/* * Copyright 2008-2015 Freescale Semiconductor Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Freescale Semiconductor nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * * ALTERNATIVELY, this software may be distributed under the terms of the * GNU General Public License ("GPL") as published by the Free Software * Foundation, either version 2 of that License or (at your option) any * later version. * * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include "fman_memac.h" #include "fman.h" #include #include #include #include #include /* PCS registers */ #define MDIO_SGMII_CR 0x00 #define MDIO_SGMII_DEV_ABIL_SGMII 0x04 #define MDIO_SGMII_LINK_TMR_L 0x12 #define MDIO_SGMII_LINK_TMR_H 0x13 #define MDIO_SGMII_IF_MODE 0x14 /* SGMII Control defines */ #define SGMII_CR_AN_EN 0x1000 #define SGMII_CR_RESTART_AN 0x0200 #define SGMII_CR_FD 0x0100 #define SGMII_CR_SPEED_SEL1_1G 0x0040 #define SGMII_CR_DEF_VAL (SGMII_CR_AN_EN | SGMII_CR_FD | \ SGMII_CR_SPEED_SEL1_1G) /* SGMII Device Ability for SGMII defines */ #define MDIO_SGMII_DEV_ABIL_SGMII_MODE 0x4001 #define MDIO_SGMII_DEV_ABIL_BASEX_MODE 0x01A0 /* Link timer define */ #define LINK_TMR_L 0xa120 #define LINK_TMR_H 0x0007 #define LINK_TMR_L_BASEX 0xaf08 #define LINK_TMR_H_BASEX 0x002f /* SGMII IF Mode defines */ #define IF_MODE_USE_SGMII_AN 0x0002 #define IF_MODE_SGMII_EN 0x0001 #define IF_MODE_SGMII_SPEED_100M 0x0004 #define IF_MODE_SGMII_SPEED_1G 0x0008 #define IF_MODE_SGMII_DUPLEX_HALF 0x0010 /* Num of additional exact match MAC adr regs */ #define MEMAC_NUM_OF_PADDRS 7 /* Control and Configuration Register (COMMAND_CONFIG) */ #define CMD_CFG_REG_LOWP_RXETY 0x01000000 /* 07 Rx low power indication */ #define CMD_CFG_TX_LOWP_ENA 0x00800000 /* 08 Tx Low Power Idle Enable */ #define CMD_CFG_PFC_MODE 0x00080000 /* 12 Enable PFC */ #define CMD_CFG_NO_LEN_CHK 0x00020000 /* 14 Payload length check disable */ #define CMD_CFG_SW_RESET 0x00001000 /* 19 S/W Reset, self clearing bit */ #define CMD_CFG_TX_PAD_EN 0x00000800 /* 20 Enable Tx padding of frames */ #define CMD_CFG_PAUSE_IGNORE 0x00000100 /* 23 Ignore Pause frame quanta */ #define CMD_CFG_CRC_FWD 0x00000040 /* 25 Terminate/frwd CRC of frames */ #define CMD_CFG_PAD_EN 0x00000020 /* 26 Frame padding removal */ #define CMD_CFG_PROMIS_EN 0x00000010 /* 27 Promiscuous operation enable */ #define CMD_CFG_RX_EN 0x00000002 /* 30 MAC receive path enable */ #define CMD_CFG_TX_EN 0x00000001 /* 31 MAC transmit path enable */ /* Transmit FIFO Sections Register (TX_FIFO_SECTIONS) */ #define TX_FIFO_SECTIONS_TX_EMPTY_MASK 0xFFFF0000 #define TX_FIFO_SECTIONS_TX_AVAIL_MASK 0x0000FFFF #define TX_FIFO_SECTIONS_TX_EMPTY_DEFAULT_10G 0x00400000 #define TX_FIFO_SECTIONS_TX_EMPTY_DEFAULT_1G 0x00100000 #define TX_FIFO_SECTIONS_TX_AVAIL_10G 0x00000019 #define TX_FIFO_SECTIONS_TX_AVAIL_1G 0x00000020 #define TX_FIFO_SECTIONS_TX_AVAIL_SLOW_10G 0x00000060 #define GET_TX_EMPTY_DEFAULT_VALUE(_val) \ do { \ _val &= ~TX_FIFO_SECTIONS_TX_EMPTY_MASK; \ ((_val == TX_FIFO_SECTIONS_TX_AVAIL_10G) ? \ (_val |= TX_FIFO_SECTIONS_TX_EMPTY_DEFAULT_10G) :\ (_val |= TX_FIFO_SECTIONS_TX_EMPTY_DEFAULT_1G));\ } while (0) /* Interface Mode Register (IF_MODE) */ #define IF_MODE_MASK 0x00000003 /* 30-31 Mask on i/f mode bits */ #define IF_MODE_10G 0x00000000 /* 30-31 10G interface */ #define IF_MODE_GMII 0x00000002 /* 30-31 GMII (1G) interface */ #define IF_MODE_RGMII 0x00000004 #define IF_MODE_RGMII_AUTO 0x00008000 #define IF_MODE_RGMII_1000 0x00004000 /* 10 - 1000Mbps RGMII */ #define IF_MODE_RGMII_100 0x00000000 /* 00 - 100Mbps RGMII */ #define IF_MODE_RGMII_10 0x00002000 /* 01 - 10Mbps RGMII */ #define IF_MODE_RGMII_SP_MASK 0x00006000 /* Setsp mask bits */ #define IF_MODE_RGMII_FD 