/* SPDX-License-Identifier: GPL-2.0-only */ /* Copyright (C) 2023 Intel Corporation */ #ifndef _IDPF_TXRX_H_ #define _IDPF_TXRX_H_ #include #include #include #define IDPF_LARGE_MAX_Q 256 #define IDPF_MAX_Q 16 #define IDPF_MIN_Q 2 /* Mailbox Queue */ #define IDPF_MAX_MBXQ 1 #define IDPF_MIN_TXQ_DESC 64 #define IDPF_MIN_RXQ_DESC 64 #define IDPF_MIN_TXQ_COMPLQ_DESC 256 #define IDPF_MAX_QIDS 256 /* Number of descriptors in a queue should be a multiple of 32. RX queue * descriptors alone should be a multiple of IDPF_REQ_RXQ_DESC_MULTIPLE * to achieve BufQ descriptors aligned to 32 */ #define IDPF_REQ_DESC_MULTIPLE 32 #define IDPF_REQ_RXQ_DESC_MULTIPLE (IDPF_MAX_BUFQS_PER_RXQ_GRP * 32) #define IDPF_MIN_TX_DESC_NEEDED (MAX_SKB_FRAGS + 6) #define IDPF_TX_WAKE_THRESH ((u16)IDPF_MIN_TX_DESC_NEEDED * 2) #define IDPF_MAX_DESCS 8160 #define IDPF_MAX_TXQ_DESC ALIGN_DOWN(IDPF_MAX_DESCS, IDPF_REQ_DESC_MULTIPLE) #define IDPF_MAX_RXQ_DESC ALIGN_DOWN(IDPF_MAX_DESCS, IDPF_REQ_RXQ_DESC_MULTIPLE) #define MIN_SUPPORT_TXDID (\ VIRTCHNL2_TXDID_FLEX_FLOW_SCHED |\ VIRTCHNL2_TXDID_FLEX_TSO_CTX) #define IDPF_DFLT_SINGLEQ_TX_Q_GROUPS 1 #define IDPF_DFLT_SINGLEQ_RX_Q_GROUPS 1 #define IDPF_DFLT_SINGLEQ_TXQ_PER_GROUP 4 #define IDPF_DFLT_SINGLEQ_RXQ_PER_GROUP 4 #define IDPF_COMPLQ_PER_GROUP 1 #define IDPF_SINGLE_BUFQ_PER_RXQ_GRP 1 #define IDPF_MAX_BUFQS_PER_RXQ_GRP 2 #define IDPF_BUFQ2_ENA 1 #define IDPF_NUMQ_PER_CHUNK 1 #define IDPF_DFLT_SPLITQ_TXQ_PER_GROUP 1 #define IDPF_DFLT_SPLITQ_RXQ_PER_GROUP 1 /* Default vector sharing */ #define IDPF_MBX_Q_VEC 1 #define IDPF_MIN_Q_VEC 1 #define IDPF_DFLT_TX_Q_DESC_COUNT 512 #define IDPF_DFLT_TX_COMPLQ_DESC_COUNT 512 #define IDPF_DFLT_RX_Q_DESC_COUNT 512 /* IMPORTANT: We absolutely _cannot_ have more buffers in the system than a * given RX completion queue has descriptors. This includes _ALL_ buffer * queues. E.g.: If you have two buffer queues of 512 descriptors and buffers, * you have a total of 1024 buffers so your RX queue _must_ have at least that * many descriptors. This macro divides a given number of RX descriptors by * number of buffer queues to calculate how many descriptors each buffer queue * can have without overrunning the RX queue. * * If you give hardware more buffers than completion descriptors what will * happen is that if hardware gets a chance to post more than ring wrap of * descriptors before SW gets an interrupt and overwrites SW head, the gen bit * in the descriptor will be wrong. Any overwritten descriptors' buffers will * be gone forever and SW has no reasonable way to tell that this has happened. * From SW perspective, when we finally get an interrupt, it looks like we're * still waiting for descriptor to be done, stalling forever. */ #define IDPF_RX_BUFQ_DESC_COUNT(RXD, NUM_BUFQ) ((RXD) / (NUM_BUFQ)) #define IDPF_RX_BUFQ_WORKING_SET(rxq) ((rxq)->desc_count - 1) #define IDPF_RX_BUMP_NTC(rxq, ntc) \ do { \ if (unlikely(++(ntc) == (rxq)->desc_count)) { \ ntc = 0; \ change_bit(__IDPF_Q_GEN_CHK, (rxq)->flags); \ } \ } while (0) #define IDPF_SINGLEQ_BUMP_RING_IDX(q, idx) \ do { \ if (unlikely(++(idx) == (q)->desc_count)) \ idx = 0; \ } while (0) #define IDPF_RX_HDR_SIZE 256 #define IDPF_RX_BUF_2048 2048 #define IDPF_RX_BUF_4096 4096 #define IDPF_RX_BUF_STRIDE 32 #define IDPF_RX_BUF_POST_STRIDE 16 #define IDPF_LOW_WATERMARK 64 /* Size of header buffer specifically for header split */ #define IDPF_HDR_BUF_SIZE 256 #define IDPF_PACKET_HDR_PAD \ (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN * 2) #define IDPF_TX_TSO_MIN_MSS 88 /* Minimum number of descriptors between 2 descriptors with the RE bit set; * only relevant in flow scheduling mode */ #define IDPF_TX_SPLITQ_RE_MIN_GAP 64 #define IDPF_RX_BI_BUFID_S 0 #define IDPF_RX_BI_BUFID_M GENMASK(14, 