// SPDX-License-Identifier: GPL-2.0-only /* Copyright (C) 2023 Intel Corporation */ #include "idpf_controlq.h" /** * idpf_ctlq_setup_regs - initialize control queue registers * @cq: pointer to the specific control queue * @q_create_info: structs containing info for each queue to be initialized */ static void idpf_ctlq_setup_regs(struct idpf_ctlq_info *cq, struct idpf_ctlq_create_info *q_create_info) { /* set control queue registers in our local struct */ cq->reg.head = q_create_info->reg.head; cq->reg.tail = q_create_info->reg.tail; cq->reg.len = q_create_info->reg.len; cq->reg.bah = q_create_info->reg.bah; cq->reg.bal = q_create_info->reg.bal; cq->reg.len_mask = q_create_info->reg.len_mask; cq->reg.len_ena_mask = q_create_info->reg.len_ena_mask; cq->reg.head_mask = q_create_info->reg.head_mask; } /** * idpf_ctlq_init_regs - Initialize control queue registers * @hw: pointer to hw struct * @cq: pointer to the specific Control queue * @is_rxq: true if receive control queue, false otherwise * * Initialize registers. The caller is expected to have already initialized the * descriptor ring memory and buffer memory */ static void idpf_ctlq_init_regs(struct idpf_hw *hw, struct idpf_ctlq_info *cq, bool is_rxq) { /* Update tail to post pre-allocated buffers for rx queues */ if (is_rxq) wr32(hw, cq->reg.tail, (u32)(cq->ring_size - 1)); /* For non-Mailbox control queues only TAIL need to be set */ if (cq->q_id != -1) return; /* Clear Head for both send or receive */ wr32(hw, cq->reg.head, 0); /* set starting point */ wr32(hw, cq->reg.bal, lower_32_bits(cq->desc_ring.pa)); wr32(hw, cq->reg.bah, upper_32_bits(cq->desc_ring.pa)); wr32(hw, cq->reg.len, (cq->ring_size | cq->reg.len_ena_mask)); } /** * idpf_ctlq_init_rxq_bufs - populate receive queue descriptors with buf * @cq: pointer to the specific Control queue * * Record the address of the receive queue DMA buffers in the descriptors. * The buffers must have been previously allocated. */ static void idpf_ctlq_init_rxq_bufs(struct idpf_ctlq_info *cq) { int i; for (i = 0; i < cq->ring_size; i++) { struct idpf_ctlq_desc *desc = IDPF_CTLQ_DESC(cq, i); struct idpf_dma_mem *bi = cq->bi.rx_buff[i]; /* No buffer to post to descriptor, continue */ if (!bi) continue; desc->flags = cpu_to_le16(IDPF_CTLQ_FLAG_BUF | IDPF_CTLQ_FLAG_RD); desc->opcode = 0; desc->datalen = cpu_to_le16(bi->size); desc->ret_val = 0; desc->v_opcode_dtype = 0; desc->v_retval = 0; desc->params.indirect.addr_high = cpu_to_le32(upper_32_bits(bi->pa)); desc->params.indirect.addr_low = cpu_to_le32(lower_32_bits(bi->pa)); desc->params.indirect.param0 = 0; desc->params.indirect.sw_cookie = 0; desc->params.indirect.v_flags = 0; } } /** * idpf_ctlq_shutdown - shutdown the CQ * @hw: pointer to hw struct * @cq: pointer to the specific Control queue * * The main shutdown routine for any controq queue */ static void idpf_ctlq_shutdown(struct idpf_hw *hw, struct idpf_ctlq_info *cq) { mutex_lock(&cq->cq_lock); /* free ring buffers and the ring itself */ idpf_ctlq_dealloc_ring_res(hw, cq); /* Set ring_size to 0 to indicate uninitialized queue */ cq->ring_size = 0; mutex_unlock(&cq->cq_lock); mutex_destroy(&cq->cq_lock); } /** * idpf_ctlq_add - add one control queue * @hw: pointer to hardware struct * @qinfo: info for queue to be created * @cq_out: (output) double pointer to control queue to be created * * Allocate and initialize a control queue and add it to the control queue list. * The cq parameter will be allocated/initialized and passed back to the caller * if no errors occur. * * Note: idpf_ctlq_init must be called prior to any calls to idpf_ctlq_add */ int idpf_ctlq_add(struct idpf_hw *hw, struct idpf_ctlq_create_info *qinfo, struct idpf_ctlq_info **cq_out) { struct idpf_ctlq_info *cq; bool is_rxq = false; int err; cq = kzalloc(sizeof(*cq), GFP_KERNEL); if (!cq) return -ENOMEM; cq->cq_type = qinfo->type; cq->q_id = qinfo->id; cq->buf_size = qinfo->buf_size; cq->ring_size = qinfo->len; cq->next_to_use = 0; cq->next_to_clean = 0; cq->next_to_post = cq->ring_size - 1; switch (qinfo->type) { case IDPF_CTLQ_TYPE_MAILBOX_RX: is_rxq = true; fallthrough; case IDPF_CTLQ_TYPE_MAILBOX_TX: err = idpf_ctlq_alloc_ring_res(hw, cq); break; default: err = -EBADR; break; } if (err) goto init_free_q; if (is_rxq) { idpf_ctlq_init_rxq_bufs(cq); } else { /* Allocate the array of msg pointers for TX queues */ cq->bi.tx_msg = kcalloc(qinfo->len, sizeof(struct idpf_ctlq_msg *), GFP_KERNEL); if (!cq->bi.tx_msg) { err = -ENOMEM; goto init_dealloc_q_mem; } } idpf_ctlq_setup_regs(cq, qinfo); idpf_ctlq_init_regs(hw, cq, is_rxq); mutex_init(&cq->cq_lock); list_add(&cq->cq_list, &hw->cq_list_head); *cq_out = cq; return 0; init_dealloc_q_mem: /* free ring buffers and the ring itself */ idpf_ctlq_dealloc_ring_res(hw, cq); init_free_q: kfree(cq); return err; } /** * idpf_ctlq_remove - deallocate and remove specified control queue * @hw: pointer to hardware struct * @cq: pointer to control queue to be removed */ void idpf_ctlq_remove(struct idpf_hw *hw, struct idpf_ctlq_info *cq) { list_del(&cq->cq_list); idpf_ctlq_shutdown(hw, cq); kfree(cq); } /** * idpf_ctlq_init - main initialization routine for all control queues * @hw: pointer to hardware struct * @num_q: number of queues to initialize * @q_info: array of structs containing info for each queue to be initialized * * This initializes any number and any type of control queues. This is an all * or nothing routine; if one fails, all previously allocated queues will be * destroyed. This must be called prior to using the individual add/remove * APIs. */ int idpf_ctlq_init(struct idpf_hw *hw, u8 num_q, struct idpf_ctlq_create_info *q_info) { struct idpf_ctlq_info *cq, *tmp; int err; int i; INIT_LIST_HEAD(&hw->cq_list_head); for (i = 0; i < num_q; i++) { struct idpf_ctlq_create_info *qinfo = q_info + i; err = idpf_ctlq_add(hw, qinfo, &cq); if (err) goto init_destroy_qs; } return 0; init_destroy_qs: list_for_each_entry_safe(cq, tmp, &hw->cq_list_head, cq_list) idpf_ctlq_remove(hw, cq); return err; } /** * idpf_ctlq_deinit - destroy all control queues * @hw: pointer to hw struct */ void idpf_ctlq_deinit(struct idpf_hw *hw) { struct idpf_ctlq_info *cq, *tmp; list_for_each_entry_safe(cq, tmp, &hw->cq_list_head, cq_list) idpf_ctlq_remove(hw, cq); } /** * idpf_ctlq_send - send command to Control Queue (CTQ) * @hw: pointer to hw struct * @cq: handle to control queue struct to send on * @num_q_msg: number of messages to send on control queue * @q_msg: pointer to array of queue messages to be sent * * The caller is expected to allocate DMAable buffers and pass them to the * send routine via the q_msg struct / control queue specific data struct. * The control queue will hold a reference to each send message until * the completion for that message has been cleaned. */ int idpf_ctlq_send(struct idpf_hw *hw, struct idpf_ctlq_info *cq, u16 num_q_msg, struct idpf_ctlq_msg q_msg[]) { struct idpf_ctlq_desc *desc; int num_desc_avail; int err = 0; int i; mutex_lock(&cq->cq_lock); /* Ensure there are enough descriptors to send all messages */ num_desc_avail = IDPF_CTLQ_DESC_UNUSED(cq); if (num_desc_avail == 0 || num_desc_avail < num_q_msg) { err = -ENOSPC; goto err_unlock; } for (i = 0; i < num_q_msg; i++) { struct idpf_ctlq_msg *msg = &q_msg[i]; desc = IDPF_CTLQ_DESC(cq, cq->next_to_use); desc->opcode = cpu_to_le16(msg->opcode); desc->pfid_vfid = cpu_to_le16(msg->func_id); desc->v_opcode_dtype = cpu_to_le32(msg->cookie.mbx.chnl_opcode); desc->v_retval = cpu_to_le32(msg->cookie.mbx.chnl_retval); desc->flags = cpu_to_le16((msg->host_id & IDPF_HOST_ID_MASK) << IDPF_CTLQ_FLAG_HOST_ID_S); if (msg->data_len) { struct idpf_dma_mem *buff = msg->ctx.indirect.payload; desc->datalen |= cpu_to_le16(msg->data_len); desc->flags |= cpu_to_le16(IDPF_CTLQ_FLAG_BUF); desc->flags |= cpu_to_le16(IDPF_CTLQ_FLAG_RD); /* Update the address values in the desc with the pa * value for respective buffer */ desc->params.indirect.addr_high = cpu_to_le32(upper_32_bits(buff->pa)); desc->params.indirect.addr_low = cpu_to_le32(lower_32_bits(buff->pa)); memcpy(&desc->params, msg->ctx.indirect.context, IDPF_INDIRECT_CTX_SIZE); } else { memcpy(&desc->params, msg->ctx.direct, IDPF_DIRECT_CTX_SIZE); } /* Store buffer info */ cq->bi.tx_msg[cq->next_to_use] = msg; (cq->next_to_use)++; if (cq->next_to_use == cq->ring_size) cq->next_to_use = 0; } /* Force memory write to complete before letting hardware * know that there are new descriptors to fetch. */ dma_wmb(); wr32(hw, cq->reg.tail, cq->next_to_use); err_unlock: mutex_unlock(&cq->cq_lock); return err; } /** * idpf_ctlq_clean_sq - reclaim send descriptors on HW write back for the * requested queue * @cq: pointer to the specific Control queue * @clean_count: (input|output) number of descriptors to clean as input, and * number of descriptors actually cleaned as output * @msg_status: (output) pointer to msg pointer array to be populated; needs * to be allocated by caller * * Returns an array of message pointers associated with the cleaned * descriptors. The pointers are to the original ctlq_msgs sent on the cleaned * descriptors. The status will be returned for each; any messages that failed * to send will have a non-zero status. The caller is expected to free original * ctlq_msgs and free or reuse the DMA buffers. */ int idpf_ctlq_clean_sq(struct idpf_ctlq_info *cq, u16 *clean_count, struct idpf_ctlq_msg *msg_status[]) { struct idpf_ctlq_desc *desc; u16 i, num_to_clean; u16 ntc, desc_err; if (*clean_count == 0) return 0; if (*clean_count > cq->ring_size) return -EBADR; mutex_lock(&cq->cq_lock); ntc = cq->next_to_clean; num_to_clean = *clean_count; for (i = 0; i < num_to_clean; i++) { /* Fetch next descriptor and check if marked as done */ desc = IDPF_CTLQ_DESC(cq, ntc); if (!(le16_to_cpu(desc->flags) & IDPF_CTLQ_FLAG_DD)) break; /* strip off FW internal code */ desc_err = le16_to_cpu(desc->ret_val) & 0xff; msg_status[i] = cq->bi.tx_msg[ntc]; msg_status[i]->status = desc_err; cq->bi.tx_msg[ntc] = NULL; /* Zero out any stale data */ memset(desc, 0, sizeof(*desc)); ntc++; if (ntc == cq->ring_size) ntc = 0; } cq->next_to_clean = ntc; mutex_unlock(&cq->cq_lock); /* Return number of descriptors actually cleaned */ *clean_count = i; return 0; } /** * idpf_ctlq_post_rx_buffs - post buffers to descriptor ring * @hw: pointer to hw struct * @cq: pointer to control queue handle * @buff_count: (input|output) input is number of buffers caller is trying to * return; output is number of buffers that were not posted * @buffs: array of pointers to dma mem structs to be given to hardware * * Caller uses this function to return DMA buffers to the descriptor ring after * consuming them; buff_count will be the number of buffers. * * Note: this function needs to be called after a receive call even * if there are no DMA buffers to be returned, i.e. buff_count = 0, * buffs = NULL to support direct commands */ int idpf_ctlq_post_rx_buffs(struct idpf_hw *hw, struct idpf_ctlq_info *cq, u16 *buff_count, struct idpf_dma_mem **buffs) { struct idpf_ctlq_desc *desc; u16 ntp = cq->next_to_post; bool buffs_avail = false; u16 tbp = ntp + 1; int i = 0; if (*buff_count > cq->ring_size) return -EBADR; if (*buff_count > 0) buffs_avail = true; mutex_lock(&cq->cq_lock); if (tbp >= cq->ring_size) tbp = 0; if (tbp == cq->next_to_clean) /* Nothing to do */ goto post_buffs_out; /* Post buffers for as many as provided or up until the last one used */ while (ntp != cq->next_to_clean) { desc = IDPF_CTLQ_DESC(cq, ntp); if (cq->bi.rx_buff[ntp]) goto fill_desc; if (!buffs_avail) { /* If the caller hasn't given us any buffers or * there are none left, search the ring itself * for an available buffer to move to this * entry starting at the next entry in the ring */ tbp = ntp + 1; /* Wrap ring if necessary */ if (tbp >= cq->ring_size) tbp = 0; while (tbp != cq->next_to_clean) { if (cq->bi.rx_buff[tbp]) { cq->bi.rx_buff[ntp] = cq->bi.rx_buff[tbp]; cq->bi.rx_buff[tbp] = NULL; /* Found a buffer, no need to * search anymore */ break; } /* Wrap ring if necessary */ tbp++; if (tbp >= cq->ring_size) tbp = 0; } if (tbp == cq->next_to_clean) goto post_buffs_out; } else { /* Give back pointer to DMA buffer */ cq->bi.rx_buff[ntp] = buffs[i]; i++; if (i >= *buff_count) buffs_avail = false; } fill_desc: desc->flags = cpu_to_le16(IDPF_CTLQ_FLAG_BUF | IDPF_CTLQ_FLAG_RD); /* Post buffers to descriptor */ desc->datalen = cpu_to_le16(cq->bi.rx_buff[ntp]->size); desc->params.indirect.addr_high = cpu_to_le32(upper_32_bits(cq->bi.rx_buff[ntp]->pa)); desc->params.indirect.addr_low = cpu_to_le32(lower_32_bits(cq->bi.rx_buff[ntp]->pa)); ntp++; if (ntp == cq->ring_size) ntp = 0; } post_buffs_out: /* Only update tail if buffers were actually posted */ if (cq->next_to_post != ntp) { if (ntp) /* Update next_to_post to ntp - 1 since current ntp * will not have a buffer */ cq->next_to_post = ntp - 1; else /* Wrap to end of end ring since current ntp is 0 */ cq->next_to_post = cq->ring_size - 1; wr32(hw, cq->reg.tail, cq->next_to_post); } mutex_unlock(&cq->cq_lock); /* return the number of buffers that were not posted */ *buff_count = *buff_count - i; return 0; } /** * idpf_ctlq_recv - receive control queue message call back * @cq: pointer to control queue handle to receive on * @num_q_msg: (input|output) input number of messages that should be received; * output number of messages actually received * @q_msg: (output) array of received control queue messages on this q; * needs to be pre-allocated by caller for as many messages as requested * * Called by interrupt handler or polling mechanism. Caller is expected * to free buffers */ int idpf_ctlq_recv(struct idpf_ctlq_info *cq, u16 *num_q_msg, struct idpf_ctlq_msg *q_msg) { u16 num_to_clean, ntc, flags; struct idpf_ctlq_desc *desc; int err = 0; u16 i; if (*num_q_msg == 0) return 0; else if (*num_q_msg > cq->ring_size) return -EBADR; /* take the lock before we start messing with the ring */ mutex_lock(&cq->cq_lock); ntc = cq->next_to_clean; num_to_clean = *num_q_msg; for (i = 0; i < num_to_clean; i++) { /* Fetch next descriptor and check if marked as done */ desc = IDPF_CTLQ_DESC(cq, ntc); flags = le16_to_cpu(desc->flags); if (!(flags & IDPF_CTLQ_FLAG_DD)) break; q_msg[i].vmvf_type = (flags & (IDPF_CTLQ_FLAG_FTYPE_VM | IDPF_CTLQ_FLAG_FTYPE_PF)) >> IDPF_CTLQ_FLAG_FTYPE_S; if (flags & IDPF_CTLQ_FLAG_ERR) err = -EBADMSG; q_msg[i].cookie.mbx.chnl_opcode = le32_to_cpu(desc->v_opcode_dtype); q_msg[i].cookie.mbx.chnl_retval = le32_to_cpu(desc->v_retval); q_msg[i].opcode = le16_to_cpu(desc->opcode); q_msg[i].data_len = le16_to_cpu(desc->datalen); q_msg[i].status = le16_to_cpu(desc->ret_val); if (desc->datalen) { memcpy(q_msg[i].ctx.indirect.context, &desc->params.indirect, IDPF_INDIRECT_CTX_SIZE); /* Assign pointer to dma buffer to ctlq_msg array * to be given to upper layer */ q_msg[i].ctx.indirect.payload = cq->bi.rx_buff[ntc]; /* Zero out pointer to DMA buffer info; * will be repopulated by post buffers API */ cq->bi.rx_buff[ntc] = NULL; } else { memcpy(q_msg[i].ctx.direct, desc->params.raw, IDPF_DIRECT_CTX_SIZE); } /* Zero out stale data in descriptor */ memset(desc, 0, sizeof(struct idpf_ctlq_desc)); ntc++; if (ntc == cq->ring_size) ntc = 0; } cq->next_to_clean = ntc; mutex_unlock(&cq->cq_lock); *num_q_msg = i; if (*num_q_msg == 0) err = -ENOMSG; return err; }