0x00001000 /* Full duplex RGMII */ #define IF_MODE_HD 0x00000040 /* Half duplex operation */ /* Hash table Control Register (HASHTABLE_CTRL) */ #define HASH_CTRL_MCAST_EN 0x00000100 /* 26-31 Hash table address code */ #define HASH_CTRL_ADDR_MASK 0x0000003F /* MAC mcast indication */ #define GROUP_ADDRESS 0x0000010000000000LL #define HASH_TABLE_SIZE 64 /* Hash tbl size */ /* Interrupt Mask Register (IMASK) */ #define MEMAC_IMASK_MGI 0x40000000 /* 1 Magic pkt detect indication */ #define MEMAC_IMASK_TSECC_ER 0x20000000 /* 2 Timestamp FIFO ECC error evnt */ #define MEMAC_IMASK_TECC_ER 0x02000000 /* 6 Transmit frame ECC error evnt */ #define MEMAC_IMASK_RECC_ER 0x01000000 /* 7 Receive frame ECC error evnt */ #define MEMAC_ALL_ERRS_IMASK \ ((u32)(MEMAC_IMASK_TSECC_ER | \ MEMAC_IMASK_TECC_ER | \ MEMAC_IMASK_RECC_ER | \ MEMAC_IMASK_MGI)) #define MEMAC_IEVNT_PCS 0x80000000 /* PCS (XG). Link sync (G) */ #define MEMAC_IEVNT_AN 0x40000000 /* Auto-negotiation */ #define MEMAC_IEVNT_LT 0x20000000 /* Link Training/New page */ #define MEMAC_IEVNT_MGI 0x00004000 /* Magic pkt detection */ #define MEMAC_IEVNT_TS_ECC_ER 0x00002000 /* Timestamp FIFO ECC error*/ #define MEMAC_IEVNT_RX_FIFO_OVFL 0x00001000 /* Rx FIFO overflow */ #define MEMAC_IEVNT_TX_FIFO_UNFL 0x00000800 /* Tx FIFO underflow */ #define MEMAC_IEVNT_TX_FIFO_OVFL 0x00000400 /* Tx FIFO overflow */ #define MEMAC_IEVNT_TX_ECC_ER 0x00000200 /* Tx frame ECC error */ #define MEMAC_IEVNT_RX_ECC_ER 0x00000100 /* Rx frame ECC error */ #define MEMAC_IEVNT_LI_FAULT 0x00000080 /* Link Interruption flt */ #define MEMAC_IEVNT_RX_EMPTY 0x00000040 /* Rx FIFO empty */ #define MEMAC_IEVNT_TX_EMPTY 0x00000020 /* Tx FIFO empty */ #define MEMAC_IEVNT_RX_LOWP 0x00000010 /* Low Power Idle */ #define MEMAC_IEVNT_PHY_LOS 0x00000004 /* Phy loss of signal */ #define MEMAC_IEVNT_REM_FAULT 0x00000002 /* Remote fault (XGMII) */ #define MEMAC_IEVNT_LOC_FAULT 0x00000001 /* Local fault (XGMII) */ #define DEFAULT_PAUSE_QUANTA 0xf000 #define DEFAULT_FRAME_LENGTH 0x600 #define DEFAULT_TX_IPG_LENGTH 12 #define CLXY_PAUSE_QUANTA_CLX_PQNT 0x0000FFFF #define CLXY_PAUSE_QUANTA_CLY_PQNT 0xFFFF0000 #define CLXY_PAUSE_THRESH_CLX_QTH 0x0000FFFF #define CLXY_PAUSE_THRESH_CLY_QTH 0xFFFF0000 struct mac_addr { /* Lower 32 bits of 48-bit MAC address */ u32 mac_addr_l; /* Upper 16 bits of 48-bit MAC address */ u32 mac_addr_u; }; /* memory map */ struct memac_regs { u32 res0000[2]; /* General Control and Status */ u32 command_config; /* 0x008 Ctrl and cfg */ struct mac_addr mac_addr0; /* 0x00C-0x010 MAC_ADDR_0...1 */ u32 maxfrm; /* 0x014 Max frame length */ u32 res0018[1]; u32 rx_fifo_sections; /* Receive FIFO configuration reg */ u32 tx_fifo_sections; /* Transmit FIFO configuration reg */ u32 res0024[2]; u32 hashtable_ctrl; /* 0x02C Hash table control */ u32 res0030[4]; u32 ievent; /* 0x040 Interrupt event */ u32 tx_ipg_length; /* 0x044 Transmitter inter-packet-gap */ u32 res0048; u32 imask; /* 0x04C Interrupt mask */ u32 res0050; u32 pause_quanta[4]; /* 0x054 Pause quanta */ u32 pause_thresh[4]; /* 0x064 Pause quanta threshold */ u32 rx_pause_status; /* 0x074 Receive pause status */ u32 res0078[2]; struct mac_addr mac_addr[MEMAC_NUM_OF_PADDRS];/* 0x80-0x0B4 mac padr */ u32 lpwake_timer; /* 0x0B8 Low Power Wakeup Timer */ u32 sleep_timer; /* 0x0BC Transmit EEE Low Power Timer */ u32 res00c0[8]; u32 statn_config; /* 0x0E0 Statistics configuration */ u32 res00e4[7]; /* Rx Statistics Counter */ u32 reoct_l; u32 reoct_u; u32 roct_l; u32 roct_u; u32 raln_l; u32 raln_u; u32 rxpf_l; u32 rxpf_u; u32 rfrm_l; u32 rfrm_u; u32 rfcs_l; u32 rfcs_u; u32 rvlan_l; u32 rvlan_u; u32 rerr_l; u32 rerr_u; u32 ruca_l; u32 ruca_u; u32 rmca_l; u32 rmca_u; u32 