0) #define IDPF_RX_BI_GEN_S 15 #define IDPF_RX_BI_GEN_M BIT(IDPF_RX_BI_GEN_S) #define IDPF_RXD_EOF_SPLITQ VIRTCHNL2_RX_FLEX_DESC_ADV_STATUS0_EOF_M #define IDPF_RXD_EOF_SINGLEQ VIRTCHNL2_RX_BASE_DESC_STATUS_EOF_M #define IDPF_SINGLEQ_RX_BUF_DESC(rxq, i) \ (&(((struct virtchnl2_singleq_rx_buf_desc *)((rxq)->desc_ring))[i])) #define IDPF_SPLITQ_RX_BUF_DESC(rxq, i) \ (&(((struct virtchnl2_splitq_rx_buf_desc *)((rxq)->desc_ring))[i])) #define IDPF_SPLITQ_RX_BI_DESC(rxq, i) ((((rxq)->ring))[i]) #define IDPF_BASE_TX_DESC(txq, i) \ (&(((struct idpf_base_tx_desc *)((txq)->desc_ring))[i])) #define IDPF_BASE_TX_CTX_DESC(txq, i) \ (&(((struct idpf_base_tx_ctx_desc *)((txq)->desc_ring))[i])) #define IDPF_SPLITQ_TX_COMPLQ_DESC(txcq, i) \ (&(((struct idpf_splitq_tx_compl_desc *)((txcq)->desc_ring))[i])) #define IDPF_FLEX_TX_DESC(txq, i) \ (&(((union idpf_tx_flex_desc *)((txq)->desc_ring))[i])) #define IDPF_FLEX_TX_CTX_DESC(txq, i) \ (&(((struct idpf_flex_tx_ctx_desc *)((txq)->desc_ring))[i])) #define IDPF_DESC_UNUSED(txq) \ ((((txq)->next_to_clean > (txq)->next_to_use) ? 0 : (txq)->desc_count) + \ (txq)->next_to_clean - (txq)->next_to_use - 1) #define IDPF_TX_BUF_RSV_UNUSED(txq) ((txq)->buf_stack.top) #define IDPF_TX_BUF_RSV_LOW(txq) (IDPF_TX_BUF_RSV_UNUSED(txq) < \ (txq)->desc_count >> 2) #define IDPF_TX_COMPLQ_OVERFLOW_THRESH(txcq) ((txcq)->desc_count >> 1) /* Determine the absolute number of completions pending, i.e. the number of * completions that are expected to arrive on the TX completion queue. */ #define IDPF_TX_COMPLQ_PENDING(txq) \ (((txq)->num_completions_pending >= (txq)->complq->num_completions ? \ 0 : U64_MAX) + \ (txq)->num_completions_pending - (txq)->complq->num_completions) #define IDPF_TX_SPLITQ_COMPL_TAG_WIDTH 16 #define IDPF_SPLITQ_TX_INVAL_COMPL_TAG -1 /* Adjust the generation for the completion tag and wrap if necessary */ #define IDPF_TX_ADJ_COMPL_TAG_GEN(txq) \ ((++(txq)->compl_tag_cur_gen) >= (txq)->compl_tag_gen_max ? \ 0 : (txq)->compl_tag_cur_gen) #define IDPF_TXD_LAST_DESC_CMD (IDPF_TX_DESC_CMD_EOP | IDPF_TX_DESC_CMD_RS) #define IDPF_TX_FLAGS_TSO BIT(0) #define IDPF_TX_FLAGS_IPV4 BIT(1) #define IDPF_TX_FLAGS_IPV6 BIT(2) #define IDPF_TX_FLAGS_TUNNEL BIT(3) union idpf_tx_flex_desc { struct idpf_flex_tx_desc q; /* queue based scheduling */ struct idpf_flex_tx_sched_desc flow; /* flow based scheduling */ }; /** * struct idpf_tx_buf * @next_to_watch: Next descriptor to clean * @skb: Pointer to the skb * @dma: DMA address * @len: DMA length * @bytecount: Number of bytes * @gso_segs: Number of GSO segments * @compl_tag: Splitq only, unique identifier for a buffer. Used to compare * with completion tag returned in buffer completion event. * Because the completion tag is expected to be the same in all * data descriptors for a given packet, and a single packet can * span multiple buffers, we need this field to track all * buffers associated with this completion tag independently of * the buf_id. The tag consists of a N bit buf_id and M upper * order "generation bits". See compl_tag_bufid_m and * compl_tag_gen_s in struct idpf_queue. We'll use a value of -1 * to indicate the tag is not valid. * @ctx_entry: Singleq only. Used to indicate the corresponding entry * in the descriptor ring was used for a context descriptor and * this buffer entry should be skipped. */ struct idpf_tx_buf { void *next_to_watch; struct sk_buff *skb; DEFINE_DMA_UNMAP_ADDR(dma); DEFINE_DMA_UNMAP_LEN(len); unsigned int bytecount; unsigned short gso_segs; union { int compl_tag; bool ctx_entry; }; }; struct idpf_tx_stash { struct hlist_node hlist; struct idpf_tx_buf buf; }; /** * struct idpf_buf_lifo - LIFO for managing OOO completions * @top: Used to know how many buffers are left * @size: Total