// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2004 Embedded Edge, LLC */ #include #include #include #include #include #include #include #include #include #include #include struct au1550nd_ctx { struct nand_controller controller; struct nand_chip chip; int cs; void __iomem *base; }; static struct au1550nd_ctx *chip_to_au_ctx(struct nand_chip *this) { return container_of(this, struct au1550nd_ctx, chip); } /** * au_write_buf - write buffer to chip * @this: NAND chip object * @buf: data buffer * @len: number of bytes to write * * write function for 8bit buswidth */ static void au_write_buf(struct nand_chip *this, const void *buf, unsigned int len) { struct au1550nd_ctx *ctx = chip_to_au_ctx(this); const u8 *p = buf; int i; for (i = 0; i < len; i++) { writeb(p[i], ctx->base + MEM_STNAND_DATA); wmb(); /* drain writebuffer */ } } /** * au_read_buf - read chip data into buffer * @this: NAND chip object * @buf: buffer to store date * @len: number of bytes to read * * read function for 8bit buswidth */ static void au_read_buf(struct nand_chip *this, void *buf, unsigned int len) { struct au1550nd_ctx *ctx = chip_to_au_ctx(this); u8 *p = buf; int i; for (i = 0; i < len; i++) { p[i] = readb(ctx->base + MEM_STNAND_DATA); wmb(); /* drain writebuffer */ } } /** * au_write_buf16 - write buffer to chip * @this: NAND chip object * @buf: data buffer * @len: number of bytes to write * * write function for 16bit buswidth */ static void au_write_buf16(struct nand_chip *this, const void *buf, unsigned int len) { struct au1550nd_ctx *ctx = chip_to_au_ctx(this); const u16 *p = buf; unsigned int i; len >>= 1; for (i = 0; i < len; i++) { writew(p[i], ctx->base + MEM_STNAND_DATA); wmb(); /* drain writebuffer */ } } /** * au_read_buf16 - read chip data into buffer * @this: NAND chip object * @buf: buffer to store date * @len: number of bytes to read * * read function for 16bit buswidth */ static void au_read_buf16(struct nand_chip *this, void *buf, unsigned int len) { struct au1550nd_ctx *ctx = chip_to_au_ctx(this); unsigned int i; u16 *p = buf; len >>= 1; for (i = 0; i < len; i++) { p[i] = readw(ctx->base + MEM_STNAND_DATA); wmb(); /* drain writebuffer */ } } static int find_nand_cs(unsigned long nand_base) { void __iomem *base = (void __iomem *)KSEG1ADDR(AU1000_STATIC_MEM_PHYS_ADDR); unsigned long addr, staddr, start, mask, end; int i; for (i = 0; i < 4; i++) { addr = 0x1000 + (i * 0x10); /* CSx */ staddr = __raw_readl(base + addr + 0x08); /* STADDRx */ /* figure out the decoded range of this CS */ start = (staddr << 4) & 0xfffc0000; mask = (staddr << 18) & 0xfffc0000; end = (start | (start - 1)) & ~(start ^ mask); if ((nand_base >= start) && (nand_base < end)) return i; } return -ENODEV; } static int au1550nd_waitrdy(struct nand_chip *this, unsigned int timeout_ms) { unsigned long timeout_jiffies = jiffies; timeout_jiffies += msecs_to_jiffies(timeout_ms) + 1; do { if (alchemy_rdsmem(AU1000_MEM_STSTAT) & 0x1) return 0; usleep_range(10, 100); } while (time_before(jiffies, timeout_jiffies)); return -ETIMEDOUT; } static int au1550nd_exec_instr(struct nand_chip *this, const struct nand_op_instr *instr) { struct au1550nd_ctx *ctx = chip_to_au_ctx(this); unsigned int i; int ret = 0; switch (instr->type) { case NAND_OP_CMD_INSTR: writeb(instr->ctx.cmd.opcode, ctx->base + MEM_STNAND_CMD); /* Drain the writebuffer */ wmb(); break; case NAND_OP_ADDR_INSTR: for (i = 0; i < instr->ctx.addr.naddrs; i++) { writeb(instr->ctx.addr.addrs[i], ctx->base + MEM_STNAND_ADDR); /* Drain the writebuffer */ wmb(); } break; case NAND_OP_DATA_IN_INSTR: if ((this->options & NAND_BUSWIDTH_16) && !instr->ctx.data.force_8bit) au_read_buf16(this, instr->ctx.data.buf.in, instr->ctx.data.len); else au_read_buf(this, instr->ctx.data.buf.in, instr->ctx.data.len); break; case NAND_OP_DATA_OUT_INSTR: if ((this->options & NAND_BUSWIDTH_16) && !instr->ctx.data.force_8bit) au_write_buf16(this, instr->ctx.data.buf.out, instr->ctx.data.len); else au_write_buf(this, instr->ctx.data.buf.out, instr->ctx.data.len); break; case NAND_OP_WAITRDY_INSTR: ret = au1550nd_waitrdy(this, instr->ctx.waitrdy.timeout_ms); break; default: return -EINVAL; } if (instr->delay_ns) ndelay(instr->delay_ns); return ret; } static int au1550nd_exec_op(struct nand_chip *this, const struct nand_operation *op, bool check_only) { struct au1550nd_ctx *ctx = chip_to_au_ctx(this); unsigned int i; int ret; if (check_only) return 0; /* assert (force assert) chip enable */ alchemy_wrsmem((1 << (4 + ctx->cs)), AU1000_MEM_STNDCTL); /* Drain the writebuffer */ wmb(); for (i = 0; i < op->ninstrs; i++) { ret = au1550nd_exec_instr(this, &op->instrs[i]); if (ret) break; } /* deassert chip enable */ alchemy_wrsmem(0, AU1000_MEM_STNDCTL); /* Drain the writebuffer */ wmb(); return ret; } static int au1550nd_attach_chip(struct nand_chip *chip) { if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT && chip->ecc.algo == NAND_ECC_ALGO_UNKNOWN) chip->ecc.algo = NAND_ECC_ALGO_HAMMING; return 0; } static const struct nand_controller_ops au1550nd_ops = { .exec_op = au1550nd_exec_op, .attach_chip = au1550nd_attach_chip, }; static int au1550nd_probe(struct platform_device *pdev) { struct au1550nd_platdata *pd; struct au1550nd_ctx *ctx; struct nand_chip *this; struct mtd_info *mtd; struct resource *r; int ret, cs; pd = dev_get_platdata(&pdev->dev); if (!pd) { dev_err(&pdev->dev, "missing platform data\n"); return -ENODEV; } ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); if (!ctx) return -ENOMEM; r = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!r) { dev_err(&pdev->dev, "no NAND memory resource\n"); ret = -ENODEV; goto out1; } if (request_mem_region(r->start, resource_size(r), "au1550-nand")) { dev_err(&pdev->dev, "cannot claim NAND memory area\n"); ret = -ENOMEM; goto out1; } ctx->base = ioremap(r->start, 0x1000); if (!ctx->base) { dev_err(&pdev->dev, "cannot remap NAND memory area\n"); ret = -ENODEV; goto out2; } this = &ctx->chip; mtd = nand_to_mtd(this); mtd->dev.parent = &pdev->dev; /* figure out which CS# r->start belongs to */ cs = find_nand_cs(r->start); if (cs < 0) { dev_err(&pdev->dev, "cannot detect NAND chipselect\n"); ret = -ENODEV; goto out3; } ctx->cs = cs; nand_controller_init(&ctx->controller); ctx->controller.ops = &au1550nd_ops; this->controller = &ctx->controller; if (pd->devwidth) this->options |= NAND_BUSWIDTH_16; /* * This driver assumes that the default ECC engine should be TYPE_SOFT. * Set ->engine_type before registering the NAND devices in order to * provide a driver specific default value. */ this->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT; ret = nand_scan(this, 1); if (ret) { dev_err(&pdev->dev, "NAND scan failed with %d\n", ret); goto out3; } mtd_device_register(mtd, pd->parts, pd->num_parts); platform_set_drvdata(pdev, ctx); return 0; out3: iounmap(ctx->base); out2: release_mem_region(r->start, resource_size(r)); out1: kfree(ctx); return ret; } static int au1550nd_remove(struct platform_device *pdev) { struct au1550nd_ctx *ctx = platform_get_drvdata(pdev); struct resource *r = platform_get_resource(pdev, IORESOURCE_MEM, 0); struct nand_chip *chip = &ctx->chip; int ret; ret = mtd_device_unregister(nand_to_mtd(chip)); WARN_ON(ret); nand_cleanup(chip); iounmap(ctx->base); release_mem_region(r->start, 0x1000); kfree(ctx); return 0; } static struct platform_driver au1550nd_driver = { .driver = { .name = "au1550-nand", }, .probe = au1550nd_probe, .remove = au1550nd_remove, }; module_platform_driver(au1550nd_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Embedded Edge, LLC"); MODULE_DESCRIPTION("Board-specific glue layer for NAND flash on Pb1550 board");