// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2016-2019 HabanaLabs, Ltd. * All Rights Reserved. */ #include "habanalabs.h" #include "include/hw_ip/mmu/mmu_general.h" #include #include static struct pgt_info *get_pgt_info(struct hl_ctx *ctx, u64 addr) { struct pgt_info *pgt_info = NULL; hash_for_each_possible(ctx->mmu_hash, pgt_info, node, (unsigned long) addr) if (addr == pgt_info->addr) break; return pgt_info; } static void free_hop(struct hl_ctx *ctx, u64 hop_addr) { struct pgt_info *pgt_info = get_pgt_info(ctx, hop_addr); gen_pool_free(pgt_info->ctx->hdev->mmu_pgt_pool, pgt_info->addr, ctx->hdev->asic_prop.mmu_hop_table_size); hash_del(&pgt_info->node); kfree(pgt_info); } static u64 alloc_hop(struct hl_ctx *ctx) { struct hl_device *hdev = ctx->hdev; struct pgt_info *pgt_info; u64 addr; pgt_info = kmalloc(sizeof(*pgt_info), GFP_KERNEL); if (!pgt_info) return ULLONG_MAX; addr = (u64) gen_pool_alloc(hdev->mmu_pgt_pool, hdev->asic_prop.mmu_hop_table_size); if (!addr) { dev_err(hdev->dev, "failed to allocate page\n"); kfree(pgt_info); return ULLONG_MAX; } pgt_info->addr = addr; pgt_info->ctx = ctx; pgt_info->num_of_ptes = 0; hash_add(ctx->mmu_hash, &pgt_info->node, addr); return addr; } static inline void clear_pte(struct hl_device *hdev, u64 pte_addr) { /* clear the last and present bits */ hdev->asic_funcs->write_pte(hdev, pte_addr, 0); } static inline void get_pte(struct hl_ctx *ctx, u64 hop_addr) { get_pgt_info(ctx, hop_addr)->num_of_ptes++; } /* * put_pte - decrement the num of ptes and free the hop if possible * * @ctx: pointer to the context structure * @hop_addr: addr of the hop * * This function returns the number of ptes left on this hop. If the number is * 0, it means the pte was freed. */ static inline int put_pte(struct hl_ctx *ctx, u64 hop_addr) { struct pgt_info *pgt_info = get_pgt_info(ctx, hop_addr); int num_of_ptes_left; pgt_info->num_of_ptes--; /* * Need to save the number of ptes left because free_hop might free * the pgt_info */ num_of_ptes_left = pgt_info->num_of_ptes; if (!num_of_ptes_left) free_hop(ctx, hop_addr); return num_of_ptes_left; } static inline u64 get_hop0_addr(struct hl_ctx *ctx) { return ctx->hdev->asic_prop.mmu_pgt_addr + (ctx->asid * ctx->hdev->asic_prop.mmu_hop_table_size); } static inline u64 get_hopN_pte_addr(struct hl_ctx *ctx, u64 hop_addr, u64 virt_addr, u64 mask, u64 shift) { return hop_addr + ctx->hdev->asic_prop.mmu_pte_size * ((virt_addr & mask) >> shift); } static inline u64 get_hop0_pte_addr(struct hl_ctx *ctx, u64 hop_addr, u64 vaddr) { return get_hopN_pte_addr(ctx, hop_addr, vaddr, HOP0_MASK, HOP0_SHIFT); } static inline u64 get_hop1_pte_addr(struct hl_ctx *ctx, u64 hop_addr, u64 vaddr) { return get_hopN_pte_addr(ctx, hop_addr, vaddr, HOP1_MASK, HOP1_SHIFT); } static inline u64 get_hop2_pte_addr(struct hl_ctx *ctx, u64 hop_addr, u64 vaddr) { return get_hopN_pte_addr(ctx, hop_addr, vaddr, HOP2_MASK, HOP2_SHIFT); } static inline u64 get_hop3_pte_addr(struct hl_ctx *ctx, u64 hop_addr, u64 vaddr) { return get_hopN_pte_addr(ctx, hop_addr, vaddr, HOP3_MASK, HOP3_SHIFT); } static inline u64 