch phase from moving to their * execution phase before the context switch phase * has finished. * @asid: context's unique address space ID in the device's MMU. * @handle: context's opaque handle for user */ struct hl_ctx { DECLARE_HASHTABLE(mem_hash, MEM_HASH_TABLE_BITS); DECLARE_HASHTABLE(mmu_shadow_hash, MMU_HASH_TABLE_BITS); struct hl_fpriv *hpriv; struct hl_device *hdev; struct kref refcount; struct hl_fence **cs_pending; struct hl_va_range *va_range[HL_VA_RANGE_TYPE_MAX]; struct mutex mem_hash_lock; struct mutex mmu_lock; struct list_head debugfs_list; struct list_head pending_cb_list; struct hl_cs_counters_atomic cs_counters; struct gen_pool *cb_va_pool; u64 cs_sequence; u64 *dram_default_hops; spinlock_t pending_cb_lock; spinlock_t cs_lock; atomic64_t dram_phys_mem; atomic_t thread_ctx_switch_token; atomic_t thread_pending_cb_token; u32 thread_ctx_switch_wait_token; u32 asid; u32 handle; }; /** * struct hl_ctx_mgr - for handling multiple contexts. * @ctx_lock: protects ctx_handles. * @ctx_handles: idr to hold all ctx handles. */ struct hl_ctx_mgr { struct mutex ctx_lock; struct idr ctx_handles; }; /* * COMMAND SUBMISSIONS */ /** * struct hl_userptr - memory mapping chunk information * @vm_type: type of the VM. * @job_node: linked-list node for hanging the object on the Job's list. * @pages: pointer to struct page array * @npages: size of @pages array * @sgt: pointer to the scatter-gather table that holds the pages. * @dir: for DMA unmapping, the direction must be supplied, so save it. * @debugfs_list: node in debugfs list of command submissions. * @addr: user-space virtual address of the start of the memory area. * @size: size of the memory area to pin & map. * @dma_mapped: true if the SG was mapped to DMA addresses, false otherwise. */ struct hl_userptr { enum vm_type_t vm_type; /* must be first */ struct list_head job_node; struct page **pages; unsigned int npages; struct sg_table *sgt; enum dma_data_direction dir; struct list_head debugfs_list; u64 addr; u32 size; u8 dma_mapped; }; /** * struct hl_cs - command submission. * @jobs_in_queue_cnt: per each queue, maintain counter of submitted jobs. * @ctx: the context this CS belongs to. * @job_list: list of the CS's jobs in the various queues. * @job_lock: spinlock for the CS's jobs list. Needed for free_job. * @refcount: reference counter for usage of the CS. * @fence: pointer to the fence object of this CS. * @signal_fence: pointer to the fence object of the signal CS (used by wait * CS only). * @finish_work: workqueue object to run when CS is completed by H/W. * @work_tdr: delayed work node for TDR. * @mirror_node : node in device mirror list of command submissions. * @staged_cs_node: node in the staged cs list. * @debugfs_list: node in debugfs list of command submissions. * @sequence: the sequence number of this CS. * @staged_sequence: the sequence of the staged submission this CS is part of, * relevant only if staged_cs is set. * @type: CS_TYPE_*. * @submitted: true if CS was submitted to H/W. * @completed: true if CS was completed by device. * @timedout : true if CS was timedout. * @tdr_active: true if TDR was activated for this CS (to prevent * double TDR activation). * @aborted: true if CS was aborted due to some device error. * @timestamp: true if a timestmap must be captured upon completion. * @staged_last: true if this is the last staged CS and needs completion. * @staged_first: true if this is the first staged CS and we need to receive * timeout for this CS. * @staged_cs: true if this CS is part of a staged submission. */ struct hl_cs { u16 *jobs_in_queue_cnt; struct hl_ctx *ctx; struct list_head job_list; spinlock_t job_lock; struct kref refcount; struct hl_fence *fence; struct hl_fence *signal_fence; struct work_struct finish_work; struct delayed_work work_tdr; struct list_head mirror_node; struct list_head staged_cs_node; struct list_head debugfs_list; u64 sequence; u64 staged_sequence; enum hl_cs_type type; u8 submitted; u8 completed; u8 timedout; u8 tdr_active; u8 aborted; u8 timestamp; u8 staged_last; u8 staged_first; u8 staged_cs; }; /** * struct hl_cs_job - command submission job. * @cs_node: the node to hang on the CS jobs list. * @cs: the CS this job belongs to. * @user_cb: the CB we got from the user. * @patched_cb: in case of patching, this is internal CB which is submitted on * the queue instead of the CB we got from the IOCTL. * @finish_work: workqueue object to run when job is completed. * @userptr_list: linked-list of userptr mappings that belong to this job and * wait for completion. * @debugfs_list: node in debugfs list of command submission jobs. * @refcount: reference counter for usage of the CS job. * @queue_type: the type of the H/W queue this job is submitted to. * @id: the id of this job inside a CS. * @hw_queue_id: the id of the H/W queue this job is submitted to. * @user_cb_size: the actual size of the CB we got from the user. * @job_cb_size: the actual size of the CB that we put on the queue. * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a * handle to a kernel-allocated CB object, false * otherwise (SRAM/DRAM/host address). * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This * info is needed later, when adding the 2xMSG_PROT at the * end of the JOB, to know which barriers to put in the * MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't * have streams so the engine can't be busy by another * stream. */ struct hl_cs_job { struct list_head cs_node; struct hl_cs *cs; struct hl_cb *user_cb; struct hl_cb *patched_cb; struct work_struct finish_work; struct list_head userptr_list; struct list_head