size of LIFO * @bufs: Backing array */ struct idpf_buf_lifo { u16 top; u16 size; struct idpf_tx_stash **bufs; }; /** * struct idpf_tx_offload_params - Offload parameters for a given packet * @tx_flags: Feature flags enabled for this packet * @hdr_offsets: Offset parameter for single queue model * @cd_tunneling: Type of tunneling enabled for single queue model * @tso_len: Total length of payload to segment * @mss: Segment size * @tso_segs: Number of segments to be sent * @tso_hdr_len: Length of headers to be duplicated * @td_cmd: Command field to be inserted into descriptor */ struct idpf_tx_offload_params { u32 tx_flags; u32 hdr_offsets; u32 cd_tunneling; u32 tso_len; u16 mss; u16 tso_segs; u16 tso_hdr_len; u16 td_cmd; }; /** * struct idpf_tx_splitq_params * @dtype: General descriptor info * @eop_cmd: Type of EOP * @compl_tag: Associated tag for completion * @td_tag: Descriptor tunneling tag * @offload: Offload parameters */ struct idpf_tx_splitq_params { enum idpf_tx_desc_dtype_value dtype; u16 eop_cmd; union { u16 compl_tag; u16 td_tag; }; struct idpf_tx_offload_params offload; }; enum idpf_tx_ctx_desc_eipt_offload { IDPF_TX_CTX_EXT_IP_NONE = 0x0, IDPF_TX_CTX_EXT_IP_IPV6 = 0x1, IDPF_TX_CTX_EXT_IP_IPV4_NO_CSUM = 0x2, IDPF_TX_CTX_EXT_IP_IPV4 = 0x3 }; /* Checksum offload bits decoded from the receive descriptor. */ struct idpf_rx_csum_decoded { u32 l3l4p : 1; u32 ipe : 1; u32 eipe : 1; u32 eudpe : 1; u32 ipv6exadd : 1; u32 l4e : 1; u32 pprs : 1; u32 nat : 1; u32 raw_csum_inv : 1; u32 raw_csum : 16; }; struct idpf_rx_extracted { unsigned int size; u16 rx_ptype; }; #define IDPF_TX_COMPLQ_CLEAN_BUDGET 256 #define IDPF_TX_MIN_PKT_LEN 17 #define IDPF_TX_DESCS_FOR_SKB_DATA_PTR 1 #define IDPF_TX_DESCS_PER_CACHE_LINE (L1_CACHE_BYTES / \ sizeof(struct idpf_flex_tx_desc)) #define IDPF_TX_DESCS_FOR_CTX 1 /* TX descriptors needed, worst case */ #define IDPF_TX_DESC_NEEDED (MAX_SKB_FRAGS + IDPF_TX_DESCS_FOR_CTX + \ IDPF_TX_DESCS_PER_CACHE_LINE + \ IDPF_TX_DESCS_FOR_SKB_DATA_PTR) /* The size limit for a transmit buffer in a descriptor is (16K - 1). * In order to align with the read requests we will align the value to * the nearest 4K which represents our maximum read request size. */ #define IDPF_TX_MAX_READ_REQ_SIZE SZ_4K #define IDPF_TX_MAX_DESC_DATA (SZ_16K - 1) #define IDPF_TX_MAX_DESC_DATA_ALIGNED \ ALIGN_DOWN(IDPF_TX_MAX_DESC_DATA, IDPF_TX_MAX_READ_REQ_SIZE) #define IDPF_RX_DMA_ATTR \ (DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING) #define IDPF_RX_DESC(rxq, i) \ (&(((union virtchnl2_rx_desc *)((rxq)->desc_ring))[i])) struct idpf_rx_buf { struct page *page; unsigned int page_offset; u16 truesize; }; #define IDPF_RX_MAX_PTYPE_PROTO_IDS 32 #define IDPF_RX_MAX_PTYPE_SZ (sizeof(struct virtchnl2_ptype) + \ (sizeof(u16) * IDPF_RX_MAX_PTYPE_PROTO_IDS)) #define IDPF_RX_PTYPE_HDR_SZ sizeof(struct virtchnl2_get_ptype_info) #define IDPF_RX_MAX_PTYPES_PER_BUF \ DIV_ROUND_DOWN_ULL((IDPF_CTLQ_MAX_BUF_LEN - IDPF_RX_PTYPE_HDR_SZ), \ IDPF_RX_MAX_PTYPE_SZ) #define IDPF_GET_PTYPE_SIZE(p) struct_size((p), proto_id, (p)->proto_id_count) #define IDPF_TUN_IP_GRE (\ IDPF_PTYPE_TUNNEL_IP |\ IDPF_PTYPE_TUNNEL_IP_GRENAT) #define IDPF_TUN_IP_GRE_MAC (\ IDPF_TUN_IP_GRE |\ IDPF_PTYPE_TUNNEL_IP_GRENAT_MAC) #define IDPF_RX_MAX_PTYPE 1024 #define IDPF_RX_MAX_BASE_PTYPE 256 #define IDPF_INVALID_PTYPE_ID 0xFFFF /* Packet type non-ip values */ enum idpf_rx_ptype_l2 { IDPF_RX_PTYPE_L2_RESERVED = 0, IDPF_RX_PTYPE_L2_MAC_PAY2 = 1, IDPF_RX_PTYPE_L2_TIMESYNC_PAY2 = 2, IDPF_RX_PTYPE_L2_FIP_PAY2 = 3, IDPF_RX_PTYPE_L2_OUI_PAY2 = 4, IDPF_RX_PTYPE_L2_MACCNTRL_PAY2 = 5, IDPF_RX_PTYPE_L2_LLDP_PAY2 = 6, IDPF_RX_PTYPE_L2_ECP_PAY2 = 7, IDPF_RX_PTYPE_L2_EVB_PAY2 = 8, IDPF_RX_PTYPE_L2_QCN_PAY2 = 9, IDPF_RX_PTYPE_L2_EAPOL_PAY2 = 10, IDPF_RX_PTYPE_L2_ARP = 11, }; enum idpf_rx_ptype_outer_ip { IDPF_RX_PTYPE_OUTER_L2 = 0, IDPF_RX_PTYPE_OUTER_IP = 1, }; #define IDPF_RX_PTYPE_TO_IPV(ptype, ipv) \ (((ptype)->outer_ip == IDPF_RX_PTYPE_OUTER_IP) && \ ((ptype)->outer_ip_ver == (ipv))) enum idpf_rx_ptype_outer_ip_ver { IDPF_RX_PTYPE_OUTER_NONE = 0, IDPF_RX_PTYPE_OUTER_IPV4 = 1, IDPF_RX_PTYPE_OUTER_IPV6 = 2, }; enum idpf_rx_ptype_outer_fragmented { IDPF_RX_PTYPE_NOT_FRAG = 0, IDPF_RX_PTYPE_FRAG = 1, }; enum idpf_rx_ptype_tunnel_type { IDPF_RX_PTYPE_TUNNEL_NONE = 0, IDPF_RX_PTYPE_TUNNEL_IP_IP = 1, IDPF_RX_PTYPE_TUNNEL_IP_GRENAT = 2, IDPF_RX_PTYPE_TUNNEL_IP_GRENAT_MAC = 3, IDPF_RX_PTYPE_TUNNEL_IP_GRENAT_MAC_VLAN = 4, }; enum idpf_rx_ptype_tunnel_end_prot { IDPF_RX_PTYPE_TUNNEL_END_NONE = 0, IDPF_RX_PTYPE_TUNNEL_END_IPV4 = 1, IDPF_RX_PTYPE_TUNNEL_END_IPV6 = 2, }; enum idpf_rx_ptype_inner_prot { IDPF_RX_PTYPE_INNER_PROT_NONE = 0, IDPF_RX_PTYPE_INNER_PROT_UDP = 1, IDPF_RX_PTYPE_INNER_PROT_TCP = 2, IDPF_RX_PTYPE_INNER_PROT_SCTP = 3, IDPF_RX_PTYPE_INNER_PROT_ICMP = 4, IDPF_RX_PTYPE_INNER_PROT_TIMESYNC = 5, }; enum idpf_rx_ptype_payload_layer { IDPF_RX_PTYPE_PAYLOAD_LAYER_NONE = 0, IDPF_RX_PTYPE_PAYLOAD_LAYER_PAY2 = 1, IDPF_RX_PTYPE_PAYLOAD_LAYER_PAY3 = 2, IDPF_RX_PTYPE_PAYLOAD_LAYER_PAY4 = 3, }; enum idpf_tunnel_state { IDPF_PTYPE_TUNNEL_IP = BIT(0), IDPF_PTYPE_TUNNEL_IP_GRENAT = BIT(1), IDPF_PTYPE_TUNNEL_IP_GRENAT_MAC = BIT(2), }; struct idpf_ptype_state { bool outer_ip; bool outer_frag; u8 tunnel_state; }; struct idpf_rx_ptype_decoded { u32 ptype:10; u32 known:1; u32 outer_ip:1; u32 outer_ip_ver:2; u32 outer_frag:1; u32 tunnel_type:3; u32 tunnel_end_prot:2; u32 tunnel_end_frag:1; u32 inner_prot:4; u32 payload_layer:3; }; /** * enum idpf_queue_flags_t * @__IDPF_Q_GEN_CHK: Queues operating in splitq mode use a generation bit to * identify new descriptor writebacks on the ring. HW sets * the gen bit to 1 on the first writeback of any given * descriptor. After the ring wraps, HW sets the gen bit of * those descriptors to 0, and continues flipping * 0->1 or 1->0 on each ring wrap. SW maintains its own * gen bit to know what value will indicate writebacks on * the next pass around the ring. E.g. it is initialized * to 1 and knows that reading a gen bit of 1 in any * descriptor on the initial pass of the ring indicates a * writeback. It also flips on every ring wrap. * @__IDPF_RFLQ_GEN_CHK: Refill queues are SW only, so Q_GEN acts as the HW bit * and RFLGQ_GEN is the SW bit. * @__IDPF_Q_FLOW_SCH_EN: Enable flow scheduling * @__IDPF_Q_SW_MARKER: Used to indicate TX queue marker completions * @__IDPF_Q_POLL_MODE: Enable poll mode * @__IDPF_Q_FLAGS_NBITS: Must be last */ enum idpf_queue_flags_t { __IDPF_Q_GEN_CHK, __IDPF_RFLQ_GEN_CHK, __IDPF_Q_FLOW_SCH_EN, __IDPF_Q_SW_MARKER, __IDPF_Q_POLL_MODE, __IDPF_Q_FLAGS_NBITS, }; /** * struct idpf_vec_regs * @dyn_ctl_reg: Dynamic control interrupt register offset * @itrn_reg: Interrupt Throttling Rate register offset * @itrn_index_spacing: Register spacing between ITR registers of the same * vector */ struct idpf_vec_regs { u32 dyn_ctl_reg; u32 itrn_reg; u32 itrn_index_spacing; }; /** * struct idpf_intr_reg * @dyn_ctl: Dynamic control interrupt register * @dyn_ctl_intena_m: Mask for dyn_ctl interrupt enable * @dyn_ctl_itridx_s: Register bit offset for ITR index * @dyn_ctl_itridx_m: Mask for ITR index * @dyn_ctl_intrvl_s: Register bit offset for ITR interval * @rx_itr: RX ITR register * @tx_itr: TX ITR register * @icr_ena: Interrupt cause register offset * @icr_ena_ctlq_m: Mask for ICR */ struct idpf_intr_reg { void __iomem *dyn_ctl; u32 dyn_ctl_intena_m; u32 dyn_ctl_itridx_s; u32 dyn_ctl_itridx_m; u32 dyn_ctl_intrvl_s; void __iomem *rx_itr; void __iomem *tx_itr; void __iomem *icr_ena; u32 