rbca_l; u32 rbca_u; u32 rdrp_l; u32 rdrp_u; u32 rpkt_l; u32 rpkt_u; u32 rund_l; u32 rund_u; u32 r64_l; u32 r64_u; u32 r127_l; u32 r127_u; u32 r255_l; u32 r255_u; u32 r511_l; u32 r511_u; u32 r1023_l; u32 r1023_u; u32 r1518_l; u32 r1518_u; u32 r1519x_l; u32 r1519x_u; u32 rovr_l; u32 rovr_u; u32 rjbr_l; u32 rjbr_u; u32 rfrg_l; u32 rfrg_u; u32 rcnp_l; u32 rcnp_u; u32 rdrntp_l; u32 rdrntp_u; u32 res01d0[12]; /* Tx Statistics Counter */ u32 teoct_l; u32 teoct_u; u32 toct_l; u32 toct_u; u32 res0210[2]; u32 txpf_l; u32 txpf_u; u32 tfrm_l; u32 tfrm_u; u32 tfcs_l; u32 tfcs_u; u32 tvlan_l; u32 tvlan_u; u32 terr_l; u32 terr_u; u32 tuca_l; u32 tuca_u; u32 tmca_l; u32 tmca_u; u32 tbca_l; u32 tbca_u; u32 res0258[2]; u32 tpkt_l; u32 tpkt_u; u32 tund_l; u32 tund_u; u32 t64_l; u32 t64_u; u32 t127_l; u32 t127_u; u32 t255_l; u32 t255_u; u32 t511_l; u32 t511_u; u32 t1023_l; u32 t1023_u; u32 t1518_l; u32 t1518_u; u32 t1519x_l; u32 t1519x_u; u32 res02a8[6]; u32 tcnp_l; u32 tcnp_u; u32 res02c8[14]; /* Line Interface Control */ u32 if_mode; /* 0x300 Interface Mode Control */ u32 if_status; /* 0x304 Interface Status */ u32 res0308[14]; /* HiGig/2 */ u32 hg_config; /* 0x340 Control and cfg */ u32 res0344[3]; u32 hg_pause_quanta; /* 0x350 Pause quanta */ u32 res0354[3]; u32 hg_pause_thresh; /* 0x360 Pause quanta threshold */ u32 res0364[3]; u32 hgrx_pause_status; /* 0x370 Receive pause status */ u32 hg_fifos_status; /* 0x374 fifos status */ u32 rhm; /* 0x378 rx messages counter */ u32 thm; /* 0x37C tx messages counter */ }; struct memac_cfg { bool reset_on_init; bool pause_ignore; bool promiscuous_mode_enable; struct fixed_phy_status *fixed_link; u16 max_frame_length; u16 pause_quanta; u32 tx_ipg_length; }; struct fman_mac { /* Pointer to MAC memory mapped registers */ struct memac_regs __iomem *regs; /* MAC address of device */ u64 addr; /* Ethernet physical interface */ phy_interface_t phy_if; u16 max_speed; void *dev_id; /* device cookie used by the exception cbs */ fman_mac_exception_cb *exception_cb; fman_mac_exception_cb *event_cb; /* Pointer to driver's global address hash table */ struct eth_hash_t *multicast_addr_hash; /* Pointer to driver's individual address hash table */ struct eth_hash_t *unicast_addr_hash; u8 mac_id; u32 exceptions; struct memac_cfg *memac_drv_param; void *fm; struct fman_rev_info fm_rev_info; bool basex_if; struct phy_device *pcsphy; bool allmulti_enabled; }; static void add_addr_in_paddr(struct memac_regs __iomem *regs, u8 *adr, u8 paddr_num) { u32 tmp0, tmp1; tmp0 = (u32)(adr[0] | adr[1] << 8 | adr[2] << 16 | adr[3] << 24); tmp1 = (u32)(adr[4] | adr[5] << 8); if (paddr_num == 0) { iowrite32be(tmp0, ®s->mac_addr0.mac_addr_l); iowrite32be(tmp1, ®s->mac_addr0.mac_addr_u); } else { iowrite32be(tmp0, ®s->mac_addr[paddr_num - 1].mac_addr_l); iowrite32be(tmp1, ®s->mac_addr[paddr_num - 1].mac_addr_u); } } static int reset(struct memac_regs __iomem *regs) { u32 tmp; int count; tmp = ioread32be(®s->command_config); tmp |= CMD_CFG_SW_RESET; iowrite32be(tmp, ®s->command_config); count = 100; do { udelay(1); } while ((ioread32be(®s->command_config) & CMD_CFG_SW_RESET) && --count); if (count == 0) return -EBUSY; return 0; } static void set_exception(struct memac_regs __iomem *regs, u32 val, bool enable) { u32 tmp; tmp = ioread32be(®s->imask); if (enable) tmp |= val; else tmp &= ~val; iowrite32be(tmp, ®s->imask); } static int init(struct memac_regs __iomem *regs, struct memac_cfg *cfg, phy_interface_t phy_if, u16 speed, bool slow_10g_if, u32 exceptions) { u32 tmp; /* Config */ tmp = 0; if (cfg->promiscuous_mode_enable) tmp |= CMD_CFG_PROMIS_EN; if (cfg->pause_ignore) tmp |= CMD_CFG_PAUSE_IGNORE; /* Payload length check disable */ tmp |= CMD_CFG_NO_LEN_CHK; /* Enable