debugfs_list; struct kref refcount; enum hl_queue_type queue_type; u32 id; u32 hw_queue_id; u32 user_cb_size; u32 job_cb_size; u8 is_kernel_allocated_cb; u8 contains_dma_pkt; }; /** * struct hl_cs_parser - command submission parser properties. * @user_cb: the CB we got from the user. * @patched_cb: in case of patching, this is internal CB which is submitted on * the queue instead of the CB we got from the IOCTL. * @job_userptr_list: linked-list of userptr mappings that belong to the related * job and wait for completion. * @cs_sequence: the sequence number of the related CS. * @queue_type: the type of the H/W queue this job is submitted to. * @ctx_id: the ID of the context the related CS belongs to. * @hw_queue_id: the id of the H/W queue this job is submitted to. * @user_cb_size: the actual size of the CB we got from the user. * @patched_cb_size: the size of the CB after parsing. * @job_id: the id of the related job inside the related CS. * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a * handle to a kernel-allocated CB object, false * otherwise (SRAM/DRAM/host address). * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This * info is needed later, when adding the 2xMSG_PROT at the * end of the JOB, to know which barriers to put in the * MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't * have streams so the engine can't be busy by another * stream. * @completion: true if we need completion for this CS. */ struct hl_cs_parser { struct hl_cb *user_cb; struct hl_cb *patched_cb; struct list_head *job_userptr_list; u64 cs_sequence; enum hl_queue_type queue_type; u32 ctx_id; u32 hw_queue_id; u32 user_cb_size; u32 patched_cb_size; u8 job_id; u8 is_kernel_allocated_cb; u8 contains_dma_pkt; u8 completion; }; /* * MEMORY STRUCTURE */ /** * struct hl_vm_hash_node - hash element from virtual address to virtual * memory area descriptor (hl_vm_phys_pg_list or * hl_userptr). * @node: node to hang on the hash table in context object. * @vaddr: key virtual address. * @ptr: value pointer (hl_vm_phys_pg_list or hl_userptr). */ struct hl_vm_hash_node { struct hlist_node node; u64 vaddr; void *ptr; }; /** * struct hl_vm_phys_pg_pack - physical page pack. * @vm_type: describes the type of the virtual area descriptor. * @pages: the physical page array. * @npages: num physical pages in the pack. * @total_size: total size of all the pages in this list. * @mapping_cnt: number of shared mappings. * @asid: the context related to this list. * @page_size: size of each page in the pack. * @flags: HL_MEM_* flags related to this list. * @handle: the provided handle related to this list. * @offset: offset from the first page. * @contiguous: is contiguous physical memory. * @created_from_userptr: is product of host virtual address. */ struct hl_vm_phys_pg_pack { enum vm_type_t vm_type; /* must be first */ u64 *pages; u64 npages; u64 total_size; atomic_t mapping_cnt; u32 asid; u32 page_size; u32 flags; u32 handle; u32 offset; u8 contiguous; u8 created_from_userptr; }; /** * struct hl_vm_va_block - virtual range block information. * @node: node to hang on the virtual range list in context object. * @start: virtual range start address. * @end: virtual range end address. * @size: virtual range size. */ struct hl_vm_va_block { struct list_head node; u64 start; u64 end; u64 size; }; /** * struct hl_vm - virtual memory manager for MMU. * @dram_pg_pool: pool for DRAM physical pages of 2MB. * @dram_pg_pool_refcount: reference counter for the pool usage. * @idr_lock: protects the phys_pg_list_handles. * @phys_pg_pack_handles: idr to hold all device allocations handles. * @init_done: whether initialization was done. We need this because VM * initialization might be skipped during device initialization. */ struct hl_vm { struct gen_pool *dram_pg_pool; struct kref dram_pg_pool_refcount; spinlock_t idr_lock; struct idr phys_pg_pack_handles; u8 init_done; }; /* * DEBUG, PROFILING STRUCTURE */ /** * struct hl_debug_params - Coresight debug parameters. * @input: pointer to component specific input parameters. * @output: pointer to component specific output parameters. * @output_size: size of output buffer. * @reg_idx: relevant register ID. * @op: component operation to execute. * @enable: true if to enable component debugging, false otherwise. */ struct hl_debug_params { void *input; void *output; u32 output_size; u32 reg_idx; u32 op; bool enable; }; /* * FILE PRIVATE STRUCTURE */ /** * struct hl_fpriv - process information stored in FD private data. * @hdev: habanalabs device structure. * @filp: pointer to the given file structure. * @taskpid: current process ID. * @ctx: current executing context. TODO: remove for multiple ctx per process * @ctx_mgr: context manager to handle multiple context for this FD. * @cb_mgr: command buffer manager to handle multiple buffers for this FD. * @debugfs_list: list of relevant ASIC debugfs. * @dev_node: node in the device list of file private data * @refcount: number of related contexts. * @restore_phase_mutex: lock for context switch and restore phase. * @is_control: true for control device, false otherwise */ struct hl_fpriv { struct hl_device *hdev; struct file *filp; struct pid *taskpid; struct hl_ctx *ctx; struct hl_ctx_mgr ctx_mgr; struct hl_cb_mgr cb_mgr; struct list_head debugfs_list; struct list_head dev_node; struct kref refcount; struct mutex restore_phase_mutex; u8 is_control; }; /* * DebugFS */ /** * struct hl_info_list - debugfs file ops. * @name: file name. * @show: function to output information. * @write: function to write to the file. */ struct hl_info_list { const char *name; int (*show)(struct