get_hop4_pte_addr(struct hl_ctx *ctx, u64 hop_addr, u64 vaddr) { return get_hopN_pte_addr(ctx, hop_addr, vaddr, HOP4_MASK, HOP4_SHIFT); } static inline u64 get_next_hop_addr(u64 curr_pte) { if (curr_pte & PAGE_PRESENT_MASK) return curr_pte & PHYS_ADDR_MASK; else return ULLONG_MAX; } static inline u64 get_alloc_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte, bool *is_new_hop) { u64 hop_addr = get_next_hop_addr(curr_pte); if (hop_addr == ULLONG_MAX) { hop_addr = alloc_hop(ctx); *is_new_hop = (hop_addr != ULLONG_MAX); } return hop_addr; } /* * hl_mmu_init - init the mmu module * * @hdev: pointer to the habanalabs device structure * * This function does the following: * - Allocate max_asid zeroed hop0 pgts so no mapping is available * - Enable mmu in hw * - Invalidate the mmu cache * - Create a pool of pages for pgts * - Returns 0 on success * * This function depends on DMA QMAN to be working! */ int hl_mmu_init(struct hl_device *hdev) { struct asic_fixed_properties *prop = &hdev->asic_prop; int rc; if (!hdev->mmu_enable) return 0; /* MMU HW init was already done in device hw_init() */ mutex_init(&hdev->mmu_cache_lock); hdev->mmu_pgt_pool = gen_pool_create(__ffs(prop->mmu_hop_table_size), -1); if (!hdev->mmu_pgt_pool) { dev_err(hdev->dev, "Failed to create page gen pool\n"); rc = -ENOMEM; goto err_pool_create; } rc = gen_pool_add(hdev->mmu_pgt_pool, prop->mmu_pgt_addr + prop->mmu_hop0_tables_total_size, prop->mmu_pgt_size - prop->mmu_hop0_tables_total_size, -1); if (rc) { dev_err(hdev->dev, "Failed to add memory to page gen pool\n"); goto err_pool_add; } return 0; err_pool_add: gen_pool_destroy(hdev->mmu_pgt_pool); err_pool_create: mutex_destroy(&hdev->mmu_cache_lock); return rc; } /* * hl_mmu_fini - release the mmu module. * * @hdev: pointer to the habanalabs device structure * * This function does the following: * - Disable mmu in hw * - free the pgts pool * * All ctxs should be freed before calling this func */ void hl_mmu_fini(struct hl_device *hdev) { if (!hdev->mmu_enable) return; gen_pool_destroy(hdev->mmu_pgt_pool); mutex_destroy(&hdev->mmu_cache_lock); /* MMU HW fini will be done in device hw_fini() */ } /** * hl_mmu_ctx_init() - initialize a context for using the MMU module. * @ctx: pointer to the context structure to initialize. * * Initialize a mutex to protect the concurrent mapping flow, a hash to hold all * page tables hops related to this context and an optional DRAM default page * mapping. * Return: 0 on success, non-zero otherwise. */ int hl_mmu_ctx_init(struct hl_ctx *ctx) { struct hl_device *hdev = ctx->hdev; struct asic_fixed_properties *prop = &hdev->asic_prop; u64 num_of_hop3, total_hops, hop1_addr, hop2_addr, hop2_pte_addr, hop3_pte_addr, pte_val; int rc, i, j, hop3_allocated = 0; if (!hdev->mmu_enable) return 0; mutex_init(&ctx->mmu_lock); hash_init(ctx->mmu_hash); if (!hdev->dram_supports_virtual_memory || !hdev->dram_default_page_mapping) return 0; num_of_hop3 = prop->dram_size_for_default_page_mapping; do_div(num_of_hop3, prop->dram_page_size); do_div(num_of_hop3, PTE_ENTRIES_IN_HOP); /* add hop1 and hop2 */ total_hops = num_of_hop3 + 2; ctx->dram_default_hops = kzalloc(HL_PTE_SIZE * total_hops, GFP_KERNEL); if (!ctx->dram_default_hops) { rc = -ENOMEM; goto alloc_err; } hop1_addr = alloc_hop(ctx); if (hop1_addr == ULLONG_MAX) { dev_err(hdev->dev, "failed to alloc hop 1\n"); rc = -ENOMEM; goto hop1_err; } ctx->dram_default_hops[total_hops - 1] = hop1_addr; hop2_addr = alloc_hop(ctx); if (hop2_addr == ULLONG_MAX) { dev_err(hdev->dev, "failed to alloc hop 2\n"); rc = -ENOMEM; goto hop2_err; } ctx->dram_default_hops[total_hops - 2] = hop2_addr; for (i = 0 ; i < num_of_hop3 ; i++) { ctx->dram_default_hops[i] = alloc_hop(ctx); if (ctx->dram_default_hops[i] == ULLONG_MAX) { dev_err(hdev->dev, "failed to alloc hop 3, i: %d\n", i); rc = -ENOMEM; goto hop3_err; } hop3_allocated++; } /* need only pte 0 in hops 0 and 1 */ pte_val = (hop1_addr & PTE_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK; hdev->asic_funcs->write_pte(hdev, get_hop0_addr(ctx), pte_val); pte_val = (hop2_addr & PTE_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK; hdev->asic_funcs->write_pte(hdev, hop1_addr, pte_val); get_pte(ctx, hop1_addr); hop2_pte_addr = hop2_addr; for (i = 0 ; i < num_of_hop3 ; i++) { pte_val = (ctx->dram_default_hops[i] & PTE_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK; hdev->asic_funcs->write_pte(hdev, hop2_pte_addr, pte_val); get_pte(ctx, hop2_addr); hop2_pte_addr += HL_PTE_SIZE; } pte_val = (prop->mmu_dram_default_page_addr & PTE_PHYS_ADDR_MASK) | LAST_MASK | PAGE_PRESENT_MASK; for (i = 0 ; i < num_of_hop3 ; i++) { hop3_pte_addr = ctx->dram_default_hops[i]; for (j = 0 ; j < PTE_ENTRIES_IN_HOP ; j++) { hdev->asic_funcs->write_pte(hdev, hop3_pte_addr, pte_val); get_pte(ctx, ctx->dram_default_hops[i]); hop3_pte_addr += HL_PTE_SIZE; } } /* flush all writes to reach PCI */ mb(); hdev->asic_funcs->read_pte(hdev, hop2_addr); return 0; hop3_err: for (i = 0 ; i < hop3_allocated ; i++) free_hop(ctx, ctx->dram_default_hops[i]); free_hop(ctx, hop2_addr); hop2_err: free_hop(ctx, hop1_addr); hop1_err: kfree(ctx->dram_default_hops); alloc_err: mutex_destroy(&ctx->mmu_lock); return rc; } /* * hl_mmu_ctx_fini - disable a ctx from using the mmu module * * @ctx: pointer to the context structure * * This function does the following: * - Free any pgts which were not freed yet * - Free the mutex * - Free DRAM default page mapping hops */ void hl_mmu_ctx_fini(struct hl_ctx *ctx) { struct hl_device *hdev = ctx->hdev; struct asic_fixed_properties *prop = &hdev->asic_prop; struct pgt_info *pgt_info; struct hlist_node *tmp; u64 num_of_hop3, total_hops, hop1_addr, hop2_addr, hop2_pte_addr, hop3_pte_addr; int i, j; if (!ctx->hdev->mmu_enable) return; if (hdev->dram_supports_virtual_memory && hdev->dram_default_page_mapping) { num_of_hop3 = prop->dram_size_for_default_page_mapping; do_div(num_of_hop3, prop->dram_page_size); do_div(num_of_hop3, PTE_ENTRIES_IN_HOP); /* add hop1 and hop2 */ total_hops = num_of_hop3 + 2; hop1_addr = ctx->dram_default_hops[total_hops - 1]; hop2_addr = ctx->dram_default_hops[total_hops - 2]; for (i = 0 ; i < num_of_hop3 ; i++) { hop3_pte_addr = ctx->dram_default_hops[i]; for (j = 0 ; j < PTE_ENTRIES_IN_HOP ; j++) { clear_pte(hdev, hop3_pte_addr); put_pte(ctx, ctx->dram_default_hops[i]); hop3_pte_addr += HL_PTE_SIZE; } } hop2_pte_addr = hop2_addr; for (i = 0 ; i < num_of_hop3 ; i++) { clear_pte(hdev, hop2_pte_addr); put_pte(ctx, hop2_addr); hop2_pte_addr += HL_PTE_SIZE; } clear_pte(hdev, hop1_addr); put_pte(ctx, hop1_addr); clear_pte(hdev, get_hop0_addr(ctx)); kfree(ctx->dram_default_hops); /* flush all writes to reach PCI */ mb(); hdev->asic_funcs->read_pte(hdev, hop2_addr); } if (!hash_empty(ctx->mmu_hash)) dev_err(hdev->dev, "ctx is freed while it has pgts in use\n"); hash_for_each_safe(ctx->mmu_hash, i, tmp, pgt_info, node) { dev_err(hdev->dev, "pgt_info of addr 0x%llx of asid %d was not destroyed, num_ptes: %d\n", pgt_info->addr, ctx->asid, pgt_info->num_of_ptes); free_hop(ctx, pgt_info->addr); } mutex_destroy(&ctx->mmu_lock); } static int _hl_mmu_unmap(struct hl_ctx *ctx, u64 virt_addr) { struct hl_device *hdev = ctx->hdev; struct asic_fixed_properties *prop = &hdev->asic_prop; u64 hop0_addr = 0, hop0_pte_addr = 0, hop1_addr = 0, hop1_pte_addr = 0, hop2_addr = 0, hop2_pte_addr = 0, hop3_addr = 0, hop3_pte_addr = 0, hop4_addr = 0, hop4_pte_addr = 0, curr_pte; int clear_hop3 = 1; bool is_dram_addr, is_huge, is_dram_default_page_mapping; is_dram_addr = hl_mem_area_inside_range(virt_addr, PAGE_SIZE_2MB, prop->va_space_dram_start_address, prop->va_space_dram_end_address); hop0_addr = get_hop0_addr(ctx); hop0_pte_addr = get_hop0_pte_addr(ctx, hop0_addr, virt_addr); curr_pte = hdev->asic_funcs->read_pte(hdev, hop0_pte_addr); hop1_addr = get_next_hop_addr(curr_pte); if (hop1_addr == ULLONG_MAX) goto not_mapped; hop1_pte_addr = get_hop1_pte_addr(ctx, hop1_addr, virt_addr); curr_pte = hdev->asic_funcs->read_pte(hdev, hop1_pte_addr); hop2_addr = get_next_hop_addr(curr_pte); if (hop2_addr == ULLONG_MAX) goto not_mapped; hop2_pte_addr = get_hop2_pte_addr(ctx, hop2_addr, virt_addr); curr_pte = hdev->asic_funcs->read_pte(hdev, hop2_pte_addr); hop3_addr = get_next_hop_addr(curr_pte); if (hop3_addr == ULLONG_MAX) goto not_mapped; hop3_pte_addr = get_hop3_pte_addr(ctx, hop3_addr, virt_addr); curr_pte = hdev->asic_funcs->read_pte(hdev, hop3_pte_addr); is_huge = curr_pte & LAST_MASK; if (is_dram_addr && !is_huge) { dev_err(hdev->dev, "DRAM unmapping should use huge pages only\n"); return -EFAULT; } is_dram_default_page_mapping = hdev->dram_default_page_mapping && is_dram_addr; if (!is_huge) { hop4_addr = get_next_hop_addr(curr_pte); if (hop4_addr == ULLONG_MAX) goto not_mapped; hop4_pte_addr = get_hop4_pte_addr(ctx, hop4_addr, virt_addr); curr_pte = hdev->asic_funcs->read_pte(hdev, hop4_pte_addr); clear_hop3 = 0; } if (is_dram_default_page_mapping) { u64 zero_pte = (prop->mmu_dram_default_page_addr & PTE_PHYS_ADDR_MASK) | LAST_MASK | PAGE_PRESENT_MASK; if (curr_pte == zero_pte) { dev_err(hdev->dev, "DRAM: hop3 PTE points to zero page, can't unmap, va: 0x%llx\n", virt_addr); goto not_mapped; } if (!