icr_ena_ctlq_m; }; /** * struct idpf_q_vector * @vport: Vport back pointer * @affinity_mask: CPU affinity mask * @napi: napi handler * @v_idx: Vector index * @intr_reg: See struct idpf_intr_reg * @num_txq: Number of TX queues * @tx: Array of TX queues to service * @tx_dim: Data for TX net_dim algorithm * @tx_itr_value: TX interrupt throttling rate * @tx_intr_mode: Dynamic ITR or not * @tx_itr_idx: TX ITR index * @num_rxq: Number of RX queues * @rx: Array of RX queues to service * @rx_dim: Data for RX net_dim algorithm * @rx_itr_value: RX interrupt throttling rate * @rx_intr_mode: Dynamic ITR or not * @rx_itr_idx: RX ITR index * @num_bufq: Number of buffer queues * @bufq: Array of buffer queues to service * @total_events: Number of interrupts processed * @name: Queue vector name */ struct idpf_q_vector { struct idpf_vport *vport; cpumask_t affinity_mask; struct napi_struct napi; u16 v_idx; struct idpf_intr_reg intr_reg; u16 num_txq; struct idpf_queue **tx; struct dim tx_dim; u16 tx_itr_value; bool tx_intr_mode; u32 tx_itr_idx; u16 num_rxq; struct idpf_queue **rx; struct dim rx_dim; u16 rx_itr_value; bool rx_intr_mode; u32 rx_itr_idx; u16 num_bufq; struct idpf_queue **bufq; u16 total_events; char *name; }; struct idpf_rx_queue_stats { u64_stats_t packets; u64_stats_t bytes; u64_stats_t rsc_pkts; u64_stats_t hw_csum_err; u64_stats_t hsplit_pkts; u64_stats_t hsplit_buf_ovf; u64_stats_t bad_descs; }; struct idpf_tx_queue_stats { u64_stats_t packets; u64_stats_t bytes; u64_stats_t lso_pkts; u64_stats_t linearize; u64_stats_t q_busy; u64_stats_t skb_drops; u64_stats_t dma_map_errs; }; struct idpf_cleaned_stats { u32 packets; u32 bytes; }; union idpf_queue_stats { struct idpf_rx_queue_stats rx; struct idpf_tx_queue_stats tx; }; #define IDPF_ITR_DYNAMIC 1 #define IDPF_ITR_MAX 0x1FE0 #define IDPF_ITR_20K 0x0032 #define IDPF_ITR_GRAN_S 1 /* Assume ITR granularity is 2us */ #define IDPF_ITR_MASK 0x1FFE /* ITR register value alignment mask */ #define ITR_REG_ALIGN(setting) ((setting) & IDPF_ITR_MASK) #define IDPF_ITR_IS_DYNAMIC(itr_mode) (itr_mode) #define IDPF_ITR_TX_DEF IDPF_ITR_20K #define IDPF_ITR_RX_DEF IDPF_ITR_20K /* Index used for 'No ITR' update in DYN_CTL register */ #define IDPF_NO_ITR_UPDATE_IDX 3 #define IDPF_ITR_IDX_SPACING(spacing, dflt) (spacing ? spacing : dflt) #define IDPF_DIM_DEFAULT_PROFILE_IX 1 /** * struct idpf_queue * @dev: Device back pointer for DMA mapping * @vport: Back pointer to associated vport * @txq_grp: See struct idpf_txq_group * @rxq_grp: See struct idpf_rxq_group * @idx: For buffer queue, it is used as group id, either 0 or 1. On clean, * buffer queue uses this index to determine which group of refill queues * to clean. * For TX queue, it is used as index to map between TX queue group and * hot path TX pointers stored in vport. Used in both singleq/splitq. * For RX queue, it is used to index to total RX queue across groups and * used for skb reporting. * @tail: Tail offset. Used for both queue models single and split. In splitq * model relevant only for TX queue and RX queue. * @tx_buf: See struct idpf_tx_buf * @rx_buf: Struct with RX buffer related members * @rx_buf.buf: See struct idpf_rx_buf * @rx_buf.hdr_buf_pa: DMA handle * @rx_buf.hdr_buf_va: Virtual address * @pp: Page pool pointer * @skb: Pointer to the skb * @q_type: Queue type (TX, RX, TX completion, RX buffer) * @q_id: Queue id * @desc_count: Number of descriptors * @next_to_use: Next descriptor to use. Relevant in both split & single txq * and bufq. * @next_to_clean: Next descriptor to clean. In split queue model, only * relevant to TX completion queue and RX queue. * @next_to_alloc: RX buffer to allocate at. Used only for RX. In splitq model * only relevant to RX queue. * @flags: See