seq_file *s, void *data); ssize_t (*write)(struct file *file, const char __user *buf, size_t count, loff_t *f_pos); }; /** * struct hl_debugfs_entry - debugfs dentry wrapper. * @info_ent: dentry realted ops. * @dev_entry: ASIC specific debugfs manager. */ struct hl_debugfs_entry { const struct hl_info_list *info_ent; struct hl_dbg_device_entry *dev_entry; }; /** * struct hl_dbg_device_entry - ASIC specific debugfs manager. * @root: root dentry. * @hdev: habanalabs device structure. * @entry_arr: array of available hl_debugfs_entry. * @file_list: list of available debugfs files. * @file_mutex: protects file_list. * @cb_list: list of available CBs. * @cb_spinlock: protects cb_list. * @cs_list: list of available CSs. * @cs_spinlock: protects cs_list. * @cs_job_list: list of available CB jobs. * @cs_job_spinlock: protects cs_job_list. * @userptr_list: list of available userptrs (virtual memory chunk descriptor). * @userptr_spinlock: protects userptr_list. * @ctx_mem_hash_list: list of available contexts with MMU mappings. * @ctx_mem_hash_spinlock: protects cb_list. * @addr: next address to read/write from/to in read/write32. * @mmu_addr: next virtual address to translate to physical address in mmu_show. * @mmu_asid: ASID to use while translating in mmu_show. * @i2c_bus: generic u8 debugfs file for bus value to use in i2c_data_read. * @i2c_bus: generic u8 debugfs file for address value to use in i2c_data_read. * @i2c_bus: generic u8 debugfs file for register value to use in i2c_data_read. */ struct hl_dbg_device_entry { struct dentry *root; struct hl_device *hdev; struct hl_debugfs_entry *entry_arr; struct list_head file_list; struct mutex file_mutex; struct list_head cb_list; spinlock_t cb_spinlock; struct list_head cs_list; spinlock_t cs_spinlock; struct list_head cs_job_list; spinlock_t cs_job_spinlock; struct list_head userptr_list; spinlock_t userptr_spinlock; struct list_head ctx_mem_hash_list; spinlock_t ctx_mem_hash_spinlock; u64 addr; u64 mmu_addr; u32 mmu_asid; u8 i2c_bus; u8 i2c_addr; u8 i2c_reg; }; /* * DEVICES */ #define HL_STR_MAX 32 #define HL_DEV_STS_MAX (HL_DEVICE_STATUS_NEEDS_RESET + 1) /* Theoretical limit only. A single host can only contain up to 4 or 8 PCIe * x16 cards. In extreme cases, there are hosts that can accommodate 16 cards. */ #define HL_MAX_MINORS 256 /* * Registers read & write functions. */ u32 hl_rreg(struct hl_device *hdev, u32 reg); void hl_wreg(struct hl_device *hdev, u32 reg, u32 val); #define RREG32(reg) hdev->asic_funcs->rreg(hdev, (reg)) #define WREG32(reg, v) hdev->asic_funcs->wreg(hdev, (reg), (v)) #define DREG32(reg) pr_info("REGISTER: " #reg " : 0x%08X\n", \ hdev->asic_funcs->rreg(hdev, (reg))) #define WREG32_P(reg, val, mask) \ do { \ u32 tmp_ = RREG32(reg); \ tmp_ &= (mask); \ tmp_ |= ((val) & ~(mask)); \ WREG32(reg, tmp_); \ } while (0) #define WREG32_AND(reg, and) WREG32_P(reg, 0, and) #define WREG32_OR(reg, or) WREG32_P(reg, or, ~(or)) #define RMWREG32(reg, val, mask) \ do { \ u32 tmp_ = RREG32(reg); \ tmp_ &= ~(mask); \ tmp_ |= ((val) << __ffs(mask)); \ WREG32(reg, tmp_); \ } while (0) #define RREG32_MASK(reg, mask) ((RREG32(reg) & mask) >> __ffs(mask)) #define REG_FIELD_SHIFT(reg, field) reg##_##field##_SHIFT #define REG_FIELD_MASK(reg, field) reg##_##field##_MASK #define WREG32_FIELD(reg, offset, field, val) \ WREG32(mm##reg + offset, (RREG32(mm##reg + offset) & \ ~REG_FIELD_MASK(reg, field)) | \ (val) << REG_FIELD_SHIFT(reg, field)) /* Timeout should be longer when working with simulator but cap the * increased timeout to some maximum */ #define hl_poll_timeout(hdev, addr, val, cond, sleep_us, timeout_us) \ ({ \ ktime_t __timeout; \ if (hdev->pdev) \ __timeout = ktime_add_us(ktime_get(), timeout_us); \ else \ __timeout = ktime_add_us(ktime_get(),\ min((u64)(timeout_us * 10), \ (u64) HL_SIM_MAX_TIMEOUT_US)); \ might_sleep_if(sleep_us); \ for (;;) { \ (val) = RREG32(addr); \ if (cond) \ break; \ if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \ (val) = RREG32(addr); \ break; \ } \ if (sleep_us) \ usleep_range((sleep_us >> 2) + 1, sleep_us); \ } \ (cond) ? 0 : -ETIMEDOUT; \ }) /* * address in this macro points always to a memory location in the * host's (server's) memory. That location is updated asynchronously * either by the direct access of the device or by another core. * * To work both in LE and BE architectures, we need to distinguish between the * two states (device or another core updates the memory location). Therefore, * if mem_written_by_device is true, the host memory being polled will be * updated directly by the device. If false, the host memory being polled will * be updated by host CPU. Required so host knows whether or not the memory * might need to be byte-swapped before returning value to caller. */ #define hl_poll_timeout_memory(hdev, addr, val, cond, sleep_us, timeout_us, \ mem_written_by_device) \ ({ \ ktime_t __timeout; \ if (hdev->pdev) \ __timeout = ktime_add_us(ktime_get(), timeout_us); \ else \ __timeout = ktime_add_us(ktime_get(),\ min((u64)(timeout_us * 10), \ (u64) HL_SIM_MAX_TIMEOUT_US)); \ might_sleep_if(sleep_us); \ for (;;) { \ /* Verify we read updates done by other cores or by device */ \ mb(); \ (val) = *((u32 *)(addr)); \ if (mem_written_by_device) \ (val) = le32_to_cpu(*(__le32 *) &(val)); \ if (cond) \ break; \ if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \ (val) = *((u32 *)(addr)); \ if (mem_written_by_device) \ (val) = le32_to_cpu(*(__le32 *) &(val)); \ break; \ } \ if (sleep_us) \ usleep_range((sleep_us >> 2) + 1, sleep_us); \ } \ (cond) ? 