(curr_pte & PAGE_PRESENT_MASK)) { dev_err(hdev->dev, "DRAM: hop3 PTE is cleared! can't unmap, va: 0x%llx\n", virt_addr); goto not_mapped; } hdev->asic_funcs->write_pte(hdev, hop3_pte_addr, zero_pte); put_pte(ctx, hop3_addr); } else { if (!(curr_pte & PAGE_PRESENT_MASK)) goto not_mapped; clear_pte(hdev, hop4_addr ? hop4_pte_addr : hop3_pte_addr); if (hop4_addr && !put_pte(ctx, hop4_addr)) clear_hop3 = 1; if (!clear_hop3) goto flush; clear_pte(hdev, hop3_pte_addr); if (put_pte(ctx, hop3_addr)) goto flush; clear_pte(hdev, hop2_pte_addr); if (put_pte(ctx, hop2_addr)) goto flush; clear_pte(hdev, hop1_pte_addr); if (put_pte(ctx, hop1_addr)) goto flush; clear_pte(hdev, hop0_pte_addr); } flush: /* flush all writes from all cores to reach PCI */ mb(); hdev->asic_funcs->read_pte(hdev, hop4_addr ? hop4_pte_addr : hop3_pte_addr); return 0; not_mapped: dev_err(hdev->dev, "virt addr 0x%llx is not mapped to phys addr\n", virt_addr); return -EINVAL; } /* * hl_mmu_unmap - unmaps a virtual addr * * @ctx: pointer to the context structure * @virt_addr: virt addr to map from * @page_size: size of the page to unmap * * This function does the following: * - Check that the virt addr is mapped * - Unmap the virt addr and frees pgts if possible * - Returns 0 on success, -EINVAL if the given addr is not mapped * * Because this function changes the page tables in the device and because it * changes the MMU hash, it must be protected by a lock. * However, because it maps only a single page, the lock should be implemented * in a higher level in order to protect the entire mapping of the memory area */ int hl_mmu_unmap(struct hl_ctx *ctx, u64 virt_addr, u32 page_size) { struct hl_device *hdev = ctx->hdev; u64 real_virt_addr; u32 real_page_size, npages; int i, rc; if (!hdev->mmu_enable) return 0; /* * The H/W handles mapping of 4KB/2MB page. Hence if the host page size * is bigger, we break it to sub-pages and unmap them separately. */ if ((page_size % PAGE_SIZE_2MB) == 0) { real_page_size = PAGE_SIZE_2MB; } else if ((page_size % PAGE_SIZE_4KB) == 0) { real_page_size = PAGE_SIZE_4KB; } else { dev_err(hdev->dev, "page size of %u is not 4KB nor 2MB aligned, can't unmap\n", page_size); return -EFAULT; } npages = page_size / real_page_size; real_virt_addr = virt_addr; for (i = 0 ; i < npages ; i++) { rc = _hl_mmu_unmap(ctx, real_virt_addr); if (rc) return rc; real_virt_addr += real_page_size; } return 0; } static int _hl_mmu_map(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size) { struct hl_device *hdev = ctx->hdev; struct asic_fixed_properties *prop = &hdev->asic_prop; u64 hop0_addr = 0, hop0_pte_addr = 0, hop1_addr = 0, hop1_pte_addr = 0, hop2_addr = 0, hop2_pte_addr = 0, hop3_addr = 0, hop3_pte_addr = 0, hop4_addr = 0, hop4_pte_addr = 0, curr_pte = 0; bool hop1_new = false, hop2_new = false, hop3_new = false, hop4_new = false, is_huge, is_dram_addr, is_dram_default_page_mapping; int rc = -ENOMEM; /* * This mapping function can map a 4KB/2MB page. For 2MB page there are * only 3 hops rather than 4. Currently the DRAM allocation uses 2MB * pages only but user memory could have been allocated with one of the * two page sizes. Since this is a common code for all the three