// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2005, Intec Automation Inc. * Copyright (C) 2014, Freescale Semiconductor, Inc. */ #include #include "core.h" #define SPINOR_OP_RD_ANY_REG 0x65 /* Read any register */ #define SPINOR_OP_WR_ANY_REG 0x71 /* Write any register */ #define SPINOR_REG_CYPRESS_CFR2V 0x00800003 #define SPINOR_REG_CYPRESS_CFR2V_MEMLAT_11_24 0xb #define SPINOR_REG_CYPRESS_CFR3V 0x00800004 #define SPINOR_REG_CYPRESS_CFR3V_PGSZ BIT(4) /* Page size. */ #define SPINOR_REG_CYPRESS_CFR5V 0x00800006 #define SPINOR_REG_CYPRESS_CFR5V_OCT_DTR_EN 0x3 #define SPINOR_REG_CYPRESS_CFR5V_OCT_DTR_DS 0 #define SPINOR_OP_CYPRESS_RD_FAST 0xee /** * spi_nor_cypress_octal_dtr_enable() - Enable octal DTR on Cypress flashes. * @nor: pointer to a 'struct spi_nor' * @enable: whether to enable or disable Octal DTR * * This also sets the memory access latency cycles to 24 to allow the flash to * run at up to 200MHz. * * Return: 0 on success, -errno otherwise. */ static int spi_nor_cypress_octal_dtr_enable(struct spi_nor *nor, bool enable) { struct spi_mem_op op; u8 *buf = nor->bouncebuf; int ret; if (enable) { /* Use 24 dummy cycles for memory array reads. */ ret = spi_nor_write_enable(nor); if (ret) return ret; *buf = SPINOR_REG_CYPRESS_CFR2V_MEMLAT_11_24; op = (struct spi_mem_op) SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WR_ANY_REG, 1), SPI_MEM_OP_ADDR(3, SPINOR_REG_CYPRESS_CFR2V, 1), SPI_MEM_OP_NO_DUMMY, SPI_MEM_OP_DATA_OUT(1, buf, 1)); ret = spi_mem_exec_op(nor->spimem, &op); if (ret) return ret; ret = spi_nor_wait_till_ready(nor); if (ret) return ret; nor->read_dummy = 24; } /* Set/unset the octal and DTR enable bits. */ ret = spi_nor_write_enable(nor); if (ret) return ret; if (enable) { buf[0] = SPINOR_REG_CYPRESS_CFR5V_OCT_DTR_EN; } else { /* * The register is 1-byte wide, but 1-byte transactions are not * allowed in 8D-8D-8D mode. Since there is no register at the * next location, just initialize the value to 0 and let the * transaction go on. */ buf[0] = SPINOR_REG_CYPRESS_CFR5V_OCT_DTR_DS; buf[1] = 0; } op = (struct spi_mem_op) SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WR_ANY_REG, 1), SPI_MEM_OP_ADDR(enable ? 3 : 4, SPINOR_REG_CYPRESS_CFR5V, 1), SPI_MEM_OP_NO_DUMMY, SPI_MEM_OP_DATA_OUT(enable ? 1 : 2, buf, 1)); if (!enable) spi_nor_spimem_setup_op(nor, &op, SNOR_PROTO_8_8_8_DTR); ret = spi_mem_exec_op(nor->spimem, &op); if (ret) return ret; /* Read flash ID to make sure the switch was successful. */ op = (struct spi_mem_op) SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDID, 1), SPI_MEM_OP_ADDR(enable ? 4 : 0, 0, 1), SPI_MEM_OP_DUMMY(enable ? 3 : 0, 1), SPI_MEM_OP_DATA_IN(round_up(nor->info->id_len, 2), buf, 1)); if (enable) spi_nor_spimem_setup_op(nor, &op, SNOR_PROTO_8_8_8_DTR); ret = spi_mem_exec_op(nor->spimem, &op); if (ret) return ret; if (memcmp(buf, nor->info->id, nor->info->id_len)) return -EINVAL; return 0; } static void s28hs512t_default_init(struct spi_nor *nor) { nor->params->octal_dtr_enable = spi_nor_cypress_octal_dtr_enable; nor->params->writesize = 16; } static void s28hs512t_post_sfdp_fixup(struct spi_nor *nor) { /* * On older versions of the flash the xSPI Profile 1.0 table has the * 8D-8D-8D Fast Read opcode as 0x00. But it actually should be 0xEE. */ if (nor->params->reads[SNOR_CMD_READ_8_8_8_DTR].opcode == 0) nor->params->reads[SNOR_CMD_READ_8_8_8_DTR].opcode = SPINOR_OP_CYPRESS_RD_FAST; /* This flash is also missing the 4-byte Page Program opcode bit. */ spi_nor_set_pp_settings(&nor->params->page_programs[SNOR_CMD_PP], SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1); /* * Since xSPI Page Program opcode is backward compatible with * Legacy SPI, use Legacy SPI opcode there as well. */ spi_nor_set_pp_settings(&nor->params->page_programs[SNOR_CMD_PP_8_8_8_DTR], SPINOR_OP_PP_4B, SNOR_PROTO_8_8_8_DTR); /* * The xSPI Profile 1.0 table advertises the number of additional * address bytes needed for Read Status Register command as 0 but the * actual value for that is 4. */ nor->params->rdsr_addr_nbytes = 4; } static int s28hs512t_post_bfpt_fixup(struct spi_nor *nor, const struct sfdp_parameter_header *bfpt_header, const struct sfdp_bfpt *bfpt) { /* * The BFPT table advertises a 512B page size but the page size is * actually configurable (with the default being 256B). Read from * CFR3V[4] and set the correct size. */ struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RD_ANY_REG, 1), SPI_MEM_OP_ADDR(3, SPINOR_REG_CYPRESS_CFR3V, 1), SPI_MEM_OP_NO_DUMMY, SPI_MEM_OP_DATA_IN(1, nor->bouncebuf, 1)); int ret; ret = spi_mem_exec_op(nor->spimem, &op); if (ret) return ret; if (nor->bouncebuf[0] & SPINOR_REG_CYPRESS_CFR3V_PGSZ) nor->params->page_size = 512; else nor->params->page_size = 256; return 0; } static const struct spi_nor_fixups s28hs512t_fixups = { .default_init = s28hs512t_default_init, .post_sfdp = s28hs512t_post_sfdp_fixup, .post_bfpt = s28hs512t_post_bfpt_fixup, }; static int s25fs_s_post_bfpt_fixups(struct spi_nor *nor, const struct sfdp_parameter_header *bfpt_header, const struct sfdp_bfpt *bfpt) { /* * The S25FS-S chip family reports 512-byte pages in BFPT but * in reality the write buffer still wraps at the safe default * of 256 bytes. Overwrite the page size advertised by BFPT * to get the writes working. */ nor->params->page_size = 256; return 0; } static const struct spi_nor_fixups s25fs_s_fixups = { .post_bfpt = s25fs_s_post_bfpt_fixups, }; static const struct flash_info spansion_parts[] = { /* Spansion/Cypress -- single (large) sector size only, at least * for the chips listed here (without boot sectors). */ { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64) NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, { "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128) NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, { "s25fl128s0", INFO6(0x012018, 0x4d0080, 256 * 1024, 64) FLAGS(USE_CLSR) NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, { "s25fl128s1", INFO6(0x012018, 0x4d0180, 64 * 1024, 256) FLAGS(USE_CLSR) NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, { "s25fl256s0", INFO6(0x010219, 0x4d0080, 256 * 1024, 128) FLAGS(USE_CLSR) NO_SFDP_FLAGS(SPI_NOR_SKIP_SFDP | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, { "s25fl256s1", INFO6(0x010219, 0x4d0180, 64 * 1024, 512) FLAGS(USE_CLSR) NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, { "s25fl512s", INFO6(0x010220, 0x4d0080, 256 * 1024, 256) FLAGS(SPI_NOR_HAS_LOCK | USE_CLSR) NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, { "s25fs128s1", INFO6(0x012018, 0x4d0181, 64 * 1024, 256) FLAGS(USE_CLSR) NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) .fixups = &s25fs_s_fixups, }, { "s25fs256s0", INFO6(0x010219, 0x4d0081, 256 * 1024, 128) FLAGS(USE_CLSR) NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, { "s25fs256s1", INFO6(0x010219, 0x4d0181, 64 * 1024, 512) FLAGS(USE_CLSR) NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, { "s25fs512s", INFO6(0x010220, 0x4d0081, 256 * 1024, 256) FLAGS(USE_CLSR) NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) .fixups = &s25fs_s_fixups, }, { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64) }, { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256) }, { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64) FLAGS(USE_CLSR) NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256) FLAGS(USE_CLSR) NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8) }, { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16) }, { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32) }, { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64) }, { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128) }, { "s25fl004k", INFO(0xef4013, 0, 64 * 1024, 8) NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, { "s25fl008k", INFO(0xef4014, 0, 64 * 1024, 16) NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32) NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128) NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, { "s25fl116k", INFO(0x014015, 0, 64 * 1024, 32) NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, { "s25fl132k", INFO(0x014016, 0, 64 * 1024, 64) NO_SFDP_FLAGS(SECT_4K) }, { "s25fl164k", INFO(0x014017, 0, 64 * 1024, 128) NO_SFDP_FLAGS(SECT_4K) }, { "s25fl204k", INFO(0x014013, 0, 64 * 1024, 8) NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ) }, { "s25fl208k", INFO(0x014014, 0, 64 * 1024, 16) NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ) }, { "s25fl064l", INFO(0x016017, 0, 64 * 1024, 128) NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) FIXUP_FLAGS(SPI_NOR_4B_OPCODES) }, { "s25fl128l", INFO(0x016018, 0, 64 * 1024, 256) NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) FIXUP_FLAGS(SPI_NOR_4B_OPCODES) }, { "s25fl256l", INFO(0x016019, 0, 64 * 1024, 512) NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) FIXUP_FLAGS(SPI_NOR_4B_OPCODES) }, { "cy15x104q", INFO6(0x042cc2, 0x7f7f7f, 512 * 1024, 1) FLAGS(SPI_NOR_NO_ERASE) }, { "s28hs512t", INFO(0x345b1a, 0, 256 * 1024, 256) NO_SFDP_FLAGS(SECT_4K | SPI_NOR_OCTAL_DTR_READ | SPI_NOR_OCTAL_DTR_PP) .fixups = &s28hs512t_fixups, }, }; static void spansion_late_init(struct spi_nor *nor) { if (nor->params->size <= SZ_16M) return; nor->flags |= SNOR_F_4B_OPCODES; /* No small sector erase for 4-byte command set */ nor->erase_opcode = SPINOR_OP_SE; nor->mtd.erasesize = nor->info->sector_size; } static const struct spi_nor_fixups spansion_fixups = { .late_init = spansion_late_init, }; const struct spi_nor_manufacturer spi_nor_spansion = { .name = "spansion", .parts = spansion_parts, .nparts = ARRAY_SIZE(spansion_parts), .fixups = &spansion_fixups, };