0 : -ETIMEDOUT; \ }) #define hl_poll_timeout_device_memory(hdev, addr, val, cond, sleep_us, \ timeout_us) \ ({ \ ktime_t __timeout; \ if (hdev->pdev) \ __timeout = ktime_add_us(ktime_get(), timeout_us); \ else \ __timeout = ktime_add_us(ktime_get(),\ min((u64)(timeout_us * 10), \ (u64) HL_SIM_MAX_TIMEOUT_US)); \ might_sleep_if(sleep_us); \ for (;;) { \ (val) = readl(addr); \ if (cond) \ break; \ if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \ (val) = readl(addr); \ break; \ } \ if (sleep_us) \ usleep_range((sleep_us >> 2) + 1, sleep_us); \ } \ (cond) ? 0 : -ETIMEDOUT; \ }) struct hwmon_chip_info; /** * struct hl_device_reset_work - reset workqueue task wrapper. * @wq: work queue for device reset procedure. * @reset_work: reset work to be done. * @hdev: habanalabs device structure. */ struct hl_device_reset_work { struct workqueue_struct *wq; struct delayed_work reset_work; struct hl_device *hdev; }; /** * struct hl_device_idle_busy_ts - used for calculating device utilization rate. * @idle_to_busy_ts: timestamp where device changed from idle to busy. * @busy_to_idle_ts: timestamp where device changed from busy to idle. */ struct hl_device_idle_busy_ts { ktime_t idle_to_busy_ts; ktime_t busy_to_idle_ts; }; /** * struct hr_mmu_hop_addrs - used for holding per-device host-resident mmu hop * information. * @virt_addr: the virtual address of the hop. * @phys-addr: the physical address of the hop (used by the device-mmu). * @shadow_addr: The shadow of the hop used by the driver for walking the hops. */ struct hr_mmu_hop_addrs { u64 virt_addr; u64 phys_addr; u64 shadow_addr; }; /** * struct hl_mmu_hr_pgt_priv - used for holding per-device mmu host-resident * page-table internal information. * @mmu_pgt_pool: pool of page tables used by MMU for allocating hops. * @mmu_shadow_hop0: shadow array of hop0 tables. */ struct hl_mmu_hr_priv { struct gen_pool *mmu_pgt_pool; struct hr_mmu_hop_addrs *mmu_shadow_hop0; }; /** * struct hl_mmu_dr_pgt_priv - used for holding per-device mmu device-resident * page-table internal information. * @mmu_pgt_pool: pool of page tables used by MMU for allocating hops. * @mmu_shadow_hop0: shadow array of hop0 tables. */ struct hl_mmu_dr_priv { struct gen_pool *mmu_pgt_pool; void *mmu_shadow_hop0; }; /** * struct hl_mmu_priv - used for holding per-device mmu internal information. * @dr: information on the device-resident MMU, when exists. * @hr: information on the host-resident MMU, when exists. */ struct hl_mmu_priv { struct hl_mmu_dr_priv dr; struct hl_mmu_hr_priv hr; }; /** * struct hl_mmu_per_hop_info - A structure describing one TLB HOP and its entry * that was created in order to translate a virtual address to a * physical one. * @hop_addr: The address of the hop. * @hop_pte_addr: The address of the hop entry. * @hop_pte_val: The value in the hop entry. */ struct hl_mmu_per_hop_info { u64 hop_addr; u64 hop_pte_addr; u64 hop_pte_val; }; /** * struct hl_mmu_hop_info - A structure describing the TLB hops and their * hop-entries that were created in order to translate a virtual address to a * physical one. * @scrambled_vaddr: The value of the virtual address after scrambling. This * address replaces the original virtual-address when mapped * in the MMU tables. * @unscrambled_paddr: The un-scrambled physical address. * @hop_info: Array holding the per-hop information used for the translation. * @used_hops: The number of hops used for the translation. * @range_type: virtual address range type. */ struct hl_mmu_hop_info { u64 scrambled_vaddr; u64 unscrambled_paddr; struct hl_mmu_per_hop_info hop_info[MMU_ARCH_5_HOPS]; u32 used_hops; enum hl_va_range_type range_type; }; /** * struct hl_mmu_funcs - Device related MMU functions. * @init: initialize the MMU module. * @fini: release the MMU module. * @ctx_init: Initialize a context for using the MMU module. * @ctx_fini: disable a ctx from using the mmu module. * @map: maps a virtual address to physical address for a context. * @unmap: unmap a virtual address of a context. * @flush: flush all writes from all cores to reach device MMU. * @swap_out: marks all mapping of the given context as swapped out. * @swap_in: marks all mapping of the given context as swapped in. * @get_tlb_info: returns the list of hops and hop-entries used that were * created in order to translate the giver virtual address to a * physical one. */ struct hl_mmu_funcs { int (*init)(struct hl_device *hdev); void (*fini)(struct hl_device *hdev); int (*ctx_init)(struct hl_ctx *ctx); void (*ctx_fini)(struct hl_ctx *ctx); int (*map)(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size, bool is_dram_addr); int (*unmap)(struct hl_ctx *ctx, u64 virt_addr, bool is_dram_addr); void (*flush)(struct hl_ctx *ctx); void (*swap_out)(struct hl_ctx *ctx); void (*swap_in)(struct hl_ctx *ctx); int (*get_tlb_info)(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops); }; /** * struct hl_device - habanalabs device structure. * @pdev: pointer to PCI device, can be NULL in case of simulator device. * @pcie_bar_phys: array of available PCIe bars physical addresses. * (required only for PCI address match mode) * @pcie_bar: array of available PCIe bars virtual addresses. * @rmmio: configuration area address on SRAM. * @cdev: related char device. * @cdev_ctrl: char device for control operations only (INFO IOCTL) * @dev: related kernel basic device structure. * @dev_ctrl: related kernel device structure for the control device * @work_freq: delayed work to lower device frequency if possible. * @work_heartbeat: delayed work for CPU-CP is-alive check. * @device_reset_work: delayed work which performs hard reset * @asic_name: ASIC specific name. * @asic_type: ASIC