cases, * we need this hugs page check. */ is_huge = page_size == PAGE_SIZE_2MB; is_dram_addr = hl_mem_area_inside_range(virt_addr, page_size, prop->va_space_dram_start_address, prop->va_space_dram_end_address); if (is_dram_addr && !is_huge) { dev_err(hdev->dev, "DRAM mapping should use huge pages only\n"); return -EFAULT; } is_dram_default_page_mapping = hdev->dram_default_page_mapping && is_dram_addr; hop0_addr = get_hop0_addr(ctx); hop0_pte_addr = get_hop0_pte_addr(ctx, hop0_addr, virt_addr); curr_pte = hdev->asic_funcs->read_pte(hdev, hop0_pte_addr); hop1_addr = get_alloc_next_hop_addr(ctx, curr_pte, &hop1_new); if (hop1_addr == ULLONG_MAX) goto err; hop1_pte_addr = get_hop1_pte_addr(ctx, hop1_addr, virt_addr); curr_pte = hdev->asic_funcs->read_pte(hdev, hop1_pte_addr); hop2_addr = get_alloc_next_hop_addr(ctx, curr_pte, &hop2_new); if (hop2_addr == ULLONG_MAX) goto err; hop2_pte_addr = get_hop2_pte_addr(ctx, hop2_addr, virt_addr); curr_pte = hdev->asic_funcs->read_pte(hdev, hop2_pte_addr); hop3_addr = get_alloc_next_hop_addr(ctx, curr_pte, &hop3_new); if (hop3_addr == ULLONG_MAX) goto err; hop3_pte_addr = get_hop3_pte_addr(ctx, hop3_addr, virt_addr); curr_pte = hdev->asic_funcs->read_pte(hdev, hop3_pte_addr); if (!is_huge) { hop4_addr = get_alloc_next_hop_addr(ctx, curr_pte, &hop4_new); if (hop4_addr == ULLONG_MAX) goto err; hop4_pte_addr = get_hop4_pte_addr(ctx, hop4_addr, virt_addr); curr_pte = hdev->asic_funcs->read_pte(hdev, hop4_pte_addr); } if (is_dram_default_page_mapping) { u64 zero_pte = (prop->mmu_dram_default_page_addr & PTE_PHYS_ADDR_MASK) | LAST_MASK | PAGE_PRESENT_MASK; if (curr_pte != zero_pte) { dev_err(hdev->dev, "DRAM: mapping already exists for virt_addr 0x%llx\n", virt_addr); rc = -EINVAL; goto err; } if (hop1_new || hop2_new || hop3_new || hop4_new) { dev_err(hdev->dev, "DRAM mapping should not allocate more hops\n"); rc = -EFAULT; goto err; } } else if (curr_pte & PAGE_PRESENT_MASK) { dev_err(hdev->dev, "mapping already exists for virt_addr 0x%llx\n", virt_addr); dev_dbg(hdev->dev, "hop0 pte: 0x%llx (0x%llx)\n", hdev->asic_funcs->read_pte(hdev, hop0_pte_addr), hop0_pte_addr); dev_dbg(hdev->dev, "hop1 pte: 0x%llx (0x%llx)\n", hdev->asic_funcs->read_pte(hdev, hop1_pte_addr), hop1_pte_addr); dev_dbg(hdev->dev, "hop2 pte: 0x%llx (0x%llx)\n", hdev->asic_funcs->read_pte(hdev, hop2_pte_addr), hop2_pte_addr); dev_dbg(hdev->dev, "hop3 pte: 0x%llx (0x%llx)\n", hdev->asic_funcs->read_pte(hdev, hop3_pte_addr), hop3_pte_addr); if (!is_huge) dev_dbg(hdev->dev, "hop4 pte: 0x%llx (0x%llx)\n", hdev->asic_funcs->read_pte(hdev, hop4_pte_addr), hop4_pte_addr); rc = -EINVAL; goto err; } curr_pte = (phys_addr & PTE_PHYS_ADDR_MASK) | LAST_MASK | PAGE_PRESENT_MASK; hdev->asic_funcs->write_pte(hdev, is_huge ? hop3_pte_addr : hop4_pte_addr, curr_pte); if (hop1_new) { curr_pte = (hop1_addr & PTE_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK; ctx->hdev->asic_funcs->write_pte(ctx->hdev, hop0_pte_addr, curr_pte); } if (hop2_new) { curr_pte = (hop2_addr & PTE_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK; ctx->hdev->asic_funcs->write_pte(ctx->hdev, hop1_pte_addr, curr_pte); get_pte(ctx, hop1_addr); } if (hop3_new) { curr_pte = (hop3_addr & PTE_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK; ctx->hdev->asic_funcs->write_pte(ctx->hdev, hop2_pte_addr, curr_pte); get_pte(ctx, hop2_addr); } if (!is_huge) { if (hop4_new) { curr_pte = (hop4_addr & PTE_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK; ctx->hdev->asic_funcs->write_pte(ctx->hdev, hop3_pte_addr, curr_pte); get_pte(ctx, hop3_addr); } get_pte(ctx, hop4_addr); } else { get_pte(ctx, hop3_addr); } /* flush all writes from all cores to reach PCI */ mb(); hdev->asic_funcs->read_pte(hdev, is_huge ? hop3_pte_addr : hop4_pte_addr); return 0; err: if (hop4_new) free_hop(ctx, hop4_addr); if (hop3_new) free_hop(ctx, hop3_addr); if (hop2_new) free_hop(ctx, hop2_addr); if (hop1_new) free_hop(ctx, hop1_addr); return rc; } /* * hl_mmu_map - maps a virtual addr to physical addr * * @ctx: pointer to the context structure * @virt_addr: virt addr to map from * @phys_addr: phys addr to map to * @page_size: physical page size * * This function does the following: * - Check that the virt addr is not mapped * - Allocate pgts as necessary in order to map the virt addr to the phys * - Returns 0 on success, -EINVAL if addr is already mapped, or -ENOMEM. * * Because this function changes the page tables in the device and because it * changes the MMU hash, it must be protected by a lock. * However, because it maps only a single page, the lock should be implemented * in a higher level in order to protect the entire mapping of the memory area */ int hl_mmu_map(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size) { struct hl_device *hdev = ctx->hdev; u64 real_virt_addr, real_phys_addr; u32 real_page_size, npages; int i, rc, mapped_cnt = 0; if (!hdev->mmu_enable) return 0; /* * The H/W handles mapping of 4KB/2MB page. Hence if the host page size * is bigger, we break it to sub-pages and map them separately. */ if ((page_size % PAGE_SIZE_2MB) == 0) { real_page_size = PAGE_SIZE_2MB; } else if ((page_size % PAGE_SIZE_4KB) == 0) { real_page_size = PAGE_SIZE_4KB; } else { dev_err(hdev->dev, "page size of %u is not 4KB nor 2MB aligned, can't map\n", page_size); return -EFAULT; } npages = page_size / real_page_size; real_virt_addr = virt_addr; real_phys_addr = phys_addr; for (i = 0 ; i < npages ; i++) { rc = _hl_mmu_map(ctx, real_virt_addr, real_phys_addr, real_page_size); if (rc) goto err; real_virt_addr += real_page_size; real_phys_addr += real_page_size; mapped_cnt++; } return 0; err: real_virt_addr = virt_addr; for (i = 0 ; i < mapped_cnt ; i++) { if (_hl_mmu_unmap(ctx, real_virt_addr)) dev_warn_ratelimited(hdev->dev, "failed to unmap va: 0x%llx\n", real_virt_addr); real_virt_addr += real_page_size; } return rc; } /* * hl_mmu_swap_out - marks all mapping of the given ctx as swapped out * * @ctx: pointer to the context structure * */ void hl_mmu_swap_out(struct hl_ctx *ctx) { } /* * hl_mmu_swap_in - marks all mapping of the given ctx as swapped in * * @ctx: pointer to the context structure * */ void hl_mmu_swap_in(struct hl_ctx *ctx) { }