enum idpf_queue_flags_t * @q_stats: See union idpf_queue_stats * @stats_sync: See struct u64_stats_sync * @cleaned_bytes: Splitq only, TXQ only: When a TX completion is received on * the TX completion queue, it can be for any TXQ associated * with that completion queue. This means we can clean up to * N TXQs during a single call to clean the completion queue. * cleaned_bytes|pkts tracks the clean stats per TXQ during * that single call to clean the completion queue. By doing so, * we can update BQL with aggregate cleaned stats for each TXQ * only once at the end of the cleaning routine. * @cleaned_pkts: Number of packets cleaned for the above said case * @rx_hsplit_en: RX headsplit enable * @rx_hbuf_size: Header buffer size * @rx_buf_size: Buffer size * @rx_max_pkt_size: RX max packet size * @rx_buf_stride: RX buffer stride * @rx_buffer_low_watermark: RX buffer low watermark * @rxdids: Supported RX descriptor ids * @q_vector: Backreference to associated vector * @size: Length of descriptor ring in bytes * @dma: Physical address of ring * @desc_ring: Descriptor ring memory * @tx_max_bufs: Max buffers that can be transmitted with scatter-gather * @tx_min_pkt_len: Min supported packet length * @num_completions: Only relevant for TX completion queue. It tracks the * number of completions received to compare against the * number of completions pending, as accumulated by the * TX queues. * @buf_stack: Stack of empty buffers to store buffer info for out of order * buffer completions. See struct idpf_buf_lifo. * @compl_tag_bufid_m: Completion tag buffer id mask * @compl_tag_gen_s: Completion tag generation bit * The format of the completion tag will change based on the TXQ * descriptor ring size so that we can maintain roughly the same level * of "uniqueness" across all descriptor sizes. For example, if the * TXQ descriptor ring size is 64 (the minimum size supported), the * completion tag will be formatted as below: * 15 6 5 0 * -------------------------------- * | GEN=0-1023 |IDX = 0-63| * -------------------------------- * * This gives us 64*1024 = 65536 possible unique values. Similarly, if * the TXQ descriptor ring size is 8160 (the maximum size supported), * the completion tag will be formatted as below: * 15 13 12 0 * -------------------------------- * |GEN | IDX = 0-8159 | * -------------------------------- * * This gives us 8*8160 = 65280 possible unique values. * @compl_tag_cur_gen: Used to keep track of current completion tag generation * @compl_tag_gen_max: To determine when compl_tag_cur_gen should be reset * @sched_buf_hash: Hash table to stores buffers */ struct idpf_queue { struct device *dev; struct idpf_vport *vport; union { struct idpf_txq_group *txq_grp; struct idpf_rxq_group *rxq_grp; }; u16 idx; void __iomem *tail; union { struct idpf_tx_buf *tx_buf; struct { struct idpf_rx_buf *buf; dma_addr_t hdr_buf_pa; void *hdr_buf_va; } rx_buf; }; struct page_pool *pp; struct sk_buff *skb; u16 q_type; u32 q_id; u16 desc_count; u16 next_to_use; u16 next_to_clean; u16 next_to_alloc; DECLARE_BITMAP(flags, __IDPF_Q_FLAGS_NBITS); union idpf_queue_stats q_stats; struct u64_stats_sync stats_sync; u32 cleaned_bytes; u16 cleaned_pkts; bool rx_hsplit_en; u16 rx_hbuf_size; u16 rx_buf_size; u16 rx_max_pkt_size; u16 rx_buf_stride; u8 rx_buffer_low_watermark; u64 rxdids; struct idpf_q_vector *q_vector; unsigned int size; dma_addr_t dma; void *desc_ring; u16 tx_max_bufs; u8 tx_min_pkt_len; u32 num_completions; struct idpf_buf_lifo buf_stack; u16 compl_tag_bufid_m; u16 compl_tag_gen_s; u16 compl_tag_cur_gen; u16 compl_tag_gen_max; DECLARE_HASHTABLE(sched_buf_hash, 12); } ____cacheline_internodealigned_in_smp; /** * struct idpf_sw_queue * @next_to_clean: Next descriptor to clean * @next_to_alloc: Buffer to allocate at * @flags: See enum idpf_queue_flags_t * @ring: Pointer to the ring * @desc_count: Descriptor count * @dev: Device back pointer for DMA mapping * * Software queues are used in splitq mode to manage buffers between rxq * producer and the bufq consumer. These are required in order to maintain a * lockless buffer management system and are strictly software only constructs. */ struct idpf_sw_queue { u16 next_to_clean; u16 next_to_alloc; DECLARE_BITMAP(flags, __IDPF_Q_FLAGS_NBITS); u16 *ring; u16 desc_count; struct device *dev; } ____cacheline_internodealigned_in_smp; /** * struct idpf_rxq_set * @rxq: RX queue * @refillq0: Pointer to refill queue 0 * @refillq1: Pointer to refill queue 1 * * Splitq only. idpf_rxq_set associates an rxq with at an array of refillqs. * Each rxq needs a refillq to return used buffers back to the respective bufq. * Bufqs then clean these refillqs for buffers to give to hardware. */ struct idpf_rxq_set { struct idpf_queue rxq; struct idpf_sw_queue *refillq0; struct idpf_sw_queue *refillq1; }; /** * struct idpf_bufq_set * @bufq: Buffer queue * @num_refillqs: Number of refill queues. This is always equal to num_rxq_sets * in idpf_rxq_group. * @refillqs: Pointer to refill queues array. * * Splitq only. idpf_bufq_set associates a bufq to an array of refillqs. * In this bufq_set, there will be one refillq for each rxq in this rxq_group. * Used buffers received by rxqs will be put on refillqs which bufqs will * clean to return new buffers back to hardware. * * Buffers needed by some number of rxqs associated in this rxq_group are * managed by at most two bufqs (depending on performance configuration). */ struct idpf_bufq_set { struct idpf_queue bufq; int num_refillqs; struct idpf_sw_queue *refillqs; }; /** * struct idpf_rxq_group * @vport: Vport back pointer * @singleq: Struct with single queue related members * @singleq.num_rxq: Number of RX queues associated * @singleq.rxqs: Array of RX queue pointers * @splitq: Struct with split queue related members * @splitq.num_rxq_sets: Number of RX queue sets * @splitq.rxq_sets: Array of RX queue sets * @splitq.bufq_sets: Buffer queue set pointer * * In singleq mode, an rxq_group is simply an array of rxqs. In splitq, a * rxq_group contains all the rxqs, bufqs and refillqs needed to * manage buffers in splitq mode. */ struct idpf_rxq_group { struct idpf_vport *vport; union { struct { u16 num_rxq; struct idpf_queue *rxqs[IDPF_LARGE_MAX_Q]; } singleq; struct { u16 num_rxq_sets; struct idpf_rxq_set *rxq_sets[IDPF_LARGE_MAX_Q]; struct idpf_bufq_set *bufq_sets; } splitq; }; }; /** * struct idpf_txq_group * @vport: Vport back pointer * @num_txq: Number of TX queues associated * @txqs: Array of TX queue pointers * @complq: Associated completion queue pointer, split queue only * @num_completions_pending: Total number of completions pending for the * completion queue, acculumated for all TX queues * associated with that completion queue. * * Between singleq and splitq, a txq_group is largely the same except for the * complq. In splitq a single complq is responsible for handling completions * for some number of txqs associated in this txq_group. */ struct idpf_txq_group { struct idpf_vport *vport; u16 num_txq; struct idpf_queue *txqs[IDPF_LARGE_MAX_Q]; struct idpf_queue *complq; u32 num_completions_pending; }; /** * idpf_size_to_txd_count - Get number of descriptors needed for large Tx frag * @size: transmit request size in bytes * * In the case where a large frag (>= 16K) needs to be split across multiple * descriptors, we need to assume that we can have no more than 12K of data * per descriptor due to hardware alignment restrictions (4K alignment). */ static inline u32 idpf_size_to_txd_count(unsigned