specific type. * @completion_queue: array of hl_cq. * @cq_wq: work queues of completion queues for executing work in process * context. * @eq_wq: work queue of event queue for executing work in process context. * @kernel_ctx: Kernel driver context structure. * @kernel_queues: array of hl_hw_queue. * @cs_mirror_list: CS mirror list for TDR. * @cs_mirror_lock: protects cs_mirror_list. * @kernel_cb_mgr: command buffer manager for creating/destroying/handling CGs. * @event_queue: event queue for IRQ from CPU-CP. * @dma_pool: DMA pool for small allocations. * @cpu_accessible_dma_mem: Host <-> CPU-CP shared memory CPU address. * @cpu_accessible_dma_address: Host <-> CPU-CP shared memory DMA address. * @cpu_accessible_dma_pool: Host <-> CPU-CP shared memory pool. * @asid_bitmap: holds used/available ASIDs. * @asid_mutex: protects asid_bitmap. * @send_cpu_message_lock: enforces only one message in Host <-> CPU-CP queue. * @debug_lock: protects critical section of setting debug mode for device * @asic_prop: ASIC specific immutable properties. * @asic_funcs: ASIC specific functions. * @asic_specific: ASIC specific information to use only from ASIC files. * @vm: virtual memory manager for MMU. * @hwmon_dev: H/W monitor device. * @pm_mng_profile: current power management profile. * @hl_chip_info: ASIC's sensors information. * @device_status_description: device status description. * @hl_debugfs: device's debugfs manager. * @cb_pool: list of preallocated CBs. * @cb_pool_lock: protects the CB pool. * @internal_cb_pool_virt_addr: internal command buffer pool virtual address. * @internal_cb_pool_dma_addr: internal command buffer pool dma address. * @internal_cb_pool: internal command buffer memory pool. * @internal_cb_va_base: internal cb pool mmu virtual address base * @fpriv_list: list of file private data structures. Each structure is created * when a user opens the device * @fpriv_list_lock: protects the fpriv_list * @compute_ctx: current compute context executing. * @idle_busy_ts_arr: array to hold time stamps of transitions from idle to busy * and vice-versa * @aggregated_cs_counters: aggregated cs counters among all contexts * @mmu_priv: device-specific MMU data. * @mmu_func: device-related MMU functions. * @dram_used_mem: current DRAM memory consumption. * @timeout_jiffies: device CS timeout value. * @max_power: the max power of the device, as configured by the sysadmin. This * value is saved so in case of hard-reset, the driver will restore * this value and update the F/W after the re-initialization * @clock_gating_mask: is clock gating enabled. bitmask that represents the * different engines. See debugfs-driver-habanalabs for * details. * @in_reset: is device in reset flow. * @curr_pll_profile: current PLL profile. * @card_type: Various ASICs have several card types. This indicates the card * type of the current device. * @cs_active_cnt: number of active command submissions on this device (active * means already in H/W queues) * @major: habanalabs kernel driver major. * @high_pll: high PLL profile frequency. * @soft_reset_cnt: number of soft reset since the driver was loaded. * @hard_reset_cnt: number of hard reset since the driver was loaded. * @idle_busy_ts_idx: index of current entry in idle_busy_ts_arr * @clk_throttling_reason: bitmask represents the current clk throttling reasons * @id: device minor. * @id_control: minor of the control device * @cpu_pci_msb_addr: 50-bit extension bits for the device CPU's 40-bit * addresses. * @disabled: is device disabled. * @late_init_done: is late init stage was done during initialization. * @hwmon_initialized: is H/W monitor sensors was initialized. * @hard_reset_pending: is there a hard reset work pending. * @heartbeat: is heartbeat sanity check towards CPU-CP enabled. * @reset_on_lockup: true if a reset should be done in case of stuck CS, false * otherwise. * @dram_default_page_mapping: is DRAM default page mapping enabled. * @memory_scrub: true to perform device memory scrub in various locations, * such as context-switch, context close, page free, etc. * @pmmu_huge_range: is a different virtual addresses range used for PMMU with * huge pages. * @init_done: is the initialization of the device done. * @device_cpu_disabled: is the device CPU disabled (due to timeouts) * @dma_mask: the dma mask that was set for this device * @in_debug: is device under debug. This, together with fpriv_list, enforces * that only a single user is configuring the debug infrastructure. * @power9_64bit_dma_enable: true to enable 64-bit DMA mask support. Relevant * only to POWER9 machines. * @cdev_sysfs_created: were char devices and sysfs nodes created. * @stop_on_err: true if engines should stop on error. * @supports_sync_stream: is sync stream supported. * @sync_stream_queue_idx: helper index for sync stream queues initialization. * @collective_mon_idx: helper index for collective initialization * @supports_coresight: is CoreSight supported. * @supports_soft_reset: is soft reset supported. * @supports_cb_mapping: is mapping a CB to the device's MMU supported. * @needs_reset: true if reset_on_lockup is false and device should be reset * due to lockup. * @process_kill_trial_cnt: number of trials reset thread tried killing * user processes * @device_fini_pending: true if device_fini was called and might be * waiting for the reset thread to finish * @supports_staged_submission: true if staged submissions are supported */ struct hl_device { struct pci_dev *pdev; u64 pcie_bar_phys[HL_PCI_NUM_BARS]; void __iomem *pcie_bar[HL_PCI_NUM_BARS]; void __iomem *rmmio; struct cdev cdev; struct cdev cdev_ctrl; struct