padding of frames in transmit direction */ tmp |= CMD_CFG_TX_PAD_EN; tmp |= CMD_CFG_CRC_FWD; iowrite32be(tmp, ®s->command_config); /* Max Frame Length */ iowrite32be((u32)cfg->max_frame_length, ®s->maxfrm); /* Pause Time */ iowrite32be((u32)cfg->pause_quanta, ®s->pause_quanta[0]); iowrite32be((u32)0, ®s->pause_thresh[0]); /* IF_MODE */ tmp = 0; switch (phy_if) { case PHY_INTERFACE_MODE_XGMII: tmp |= IF_MODE_10G; break; default: tmp |= IF_MODE_GMII; if (phy_if == PHY_INTERFACE_MODE_RGMII || phy_if == PHY_INTERFACE_MODE_RGMII_ID || phy_if == PHY_INTERFACE_MODE_RGMII_RXID || phy_if == PHY_INTERFACE_MODE_RGMII_TXID) tmp |= IF_MODE_RGMII | IF_MODE_RGMII_AUTO; } iowrite32be(tmp, ®s->if_mode); /* TX_FIFO_SECTIONS */ tmp = 0; if (phy_if == PHY_INTERFACE_MODE_XGMII) { if (slow_10g_if) { tmp |= (TX_FIFO_SECTIONS_TX_AVAIL_SLOW_10G | TX_FIFO_SECTIONS_TX_EMPTY_DEFAULT_10G); } else { tmp |= (TX_FIFO_SECTIONS_TX_AVAIL_10G | TX_FIFO_SECTIONS_TX_EMPTY_DEFAULT_10G); } } else { tmp |= (TX_FIFO_SECTIONS_TX_AVAIL_1G | TX_FIFO_SECTIONS_TX_EMPTY_DEFAULT_1G); } iowrite32be(tmp, ®s->tx_fifo_sections); /* clear all pending events and set-up interrupts */ iowrite32be(0xffffffff, ®s->ievent); set_exception(regs, exceptions, true); return 0; } static void set_dflts(struct memac_cfg *cfg) { cfg->reset_on_init = false; cfg->promiscuous_mode_enable = false; cfg->pause_ignore = false; cfg->tx_ipg_length = DEFAULT_TX_IPG_LENGTH; cfg->max_frame_length = DEFAULT_FRAME_LENGTH; cfg->pause_quanta = DEFAULT_PAUSE_QUANTA; } static u32 get_mac_addr_hash_code(u64 eth_addr) { u64 mask1, mask2; u32 xor_val = 0; u8 i, j; for (i = 0; i < 6; i++) { mask1 = eth_addr & (u64)0x01; eth_addr >>= 1; for (j = 0; j < 7; j++) { mask2 = eth_addr & (u64)0x01; mask1 ^= mask2; eth_addr >>= 1; } xor_val |= (mask1 << (5 - i)); } return xor_val; } static void setup_sgmii_internal_phy(struct fman_mac *memac, struct fixed_phy_status *fixed_link) { u16 tmp_reg16; if (WARN_ON(!memac->pcsphy)) return; /* SGMII mode */ tmp_reg16 = IF_MODE_SGMII_EN; if (!fixed_link) /* AN enable */ tmp_reg16 |= IF_MODE_USE_SGMII_AN; else { switch (fixed_link->speed) { case 10: /* For 10M: IF_MODE[SPEED_10M] = 0 */ break; case 100: tmp_reg16 |= IF_MODE_SGMII_SPEED_100M; break; case 1000: /* fallthrough */ default: tmp_reg16 |= IF_MODE_SGMII_SPEED_1G; break; } if (!fixed_link->duplex) tmp_reg16 |= IF_MODE_SGMII_DUPLEX_HALF; } phy_write(memac->pcsphy, MDIO_SGMII_IF_MODE, tmp_reg16); /* Device ability according to SGMII specification */ tmp_reg16 = MDIO_SGMII_DEV_ABIL_SGMII_MODE; phy_write(memac->pcsphy, MDIO_SGMII_DEV_ABIL_SGMII, tmp_reg16); /* Adjust link timer for SGMII - * According to Cisco SGMII specification the timer should be 1.6 ms. * The link_timer register is configured in units of the clock. * - When running as 1G SGMII, Serdes clock is 125 MHz, so * unit = 1 / (125*10^6 Hz) = 8 ns. * 1.6 ms in units of 8 ns = 1.6ms / 8ns = 2*10^5 = 0x30d40 * - When running as 2.5G SGMII, Serdes clock is 312.5 MHz, so * unit = 1 / (312.5*10^6 Hz) = 3.2 ns. * 1.6 ms in units of 3.2 ns = 1.6ms / 3.2ns = 5*10^5 = 0x7a120. * Since link_timer value of 1G SGMII will be too short for 2.5 SGMII, * we always set up here a value of 2.5 SGMII. */ phy_write(memac->pcsphy, MDIO_SGMII_LINK_TMR_H, LINK_TMR_H); phy_write(memac->pcsphy, MDIO_SGMII_LINK_TMR_L, LINK_TMR_L); if (!fixed_link) /* Restart AN */ tmp_reg16 = SGMII_CR_DEF_VAL | SGMII_CR_RESTART_AN; else /* AN disabled */ tmp_reg16 = SGMII_CR_DEF_VAL & ~SGMII_CR_AN_EN; phy_write(memac->pcsphy, 0x0, tmp_reg16); } static void setup_sgmii_internal_phy_base_x(struct fman_mac *memac) { u16 tmp_reg16; /* AN Device capability */ tmp_reg16 = MDIO_SGMII_DEV_ABIL_BASEX_MODE; phy_write(memac->pcsphy, MDIO_SGMII_DEV_ABIL_SGMII, tmp_reg16); /* Adjust link timer for SGMII - * For Serdes 1000BaseX auto-negotiation the timer should be 10 ms. * The link_timer register is configured in units of the clock. * - When running as 1G SGMII, Serdes clock is 125 MHz, so * unit = 1 / (125*10^6 Hz) = 8 ns. * 10 ms in units of 8 ns = 10ms / 8ns = 1250000 = 0x1312d0 * - When running as 2.5G SGMII, Serdes clock is 312.5 MHz, so * unit = 1 / (312.5*10^6 Hz) = 3.2 ns. * 10 ms in units of 3.2 ns = 10ms / 3.2ns = 3125000 = 0x2faf08. * Since link_timer value of 1G SGMII will be too short for 2.5 SGMII, * we always set up here a value of 2.5 SGMII. */ phy_write(memac->pcsphy, MDIO_SGMII_LINK_TMR_H, LINK_TMR_H_BASEX); phy_write(memac->pcsphy, MDIO_SGMII_LINK_TMR_L, LINK_TMR_L_BASEX); /* Restart AN */ tmp_reg16 = SGMII_CR_DEF_VAL | SGMII_CR_RESTART_AN; phy_write(memac->pcsphy, 0x0, tmp_reg16); } static int check_init_parameters(struct fman_mac *memac) { if (memac->addr == 0) { pr_err("Ethernet MAC must have a valid MAC address\n"); return -EINVAL; } if (!memac->exception_cb) { pr_err("Uninitialized exception handler\n"); return -EINVAL; } if (!memac->event_cb) { pr_warn("Uninitialize event handler\n"); return -EINVAL; } return 0; } static int get_exception_flag(enum fman_mac_exceptions exception) { u32 bit_mask; switch (exception) { case FM_MAC_EX_10G_TX_ECC_ER: bit_mask = MEMAC_IMASK_TECC_ER; break; case FM_MAC_EX_10G_RX_ECC_ER: bit_mask = MEMAC_IMASK_RECC_ER; break; case FM_MAC_EX_TS_FIFO_ECC_ERR: bit_mask = MEMAC_IMASK_TSECC_ER; break; case FM_MAC_EX_MAGIC_PACKET_INDICATION: bit_mask = MEMAC_IMASK_MGI; break; default: bit_mask = 0; break; } return bit_mask; } static void memac_err_exception(void *handle) { struct fman_mac *memac = (struct fman_mac *)handle; struct memac_regs __iomem *regs = memac->regs; u32 event, imask; event = ioread32be(®s->ievent); imask = ioread32be(®s->imask); /* Imask include both error and notification/event bits. * Leaving only error bits enabled by imask. * The imask error bits are shifted by 16 bits offset from * their corresponding location in the ievent - hence the >> 16 */ event &= ((imask & MEMAC_ALL_ERRS_IMASK) >> 16); iowrite32be(event, ®s->ievent); if (event & MEMAC_IEVNT_TS_ECC_ER) memac->exception_cb(memac->dev_id, FM_MAC_EX_TS_FIFO_ECC_ERR); if (event & MEMAC_IEVNT_TX_ECC_ER) memac->exception_cb(memac->dev_id, FM_MAC_EX_10G_TX_ECC_ER); if (event & MEMAC_IEVNT_RX_ECC_ER) memac->exception_cb(memac->dev_id, FM_MAC_EX_10G_RX_ECC_ER); } static void memac_exception(void *handle) { struct fman_mac *memac = (struct fman_mac *)handle; struct memac_regs __iomem *regs = memac->regs; u32 event, imask; event = ioread32be(®s->ievent); imask = ioread32be(®s->imask); /* Imask include both error and notification/event bits. * Leaving only error bits enabled by imask. * The imask error bits are shifted by 16 bits offset from * their corresponding location in the ievent - hence the >> 16 */ event &= ((imask & MEMAC_ALL_ERRS_IMASK) >> 16); iowrite32be(event, ®s->ievent); if (event & MEMAC_IEVNT_MGI) memac->exception_cb(memac->dev_id, FM_MAC_EX_MAGIC_PACKET_INDICATION); } static void free_init_resources(struct fman_mac *memac) { fman_unregister_intr(memac->fm, FMAN_MOD_MAC, memac->mac_id, FMAN_INTR_TYPE_ERR); fman_unregister_intr(memac->fm, FMAN_MOD_MAC, memac->mac_id, FMAN_INTR_TYPE_NORMAL); /* release the driver's group hash table */ free_hash_table(memac->multicast_addr_hash); memac->multicast_addr_hash = NULL; /* release the driver's individual hash table */ free_hash_table(memac->unicast_addr_hash); memac->unicast_addr_hash = NULL; } static bool is_init_done(struct memac_cfg *memac_drv_params) { /* Checks if mEMAC driver