// SPDX-License-Identifier: GPL-2.0-only /* * 1588 PTP support for Cadence GEM device. * * Copyright (C) 2017 Cadence Design Systems - https://www.cadence.com * * Authors: Rafal Ozieblo * Bartosz Folta */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "macb.h" #define GEM_PTP_TIMER_NAME "gem-ptp-timer" static struct macb_dma_desc_ptp *macb_ptp_desc(struct macb *bp, struct macb_dma_desc *desc) { if (bp->hw_dma_cap == HW_DMA_CAP_PTP) return (struct macb_dma_desc_ptp *) ((u8 *)desc + sizeof(struct macb_dma_desc)); if (bp->hw_dma_cap == HW_DMA_CAP_64B_PTP) return (struct macb_dma_desc_ptp *) ((u8 *)desc + sizeof(struct macb_dma_desc) + sizeof(struct macb_dma_desc_64)); return NULL; } static int gem_tsu_get_time(struct ptp_clock_info *ptp, struct timespec64 *ts, struct ptp_system_timestamp *sts) { struct macb *bp = container_of(ptp, struct macb, ptp_clock_info); unsigned long flags; long first, second; u32 secl, sech; spin_lock_irqsave(&bp->tsu_clk_lock, flags); ptp_read_system_prets(sts); first = gem_readl(bp, TN); ptp_read_system_postts(sts); secl = gem_readl(bp, TSL); sech = gem_readl(bp, TSH); second = gem_readl(bp, TN); /* test for nsec rollover */ if (first > second) { /* if so, use later read & re-read seconds * (assume all done within 1s) */ ptp_read_system_prets(sts); ts->tv_nsec = gem_readl(bp, TN); ptp_read_system_postts(sts); secl = gem_readl(bp, TSL); sech = gem_readl(bp, TSH); } else { ts->tv_nsec = first; } spin_unlock_irqrestore(&bp->tsu_clk_lock, flags); ts->tv_sec = (((u64)sech << GEM_TSL_SIZE) | secl) & TSU_SEC_MAX_VAL; return 0; } static int gem_tsu_set_time(struct ptp_clock_info *ptp, const struct timespec64 *ts) { struct macb *bp = container_of(ptp, struct macb, ptp_clock_info); unsigned long flags; u32 ns, sech, secl; secl = (u32)ts->tv_sec; sech = (ts->tv_sec >> GEM_TSL_SIZE) & ((1 << GEM_TSH_SIZE) - 1); ns = ts->tv_nsec; spin_lock_irqsave(&bp->tsu_clk_lock, flags); /* TSH doesn't latch the time and no atomicity! */ gem_writel(bp, TN, 0); /* clear to avoid overflow */ gem_writel(bp, TSH, sech); /* write lower bits 2nd, for synchronized secs update */ gem_writel(bp, TSL, secl); gem_writel(bp, TN, ns); spin_unlock_irqrestore(&bp->tsu_clk_lock, flags); return 0; } static int gem_tsu_incr_set(struct macb *bp, struct tsu_incr *incr_spec) { unsigned long flags; /* tsu_timer_incr register must be written after * the tsu_timer_incr_sub_ns register and the write operation * will cause the value written to the tsu_timer_incr_sub_ns register * to take effect. */ spin_lock_irqsave(&bp->tsu_clk_lock, flags); /* RegBit[15:0] = Subns[23:8]; RegBit[31:24] = Subns[7:0] */ gem_writel(bp, TISUBN, GEM_BF(SUBNSINCRL, incr_spec->sub_ns) | GEM_BF(SUBNSINCRH, (incr_spec->sub_ns >> GEM_SUBNSINCRL_SIZE))); gem_writel(bp, TI, GEM_BF(NSINCR, incr_spec->ns)); spin_unlock_irqrestore(&bp->tsu_clk_lock, flags); return 0; } static int gem_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) { struct macb *bp = container_of(ptp, struct macb, ptp_clock_info); struct tsu_incr incr_spec; bool neg_adj = false; u32 word; u64 adj; if (scaled_ppm < 0) { neg_adj = true; scaled_ppm = -scaled_ppm; } /* Adjustment is relative to base frequency */ incr_spec.sub_ns = bp->tsu_incr.sub_ns; incr_spec.ns = bp->tsu_incr.ns; /* scaling: unused(8bit) | ns(8bit) | fractions(16bit) */ word = ((u64)incr_spec.ns << GEM_SUBNSINCR_SIZE) + incr_spec.sub_ns; adj = (u64)scaled_ppm * word; /* Divide with rounding, equivalent to floating dividing: * (temp / USEC_PER_SEC) + 0.5 */ adj += (USEC_PER_SEC >> 1); adj >>= PPM_FRACTION; /* remove fractions */ adj = div_u64(adj, USEC_PER_SEC); adj = neg_adj ? (word - adj) : (word + adj); incr_spec.ns = (adj >> GEM_SUBNSINCR_SIZE) & ((1 << GEM_NSINCR_SIZE) - 1); incr_spec.sub_ns = adj & ((1 << GEM_SUBNSINCR_SIZE) - 1); gem_tsu_incr_set(bp, &incr_spec); return 0; } static int gem_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) { struct macb *bp = container_of(ptp, struct macb, ptp_clock_info); struct timespec64 now, then = ns_to_timespec64(delta); u32 adj, sign = 0; if (delta < 0) { sign = 1; delta = -delta; } if (delta > TSU_NSEC_MAX_VAL) { gem_tsu_get_time(&bp->ptp_clock_info, &now, NULL); now = timespec64_add(now, then); gem_tsu_set_time(&bp->ptp_clock_info, (const struct timespec64 *)&now); } else { adj = (sign << GEM_ADDSUB_OFFSET) | delta; gem_writel(bp, TA, adj); } return 0; } static int gem_ptp_enable(struct ptp_clock_info *ptp, struct ptp_clock_request *rq, int on) { return -EOPNOTSUPP; } static const struct ptp_clock_info gem_ptp_caps_template = { .owner = THIS_MODULE, .name = GEM_PTP_TIMER_NAME, .max_adj = 0, .n_alarm = 0, .n_ext_ts = 0, .n_per_out = 0, .n_pins = 0, .pps = 1, .adjfine = gem_ptp_adjfine, .adjtime = gem_ptp_adjtime, .gettimex64 = gem_tsu_get_time, .settime64 = gem_tsu_set_time, .enable = gem_ptp_enable, }; static void gem_ptp_init_timer(struct macb *bp) { u32 rem = 0; u64 adj; bp->tsu_incr.ns = div_u64_rem(NSEC_PER_SEC, bp->tsu_rate, &rem); if (rem) { adj = rem; adj <<= GEM_SUBNSINCR_SIZE; bp->tsu_incr.sub_ns = div_u64(adj, bp->tsu_rate); } else { bp->tsu_incr.sub_ns = 0; } } static void gem_ptp_init_tsu(struct macb *bp) { struct timespec64 ts; /* 1. get current system time */ ts = ns_to_timespec64(ktime_to_ns(ktime_get_real())); /* 2. set ptp timer */ gem_tsu_set_time(&bp->ptp_clock_info, &ts); /* 3. set PTP timer increment value to BASE_INCREMENT */ gem_tsu_incr_set(bp, &bp->tsu_incr); gem_writel(bp, TA, 0); } static void gem_ptp_clear_timer(struct macb *bp) { bp->tsu_incr.sub_ns = 0; bp->tsu_incr.ns = 0; gem_writel(bp, TISUBN, GEM_BF(SUBNSINCR, 0)); gem_writel(bp, TI, GEM_BF(NSINCR, 0)); gem_writel(bp, TA, 0); } static int gem_hw_timestamp(struct macb *bp, u32 dma_desc_ts_1, u32 dma_desc_ts_2, struct timespec64 *ts) { struct timespec64 tsu; ts->tv_sec = (GEM_BFEXT(DMA_SECH, dma_desc_ts_2) << GEM_DMA_SECL_SIZE) | GEM_BFEXT(DMA_SECL, dma_desc_ts_1); ts->tv_nsec = GEM_BFEXT(DMA_NSEC, dma_desc_ts_1); /* TSU overlapping workaround * The timestamp only contains lower few bits of seconds, * so add value from 1588 timer */ gem_tsu_get_time(&bp->ptp_clock_info, &tsu, NULL); ts->tv_sec |= ((~GEM_DMA_SEC_MASK) & tsu.tv_sec); /* If the top bit is set in the timestamp, * but not in 1588 timer, it has rolled over, * so subtract max size */ if ((ts->tv_sec & (GEM_DMA_SEC_TOP >> 1)) && !(tsu.tv_sec & (GEM_DMA_SEC_TOP >> 1))) ts->tv_sec -= GEM_DMA_SEC_TOP; return 0; } void gem_ptp_rxstamp(struct macb *bp, struct sk_buff *skb, struct macb_dma_desc *desc) { struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); struct macb_dma_desc_ptp *desc_ptp; struct timespec64 ts; if (GEM_BFEXT(DMA_RXVALID, desc->addr)) { desc_ptp = macb_ptp_desc(bp, desc); /* Unlikely but check */ if (!desc_ptp) { dev_warn_ratelimited(&bp->pdev->dev, "Timestamp not supported in BD\n"); return; } gem_hw_timestamp(bp, desc_ptp->ts_1, desc_ptp->ts_2, &ts); memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps)); shhwtstamps->hwtstamp = ktime_set(ts.tv_sec, ts.tv_nsec); } } void gem_ptp_txstamp(struct macb *bp, struct sk_buff *skb, struct macb_dma_desc *desc) { struct skb_shared_hwtstamps shhwtstamps; struct macb_dma_desc_ptp *desc_ptp; struct timespec64 ts; if (!GEM_BFEXT(DMA_TXVALID, desc->ctrl)) { dev_warn_ratelimited(&bp->pdev->dev, "Timestamp not set in TX BD as expected\n"); return; } desc_ptp = macb_ptp_desc(bp, desc); /* Unlikely