device *dev; struct device *dev_ctrl; struct delayed_work work_freq; struct delayed_work work_heartbeat; struct hl_device_reset_work device_reset_work; char asic_name[HL_STR_MAX]; char status[HL_DEV_STS_MAX][HL_STR_MAX]; enum hl_asic_type asic_type; struct hl_cq *completion_queue; struct workqueue_struct **cq_wq; struct workqueue_struct *eq_wq; struct hl_ctx *kernel_ctx; struct hl_hw_queue *kernel_queues; struct list_head cs_mirror_list; spinlock_t cs_mirror_lock; struct hl_cb_mgr kernel_cb_mgr; struct hl_eq event_queue; struct dma_pool *dma_pool; void *cpu_accessible_dma_mem; dma_addr_t cpu_accessible_dma_address; struct gen_pool *cpu_accessible_dma_pool; unsigned long *asid_bitmap; struct mutex asid_mutex; struct mutex send_cpu_message_lock; struct mutex debug_lock; struct asic_fixed_properties asic_prop; const struct hl_asic_funcs *asic_funcs; void *asic_specific; struct hl_vm vm; struct device *hwmon_dev; enum hl_pm_mng_profile pm_mng_profile; struct hwmon_chip_info *hl_chip_info; struct hl_dbg_device_entry hl_debugfs; struct list_head cb_pool; spinlock_t cb_pool_lock; void *internal_cb_pool_virt_addr; dma_addr_t internal_cb_pool_dma_addr; struct gen_pool *internal_cb_pool; u64 internal_cb_va_base; struct list_head fpriv_list; struct mutex fpriv_list_lock; struct hl_ctx *compute_ctx; struct hl_device_idle_busy_ts *idle_busy_ts_arr; struct hl_cs_counters_atomic aggregated_cs_counters; struct hl_mmu_priv mmu_priv; struct hl_mmu_funcs mmu_func[MMU_NUM_PGT_LOCATIONS]; atomic64_t dram_used_mem; u64 timeout_jiffies; u64 max_power; u64 clock_gating_mask; atomic_t in_reset; enum hl_pll_frequency curr_pll_profile; enum cpucp_card_types card_type; int cs_active_cnt; u32 major; u32 high_pll; u32 soft_reset_cnt; u32 hard_reset_cnt; u32 idle_busy_ts_idx; u32 clk_throttling_reason; u16 id; u16 id_control; u16 cpu_pci_msb_addr; u8 disabled; u8 late_init_done; u8 hwmon_initialized; u8 hard_reset_pending; u8 heartbeat; u8 reset_on_lockup; u8 dram_default_page_mapping; u8 memory_scrub; u8 pmmu_huge_range; u8 init_done; u8 device_cpu_disabled; u8 dma_mask; u8 in_debug; u8 power9_64bit_dma_enable; u8 cdev_sysfs_created; u8 stop_on_err; u8 supports_sync_stream; u8 sync_stream_queue_idx; u8 collective_mon_idx; u8 supports_coresight; u8 supports_soft_reset; u8 supports_cb_mapping; u8 needs_reset; u8 process_kill_trial_cnt; u8 device_fini_pending; u8 supports_staged_submission; /* Parameters for bring-up */ u64 nic_ports_mask; u64 fw_loading; u8 mmu_enable; u8 mmu_huge_page_opt; u8 cpu_enable; u8 reset_pcilink; u8 cpu_queues_enable; u8 pldm; u8 axi_drain; u8 sram_scrambler_enable; u8 dram_scrambler_enable; u8 hard_reset_on_fw_events; u8 bmc_enable; u8 rl_enable; u8 reset_on_preboot_fail; }; /* * IOCTLs */ /** * typedef hl_ioctl_t - typedef for ioctl function in the driver * @hpriv: pointer to the FD's private data, which contains state of * user process * @data: pointer to the input/output arguments structure of the IOCTL * * Return: 0 for success, negative value for error */ typedef int hl_ioctl_t(struct hl_fpriv *hpriv, void *data); /** * struct hl_ioctl_desc - describes an IOCTL entry of the driver. * @cmd: the IOCTL code as created by the kernel macros. * @func: pointer to the driver's function that should be called for this IOCTL. */ struct hl_ioctl_desc { unsigned int cmd; hl_ioctl_t *func; }; /* * Kernel module functions that can be accessed by entire module */ /** * hl_mem_area_inside_range() - Checks whether address+size are inside a range. * @address: The start address of the area we want to validate. * @size: The size in bytes of the area we want to validate. * @range_start_address: The start address of the valid range. * @range_end_address: The end address of the valid range. * * Return: true if the area is inside the valid range, false otherwise. */ static inline bool hl_mem_area_inside_range(u64 address, u64 size, u64 range_start_address, u64 range_end_address) { u64 end_address = address + size; if ((address >= range_start_address) && (end_address <= range_end_address) && (end_address > address)) return true; return false; } /** * hl_mem_area_crosses_range() - Checks whether address+size crossing a range. * @address: The start address of the area we want to validate. * @size: The size in bytes of the area we want to validate. * @range_start_address: The start address of the valid range. * @range_end_address: The end address of the valid range. * * Return: true if the area overlaps part or all of the valid range, * false otherwise. */ static inline bool hl_mem_area_crosses_range(u64 address, u32 size, u64 range_start_address, u64 range_end_address) { u64 end_address = address + size; if ((address >= range_start_address) && (address < range_end_address)) return true; if ((end_address >= range_start_address) && (end_address < range_end_address)) return true; if ((address < range_start_address) && (end_address >= range_end_address)) return true; return false; } int hl_device_open(struct inode *inode, struct file *filp); int hl_device_open_ctrl(struct inode *inode, struct file *filp); bool hl_device_operational(struct hl_device *hdev, enum hl_device_status *status); enum hl_device_status hl_device_status(struct hl_device *hdev); int hl_device_set_debug_mode(struct hl_device *hdev, bool enable); int create_hdev(struct hl_device **dev, struct pci_dev *pdev, enum hl_asic_type asic_type, int minor); void destroy_hdev(struct hl_device *hdev); int hl_hw_queues_create(struct hl_device *hdev); void hl_hw_queues_destroy(struct hl_device *hdev); int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id, u32 cb_size, u64 cb_ptr); int