parameters were initialized */ if (!memac_drv_params) return true; return false; } int memac_enable(struct fman_mac *memac, enum comm_mode mode) { struct memac_regs __iomem *regs = memac->regs; u32 tmp; if (!is_init_done(memac->memac_drv_param)) return -EINVAL; tmp = ioread32be(®s->command_config); if (mode & COMM_MODE_RX) tmp |= CMD_CFG_RX_EN; if (mode & COMM_MODE_TX) tmp |= CMD_CFG_TX_EN; iowrite32be(tmp, ®s->command_config); return 0; } int memac_disable(struct fman_mac *memac, enum comm_mode mode) { struct memac_regs __iomem *regs = memac->regs; u32 tmp; if (!is_init_done(memac->memac_drv_param)) return -EINVAL; tmp = ioread32be(®s->command_config); if (mode & COMM_MODE_RX) tmp &= ~CMD_CFG_RX_EN; if (mode & COMM_MODE_TX) tmp &= ~CMD_CFG_TX_EN; iowrite32be(tmp, ®s->command_config); return 0; } int memac_set_promiscuous(struct fman_mac *memac, bool new_val) { struct memac_regs __iomem *regs = memac->regs; u32 tmp; if (!is_init_done(memac->memac_drv_param)) return -EINVAL; tmp = ioread32be(®s->command_config); if (new_val) tmp |= CMD_CFG_PROMIS_EN; else tmp &= ~CMD_CFG_PROMIS_EN; iowrite32be(tmp, ®s->command_config); return 0; } int memac_adjust_link(struct fman_mac *memac, u16 speed) { struct memac_regs __iomem *regs = memac->regs; u32 tmp; if (!is_init_done(memac->memac_drv_param)) return -EINVAL; tmp = ioread32be(®s->if_mode); /* Set full duplex */ tmp &= ~IF_MODE_HD; if (memac->phy_if == PHY_INTERFACE_MODE_RGMII) { /* Configure RGMII in manual mode */ tmp &= ~IF_MODE_RGMII_AUTO; tmp &= ~IF_MODE_RGMII_SP_MASK; /* Full duplex */ tmp |= IF_MODE_RGMII_FD; switch (speed) { case SPEED_1000: tmp |= IF_MODE_RGMII_1000; break; case SPEED_100: tmp |= IF_MODE_RGMII_100; break; case SPEED_10: tmp |= IF_MODE_RGMII_10; break; default: break; } } iowrite32be(tmp, ®s->if_mode); return 0; } int memac_cfg_max_frame_len(struct fman_mac *memac, u16 new_val) { if (is_init_done(memac->memac_drv_param)) return -EINVAL; memac->memac_drv_param->max_frame_length = new_val; return 0; } int memac_cfg_reset_on_init(struct fman_mac *memac, bool enable) { if (is_init_done(memac->memac_drv_param)) return -EINVAL; memac->memac_drv_param->reset_on_init = enable; return 0; } int memac_cfg_fixed_link(struct fman_mac *memac, struct fixed_phy_status *fixed_link) { if (is_init_done(memac->memac_drv_param)) return -EINVAL; memac->memac_drv_param->fixed_link = fixed_link; return 0; } int memac_set_tx_pause_frames(struct fman_mac *memac, u8 priority, u16 pause_time, u16 thresh_time) { struct memac_regs __iomem *regs = memac->regs; u32 tmp; if (!is_init_done(memac->memac_drv_param)) return -EINVAL; tmp = ioread32be(®s->tx_fifo_sections); GET_TX_EMPTY_DEFAULT_VALUE(tmp); iowrite32be(tmp, ®s->tx_fifo_sections); tmp = ioread32be(®s->command_config); tmp &= ~CMD_CFG_PFC_MODE; priority = 0; iowrite32be(tmp, ®s->command_config); tmp = ioread32be(®s->pause_quanta[priority / 2]); if (priority % 2) tmp &= CLXY_PAUSE_QUANTA_CLX_PQNT; else tmp &= CLXY_PAUSE_QUANTA_CLY_PQNT; tmp |= ((u32)pause_time << (16 * (priority % 2))); iowrite32be(tmp, ®s->pause_quanta[priority / 2]); tmp = ioread32be(®s->pause_thresh[priority / 2]); if (priority % 2) tmp &= CLXY_PAUSE_THRESH_CLX_QTH; else tmp &= CLXY_PAUSE_THRESH_CLY_QTH; tmp |= ((u32)thresh_time << (16 * (priority % 2))); iowrite32be(tmp, ®s->pause_thresh[priority / 2]); return 0; } int memac_accept_rx_pause_frames(struct fman_mac *memac, bool en) { struct memac_regs __iomem *regs = memac->regs; u32 tmp; if (!is_init_done(memac->memac_drv_param)) return -EINVAL; tmp = ioread32be(®s->command_config); if (en) tmp &= ~CMD_CFG_PAUSE_IGNORE; else tmp |= CMD_CFG_PAUSE_IGNORE; iowrite32be(tmp, ®s->command_config); return 0; } int memac_modify_mac_address(struct fman_mac *memac, enet_addr_t *enet_addr) { if (!is_init_done(memac->memac_drv_param)) return -EINVAL; add_addr_in_paddr(memac->regs, (u8 *)(*enet_addr), 0); return 0; } int memac_add_hash_mac_address(struct fman_mac *memac, enet_addr_t *eth_addr) { struct memac_regs __iomem *regs = memac->regs; struct eth_hash_entry *hash_entry; u32 hash; u64 addr; if (!is_init_done(memac->memac_drv_param)) return -EINVAL; addr = ENET_ADDR_TO_UINT64(*eth_addr); if (!