but check */ if (!desc_ptp) { dev_warn_ratelimited(&bp->pdev->dev, "Timestamp not supported in BD\n"); return; } /* ensure ts_1/ts_2 is loaded after ctrl (TX_USED check) */ dma_rmb(); gem_hw_timestamp(bp, desc_ptp->ts_1, desc_ptp->ts_2, &ts); memset(&shhwtstamps, 0, sizeof(shhwtstamps)); shhwtstamps.hwtstamp = ktime_set(ts.tv_sec, ts.tv_nsec); skb_tstamp_tx(skb, &shhwtstamps); } void gem_ptp_init(struct net_device *dev) { struct macb *bp = netdev_priv(dev); bp->ptp_clock_info = gem_ptp_caps_template; /* nominal frequency and maximum adjustment in ppb */ bp->tsu_rate = bp->ptp_info->get_tsu_rate(bp); bp->ptp_clock_info.max_adj = bp->ptp_info->get_ptp_max_adj(); gem_ptp_init_timer(bp); bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &dev->dev); if (IS_ERR(bp->ptp_clock)) { pr_err("ptp clock register failed: %ld\n", PTR_ERR(bp->ptp_clock)); bp->ptp_clock = NULL; return; } else if (bp->ptp_clock == NULL) { pr_err("ptp clock register failed\n"); return; } spin_lock_init(&bp->tsu_clk_lock); gem_ptp_init_tsu(bp); dev_info(&bp->pdev->dev, "%s ptp clock registered.\n", GEM_PTP_TIMER_NAME); } void gem_ptp_remove(struct net_device *ndev) { struct macb *bp = netdev_priv(ndev); if (bp->ptp_clock) ptp_clock_unregister(bp->ptp_clock); gem_ptp_clear_timer(bp); dev_info(&bp->pdev->dev, "%s ptp clock unregistered.\n", GEM_PTP_TIMER_NAME); } static int gem_ptp_set_ts_mode(struct macb *bp, enum macb_bd_control tx_bd_control, enum macb_bd_control rx_bd_control) { gem_writel(bp, TXBDCTRL, GEM_BF(TXTSMODE, tx_bd_control)); gem_writel(bp, RXBDCTRL, GEM_BF(RXTSMODE, rx_bd_control)); return 0; } int gem_get_hwtst(struct net_device *dev, struct kernel_hwtstamp_config *tstamp_config) { struct macb *bp = netdev_priv(dev); *tstamp_config = bp->tstamp_config; if ((bp->hw_dma_cap & HW_DMA_CAP_PTP) == 0) return -EOPNOTSUPP; return 0; } static void gem_ptp_set_one_step_sync(struct macb *bp, u8 enable) { u32 reg_val; reg_val = macb_readl(bp, NCR); if (enable) macb_writel(bp, NCR, reg_val | MACB_BIT(OSSMODE)); else macb_writel(bp, NCR, reg_val & ~MACB_BIT(OSSMODE)); } int gem_set_hwtst(struct net_device *dev, struct kernel_hwtstamp_config *tstamp_config, struct netlink_ext_ack *extack) { enum macb_bd_control tx_bd_control = TSTAMP_DISABLED; enum macb_bd_control rx_bd_control = TSTAMP_DISABLED; struct macb *bp = netdev_priv(dev); u32 regval; if ((bp->hw_dma_cap & HW_DMA_CAP_PTP) == 0) return -EOPNOTSUPP; switch (tstamp_config->tx_type) { case HWTSTAMP_TX_OFF: break; case HWTSTAMP_TX_ONESTEP_SYNC: gem_ptp_set_one_step_sync(bp, 1); tx_bd_control = TSTAMP_ALL_FRAMES; break; case HWTSTAMP_TX_ON: gem_ptp_set_one_step_sync(bp, 0); tx_bd_control = TSTAMP_ALL_FRAMES; break; default: return -ERANGE; } switch (tstamp_config->rx_filter) { case HWTSTAMP_FILTER_NONE: break; case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: break; case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: break; case HWTSTAMP_FILTER_PTP_V2_EVENT: case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: case HWTSTAMP_FILTER_PTP_V2_SYNC: case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: rx_bd_control = TSTAMP_ALL_PTP_FRAMES; tstamp_config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; regval = macb_readl(bp, NCR); macb_writel(bp, NCR, (regval | MACB_BIT(SRTSM))); break; case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: case HWTSTAMP_FILTER_ALL: rx_bd_control = TSTAMP_ALL_FRAMES; tstamp_config->rx_filter = HWTSTAMP_FILTER_ALL; break; default: tstamp_config->rx_filter = HWTSTAMP_FILTER_NONE; return -ERANGE; } bp->tstamp_config = *tstamp_config; if (gem_ptp_set_ts_mode(bp, tx_bd_control, rx_bd_control) != 0) return -ERANGE; return 0; }