hl_hw_queue_schedule_cs(struct hl_cs *cs); u32 hl_hw_queue_add_ptr(u32 ptr, u16 val); void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id); void hl_hw_queue_update_ci(struct hl_cs *cs); void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset); #define hl_queue_inc_ptr(p) hl_hw_queue_add_ptr(p, 1) #define hl_pi_2_offset(pi) ((pi) & (HL_QUEUE_LENGTH - 1)) int hl_cq_init(struct hl_device *hdev, struct hl_cq *q, u32 hw_queue_id); void hl_cq_fini(struct hl_device *hdev, struct hl_cq *q); int hl_eq_init(struct hl_device *hdev, struct hl_eq *q); void hl_eq_fini(struct hl_device *hdev, struct hl_eq *q); void hl_cq_reset(struct hl_device *hdev, struct hl_cq *q); void hl_eq_reset(struct hl_device *hdev, struct hl_eq *q); irqreturn_t hl_irq_handler_cq(int irq, void *arg); irqreturn_t hl_irq_handler_eq(int irq, void *arg); u32 hl_cq_inc_ptr(u32 ptr); int hl_asid_init(struct hl_device *hdev); void hl_asid_fini(struct hl_device *hdev); unsigned long hl_asid_alloc(struct hl_device *hdev); void hl_asid_free(struct hl_device *hdev, unsigned long asid); int hl_ctx_create(struct hl_device *hdev, struct hl_fpriv *hpriv); void hl_ctx_free(struct hl_device *hdev, struct hl_ctx *ctx); int hl_ctx_init(struct hl_device *hdev, struct hl_ctx *ctx, bool is_kernel_ctx); void hl_ctx_do_release(struct kref *ref); void hl_ctx_get(struct hl_device *hdev, struct hl_ctx *ctx); int hl_ctx_put(struct hl_ctx *ctx); struct hl_fence *hl_ctx_get_fence(struct hl_ctx *ctx, u64 seq); void hl_ctx_mgr_init(struct hl_ctx_mgr *mgr); void hl_ctx_mgr_fini(struct hl_device *hdev, struct hl_ctx_mgr *mgr); int hl_device_init(struct hl_device *hdev, struct class *hclass); void hl_device_fini(struct hl_device *hdev); int hl_device_suspend(struct hl_device *hdev); int hl_device_resume(struct hl_device *hdev); int hl_device_reset(struct hl_device *hdev, bool hard_reset, bool from_hard_reset_thread); void hl_hpriv_get(struct hl_fpriv *hpriv); void hl_hpriv_put(struct hl_fpriv *hpriv); int hl_device_set_frequency(struct hl_device *hdev, enum hl_pll_frequency freq); uint32_t hl_device_utilization(struct hl_device *hdev, uint32_t period_ms); int hl_build_hwmon_channel_info(struct hl_device *hdev, struct cpucp_sensor *sensors_arr); int hl_sysfs_init(struct hl_device *hdev); void hl_sysfs_fini(struct hl_device *hdev); int hl_hwmon_init(struct hl_device *hdev); void hl_hwmon_fini(struct hl_device *hdev); int hl_cb_create(struct hl_device *hdev, struct hl_cb_mgr *mgr, struct hl_ctx *ctx, u32 cb_size, bool internal_cb, bool map_cb, u64 *handle); int hl_cb_destroy(struct hl_device *hdev, struct hl_cb_mgr *mgr, u64 cb_handle); int hl_cb_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma); int hl_hw_block_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma); struct hl_cb *hl_cb_get(struct hl_device *hdev, struct hl_cb_mgr *mgr, u32 handle); void hl_cb_put(struct hl_cb *cb); void hl_cb_mgr_init(struct hl_cb_mgr *mgr); void hl_cb_mgr_fini(struct hl_device *hdev, struct hl_cb_mgr *mgr); struct hl_cb *hl_cb_kernel_create(struct hl_device *hdev, u32 cb_size, bool internal_cb); int hl_cb_pool_init(struct hl_device *hdev); int hl_cb_pool_fini(struct hl_device *hdev); int hl_cb_va_pool_init(struct hl_ctx *ctx); void hl_cb_va_pool_fini(struct hl_ctx *ctx); void hl_cs_rollback_all(struct hl_device *hdev); void hl_pending_cb_list_flush(struct hl_ctx *ctx); struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev, enum hl_queue_type queue_type, bool is_kernel_allocated_cb); void hl_sob_reset_error(struct kref *ref); int hl_gen_sob_mask(u16 sob_base, u8 sob_mask, u8 *mask); void hl_fence_put(struct hl_fence *fence); void hl_fence_get(struct hl_fence *fence); void cs_get(struct hl_cs *cs); bool cs_needs_completion(struct hl_cs *cs); bool cs_needs_timeout(struct hl_cs *cs); bool is_staged_cs_last_exists(struct hl_device *hdev, struct hl_cs *cs); struct hl_cs *hl_staged_cs_find_first(struct hl_device *hdev, u64 cs_seq); void goya_set_asic_funcs(struct hl_device *hdev); void gaudi_set_asic_funcs(struct hl_device *hdev); int hl_vm_ctx_init(struct hl_ctx *ctx); void hl_vm_ctx_fini(struct hl_ctx *ctx); int hl_vm_init(struct hl_device *hdev); void hl_vm_fini(struct hl_device *hdev); u64 hl_reserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx, enum hl_va_range_type type, u32 size, u32 alignment); int hl_unreserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx, u64 start_addr, u64 size); int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size, struct hl_userptr *userptr); void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr); void hl_userptr_delete_list(struct hl_device *hdev, struct list_head *userptr_list); bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr, u32 size, struct list_head *userptr_list, struct hl_userptr **userptr); int hl_mmu_init(struct hl_device *hdev); void hl_mmu_fini(struct hl_device *hdev); int hl_mmu_ctx_init(struct hl_ctx *ctx); void hl_mmu_ctx_fini(struct hl_ctx *ctx); int hl_mmu_map_page(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size, bool flush_pte); int hl_mmu_unmap_page(struct hl_ctx *ctx, u64 virt_addr, u32 page_size, bool flush_pte); int hl_mmu_map_contiguous(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 size); int hl_mmu_unmap_contiguous(struct hl_ctx *ctx, u64 virt_addr, u32 size); void hl_mmu_swap_out(struct hl_ctx *ctx); void hl_mmu_swap_in(struct hl_ctx *ctx); int hl_mmu_if_set_funcs(struct hl_device *hdev); void hl_mmu_v1_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu); int hl_mmu_va_to_pa(struct hl_ctx *ctx, u64 virt_addr, u64 *phys_addr); int hl_mmu_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops); u64 