(addr & GROUP_ADDRESS)) { /* Unicast addresses not supported in hash */ pr_err("Unicast Address\n"); return -EINVAL; } hash = get_mac_addr_hash_code(addr) & HASH_CTRL_ADDR_MASK; /* Create element to be added to the driver hash table */ hash_entry = kmalloc(sizeof(*hash_entry), GFP_ATOMIC); if (!hash_entry) return -ENOMEM; hash_entry->addr = addr; INIT_LIST_HEAD(&hash_entry->node); list_add_tail(&hash_entry->node, &memac->multicast_addr_hash->lsts[hash]); iowrite32be(hash | HASH_CTRL_MCAST_EN, ®s->hashtable_ctrl); return 0; } int memac_set_allmulti(struct fman_mac *memac, bool enable) { u32 entry; struct memac_regs __iomem *regs = memac->regs; if (!is_init_done(memac->memac_drv_param)) return -EINVAL; if (enable) { for (entry = 0; entry < HASH_TABLE_SIZE; entry++) iowrite32be(entry | HASH_CTRL_MCAST_EN, ®s->hashtable_ctrl); } else { for (entry = 0; entry < HASH_TABLE_SIZE; entry++) iowrite32be(entry & ~HASH_CTRL_MCAST_EN, ®s->hashtable_ctrl); } memac->allmulti_enabled = enable; return 0; } int memac_set_tstamp(struct fman_mac *memac, bool enable) { return 0; /* Always enabled. */ } int memac_del_hash_mac_address(struct fman_mac *memac, enet_addr_t *eth_addr) { struct memac_regs __iomem *regs = memac->regs; struct eth_hash_entry *hash_entry = NULL; struct list_head *pos; u32 hash; u64 addr; if (!is_init_done(memac->memac_drv_param)) return -EINVAL; addr = ENET_ADDR_TO_UINT64(*eth_addr); hash = get_mac_addr_hash_code(addr) & HASH_CTRL_ADDR_MASK; list_for_each(pos, &memac->multicast_addr_hash->lsts[hash]) { hash_entry = ETH_HASH_ENTRY_OBJ(pos); if (hash_entry->addr == addr) { list_del_init(&hash_entry->node); kfree(hash_entry); break; } } if (!memac->allmulti_enabled) { if (list_empty(&memac->multicast_addr_hash->lsts[hash])) iowrite32be(hash & ~HASH_CTRL_MCAST_EN, ®s->hashtable_ctrl); } return 0; } int memac_set_exception(struct fman_mac *memac, enum fman_mac_exceptions exception, bool enable) { u32 bit_mask = 0; if (!is_init_done(memac->memac_drv_param)) return -EINVAL; bit_mask = get_exception_flag(exception); if (bit_mask) { if (enable) memac->exceptions |= bit_mask; else memac->exceptions &= ~bit_mask; } else { pr_err("Undefined exception\n"); return -EINVAL; } set_exception(memac->regs, bit_mask, enable); return 0; } int memac_init(struct fman_mac *memac) { struct memac_cfg *memac_drv_param; u8 i; enet_addr_t eth_addr; bool slow_10g_if = false; struct fixed_phy_status *fixed_link; int err; u32 reg32 = 0; if (is_init_done(memac->memac_drv_param)) return -EINVAL; err = check_init_parameters(memac); if (err) return err; memac_drv_param = memac->memac_drv_param; if (memac->fm_rev_info.major == 6 && memac->fm_rev_info.minor == 4) slow_10g_if = true; /* First, reset the MAC if desired. */ if (memac_drv_param->reset_on_init) { err = reset(memac->regs); if (err) { pr_err("mEMAC reset failed\n"); return err; } } /* MAC Address */ MAKE_ENET_ADDR_FROM_UINT64(memac->addr, eth_addr); add_addr_in_paddr(memac->regs, (u8 *)eth_addr, 0); fixed_link = memac_drv_param->fixed_link; init(memac->regs, memac->memac_drv_param, memac->phy_if, memac->max_speed, slow_10g_if, memac->exceptions); /* FM_RX_FIFO_CORRUPT_ERRATA_10GMAC_A006320 errata workaround * Exists only in FMan 6.0 and 6.3. */ if ((memac->fm_rev_info.major == 6) && ((memac->fm_rev_info.minor == 0) || (memac->fm_rev_info.minor == 3))) { /* MAC strips CRC from received frames - this workaround * should decrease the likelihood of bug appearance */ reg32 = ioread32be(&memac->regs->command_config); reg32 &= ~CMD_CFG_CRC_FWD; iowrite32be(reg32, &memac->regs->command_config); } if (memac->phy_if == PHY_INTERFACE_MODE_SGMII) { /* Configure internal SGMII PHY */ if (memac->basex_if) setup_sgmii_internal_phy_base_x(memac); else setup_sgmii_internal_phy(memac, fixed_link); } else if (memac->phy_if == PHY_INTERFACE_MODE_QSGMII) { /* Configure 4 internal SGMII PHYs */ for (i = 0; i < 4; i++) { u8 qsmgii_phy_addr, phy_addr; /* QSGMII PHY address occupies 3 upper bits of 5-bit * phy_address; the lower 2 bits are used to extend * register address space and access each one of 4 * ports inside QSGMII. */ phy_addr = memac->pcsphy->mdio.addr; qsmgii_phy_addr = (u8)((phy_addr << 2) | i); memac->pcsphy->mdio.addr = qsmgii_phy_addr; if (memac->basex_if) setup_sgmii_internal_phy_base_x(memac); else setup_sgmii_internal_phy(memac, fixed_link); memac->pcsphy->mdio.addr = phy_addr; } } /* Max Frame Length */ err = fman_set_mac_max_frame(memac->fm, memac->mac_id, memac_drv_param->max_frame_length); if (err) { pr_err("settings Mac max frame length is FAILED\n"); return err; } memac->multicast_addr_hash = alloc_hash_table(HASH_TABLE_SIZE); if (!memac->multicast_addr_hash) { free_init_resources(memac); pr_err("allocation hash table is FAILED\n"); return -ENOMEM; } memac->unicast_addr_hash = alloc_hash_table(HASH_TABLE_SIZE); if (!memac->unicast_addr_hash) { free_init_resources(memac); pr_err("allocation hash table is FAILED\n"); return -ENOMEM; } fman_register_intr(memac->fm, FMAN_MOD_MAC, memac->mac_id, FMAN_INTR_TYPE_ERR, memac_err_exception, memac); fman_register_intr(memac->fm, FMAN_MOD_MAC, memac->mac_id, FMAN_INTR_TYPE_NORMAL, memac_exception, memac); kfree(memac_drv_param); memac->memac_drv_param = NULL; return 0; } int memac_free(struct fman_mac *memac) { free_init_resources(memac); if (memac->pcsphy) put_device(&memac->pcsphy->mdio.dev); kfree(memac->memac_drv_param); kfree(memac); return 0; } struct fman_mac *memac_config(struct fman_mac_params *params) { struct fman_mac *memac; struct memac_cfg *memac_drv_param; void __iomem *base_addr; base_addr = params->base_addr; /* allocate memory for the m_emac data structure */ memac = kzalloc(sizeof(*memac), GFP_KERNEL); if (!memac) return NULL; /* allocate memory for the m_emac driver parameters data structure */ memac_drv_param = kzalloc(sizeof(*memac_drv_param), GFP_KERNEL); if (!memac_drv_param) { memac_free(memac); return NULL; } /* Plant parameter structure pointer */ memac->memac_drv_param = memac_drv_param; set_dflts(memac_drv_param); memac->addr = ENET_ADDR_TO_UINT64(params->addr); memac->regs = base_addr; memac->max_speed = params->max_speed; memac->phy_if = params->phy_if; memac->mac_id = params->mac_id; memac->exceptions = (MEMAC_IMASK_TSECC_ER | MEMAC_IMASK_TECC_ER | MEMAC_IMASK_RECC_ER | MEMAC_IMASK_MGI); memac->exception_cb = params->exception_cb; memac->event_cb = params->event_cb; memac->dev_id = params->dev_id; memac->fm = params->fm; memac->basex_if = params->basex_if; /* Save FMan revision */ fman_get_revision(memac->fm, &memac->fm_rev_info); if (memac->phy_if == PHY_INTERFACE_MODE_SGMII || memac->phy_if == PHY_INTERFACE_MODE_QSGMII) { if (!params->internal_phy_node) { pr_err("PCS PHY node is not available\n"); memac_free(memac); return NULL; } memac->pcsphy = of_phy_find_device(params->internal_phy_node); if (!memac->pcsphy) { pr_err("of_phy_find_device (PCS PHY) failed\n"); memac_free(memac); return NULL; } } return memac; }