hl_mmu_scramble_addr(struct hl_device *hdev, u64 addr); u64 hl_mmu_descramble_addr(struct hl_device *hdev, u64 addr); bool hl_is_dram_va(struct hl_device *hdev, u64 virt_addr); int hl_fw_load_fw_to_device(struct hl_device *hdev, const char *fw_name, void __iomem *dst, u32 src_offset, u32 size); int hl_fw_send_pci_access_msg(struct hl_device *hdev, u32 opcode); int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg, u16 len, u32 timeout, u64 *result); int hl_fw_unmask_irq(struct hl_device *hdev, u16 event_type); int hl_fw_unmask_irq_arr(struct hl_device *hdev, const u32 *irq_arr, size_t irq_arr_size); int hl_fw_test_cpu_queue(struct hl_device *hdev); void *hl_fw_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle); void hl_fw_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size, void *vaddr); int hl_fw_send_heartbeat(struct hl_device *hdev); int hl_fw_cpucp_info_get(struct hl_device *hdev, u32 cpu_security_boot_status_reg, u32 boot_err0_reg); int hl_fw_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size); int hl_fw_cpucp_pci_counters_get(struct hl_device *hdev, struct hl_info_pci_counters *counters); int hl_fw_cpucp_total_energy_get(struct hl_device *hdev, u64 *total_energy); int hl_fw_cpucp_pll_info_get(struct hl_device *hdev, u16 pll_index, u16 *pll_freq_arr); int hl_fw_init_cpu(struct hl_device *hdev, u32 cpu_boot_status_reg, u32 msg_to_cpu_reg, u32 cpu_msg_status_reg, u32 cpu_security_boot_status_reg, u32 boot_err0_reg, bool skip_bmc, u32 cpu_timeout, u32 boot_fit_timeout); int hl_fw_read_preboot_status(struct hl_device *hdev, u32 cpu_boot_status_reg, u32 cpu_security_boot_status_reg, u32 boot_err0_reg, u32 timeout); int hl_pci_bars_map(struct hl_device *hdev, const char * const name[3], bool is_wc[3]); int hl_pci_iatu_write(struct hl_device *hdev, u32 addr, u32 data); int hl_pci_set_inbound_region(struct hl_device *hdev, u8 region, struct hl_inbound_pci_region *pci_region); int hl_pci_set_outbound_region(struct hl_device *hdev, struct hl_outbound_pci_region *pci_region); int hl_pci_init(struct hl_device *hdev); void hl_pci_fini(struct hl_device *hdev); long hl_get_frequency(struct hl_device *hdev, u32 pll_index, bool curr); void hl_set_frequency(struct hl_device *hdev, u32 pll_index, u64 freq); int hl_get_temperature(struct hl_device *hdev, int sensor_index, u32 attr, long *value); int hl_set_temperature(struct hl_device *hdev, int sensor_index, u32 attr, long value); int hl_get_voltage(struct hl_device *hdev, int sensor_index, u32 attr, long *value); int hl_get_current(struct hl_device *hdev, int sensor_index, u32 attr, long *value); int hl_get_fan_speed(struct hl_device *hdev, int sensor_index, u32 attr, long *value); int hl_get_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr, long *value); void hl_set_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr, long value); u64 hl_get_max_power(struct hl_device *hdev); void hl_set_max_power(struct hl_device *hdev); int hl_set_voltage(struct hl_device *hdev, int sensor_index, u32 attr, long value); int hl_set_current(struct hl_device *hdev, int sensor_index, u32 attr, long value); #ifdef CONFIG_DEBUG_FS void hl_debugfs_init(void); void hl_debugfs_fini(void); void hl_debugfs_add_device(struct hl_device *hdev); void hl_debugfs_remove_device(struct hl_device *hdev); void hl_debugfs_add_file(struct hl_fpriv *hpriv); void hl_debugfs_remove_file(struct hl_fpriv *hpriv); void hl_debugfs_add_cb(struct hl_cb *cb); void hl_debugfs_remove_cb(struct hl_cb *cb); void hl_debugfs_add_cs(struct hl_cs *cs); void hl_debugfs_remove_cs(struct hl_cs *cs); void hl_debugfs_add_job(struct hl_device *hdev, struct hl_cs_job *job); void hl_debugfs_remove_job(struct hl_device *hdev, struct hl_cs_job *job); void hl_debugfs_add_userptr(struct hl_device *hdev, struct hl_userptr *userptr); void hl_debugfs_remove_userptr(struct hl_device *hdev, struct hl_userptr *userptr); void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx); void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx); #else static inline void __init hl_debugfs_init(void) { } static inline void hl_debugfs_fini(void) { } static inline void hl_debugfs_add_device(struct hl_device *hdev) { } static inline void hl_debugfs_remove_device(struct hl_device *hdev) { } static inline void hl_debugfs_add_file(struct hl_fpriv *hpriv) { } static inline void hl_debugfs_remove_file(struct hl_fpriv *hpriv) { } static inline void hl_debugfs_add_cb(struct hl_cb *cb) { } static inline void hl_debugfs_remove_cb(struct hl_cb *cb) { } static inline void hl_debugfs_add_cs(struct hl_cs *cs) { } static inline void hl_debugfs_remove_cs(struct hl_cs *cs) { } static inline void hl_debugfs_add_job(struct hl_device *hdev, struct hl_cs_job *job) { } static inline void hl_debugfs_remove_job(struct hl_device *hdev, struct hl_cs_job *job) { } static inline void hl_debugfs_add_userptr(struct hl_device *hdev, struct hl_userptr *userptr) { } static inline void hl_debugfs_remove_userptr(struct hl_device *hdev, struct hl_userptr *userptr) { } static inline void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx) { } static inline void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx) { } #endif /* IOCTLs */ long hl_ioctl(struct file *filep, unsigned int cmd, unsigned long arg); long hl_ioctl_control(struct file *filep, unsigned int cmd, unsigned long arg); int hl_cb_ioctl(struct hl_fpriv *hpriv, void *data); int hl_cs_ioctl(struct hl_fpriv *hpriv, void *data); int hl_cs_wait_ioctl(struct hl_fpriv *hpriv, void *data); int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data); #endif /* HABANALABSP_H_ */