int size) { return DIV_ROUND_UP(size, IDPF_TX_MAX_DESC_DATA_ALIGNED); } /** * idpf_tx_singleq_build_ctob - populate command tag offset and size * @td_cmd: Command to be filled in desc * @td_offset: Offset to be filled in desc * @size: Size of the buffer * @td_tag: td tag to be filled * * Returns the 64 bit value populated with the input parameters */ static inline __le64 idpf_tx_singleq_build_ctob(u64 td_cmd, u64 td_offset, unsigned int size, u64 td_tag) { return cpu_to_le64(IDPF_TX_DESC_DTYPE_DATA | (td_cmd << IDPF_TXD_QW1_CMD_S) | (td_offset << IDPF_TXD_QW1_OFFSET_S) | ((u64)size << IDPF_TXD_QW1_TX_BUF_SZ_S) | (td_tag << IDPF_TXD_QW1_L2TAG1_S)); } void idpf_tx_splitq_build_ctb(union idpf_tx_flex_desc *desc, struct idpf_tx_splitq_params *params, u16 td_cmd, u16 size); void idpf_tx_splitq_build_flow_desc(union idpf_tx_flex_desc *desc, struct idpf_tx_splitq_params *params, u16 td_cmd, u16 size); /** * idpf_tx_splitq_build_desc - determine which type of data descriptor to build * @desc: descriptor to populate * @params: pointer to tx params struct * @td_cmd: command to be filled in desc * @size: size of buffer */ static inline void idpf_tx_splitq_build_desc(union idpf_tx_flex_desc *desc, struct idpf_tx_splitq_params *params, u16 td_cmd, u16 size) { if (params->dtype == IDPF_TX_DESC_DTYPE_FLEX_L2TAG1_L2TAG2) idpf_tx_splitq_build_ctb(desc, params, td_cmd, size); else idpf_tx_splitq_build_flow_desc(desc, params, td_cmd, size); } /** * idpf_alloc_page - Allocate a new RX buffer from the page pool * @pool: page_pool to allocate from * @buf: metadata struct to populate with page info * @buf_size: 2K or 4K * * Returns &dma_addr_t to be passed to HW for Rx, %DMA_MAPPING_ERROR otherwise. */ static inline dma_addr_t idpf_alloc_page(struct page_pool *pool, struct idpf_rx_buf *buf, unsigned int buf_size) { if (buf_size == IDPF_RX_BUF_2048) buf->page = page_pool_dev_alloc_frag(pool, &buf->page_offset, buf_size); else buf->page = page_pool_dev_alloc_pages(pool); if (!buf->page) return DMA_MAPPING_ERROR; buf->truesize = buf_size; return page_pool_get_dma_addr(buf->page) + buf->page_offset + pool->p.offset; } /** * idpf_rx_put_page - Return RX buffer page to pool * @rx_buf: RX buffer metadata struct */ static inline void idpf_rx_put_page(struct idpf_rx_buf *rx_buf) { page_pool_put_page(rx_buf->page->pp, rx_buf->page, rx_buf->truesize, true); rx_buf->page = NULL; } /** * idpf_rx_sync_for_cpu - Synchronize DMA buffer * @rx_buf: RX buffer metadata struct * @len: frame length from descriptor */ static inline void idpf_rx_sync_for_cpu(struct idpf_rx_buf *rx_buf, u32 len) { struct page *page = rx_buf->page; struct page_pool *pp = page->pp; dma_sync_single_range_for_cpu(pp->p.dev, page_pool_get_dma_addr(page), rx_buf->page_offset + pp->p.offset, len, page_pool_get_dma_dir(pp)); } int idpf_vport_singleq_napi_poll(struct napi_struct *napi, int budget); void idpf_vport_init_num_qs(struct idpf_vport *vport, struct virtchnl2_create_vport *vport_msg); void idpf_vport_calc_num_q_desc(struct idpf_vport *vport); int idpf_vport_calc_total_qs(struct idpf_adapter *adapter, u16 vport_index, struct virtchnl2_create_vport *vport_msg, struct idpf_vport_max_q *max_q); void idpf_vport_calc_num_q_groups(struct idpf_vport *vport); int idpf_vport_queues_alloc(struct idpf_vport *vport); void idpf_vport_queues_rel(struct idpf_vport *vport); void idpf_vport_intr_rel(struct idpf_vport *vport); int idpf_vport_intr_alloc(struct idpf_vport *vport); void idpf_vport_intr_update_itr_ena_irq(struct idpf_q_vector *q_vector); void idpf_vport_intr_deinit(struct idpf_vport *vport); int idpf_vport_intr_init(struct idpf_vport *vport); enum pkt_hash_types idpf_ptype_to_htype(const struct idpf_rx_ptype_decoded *decoded); int idpf_config_rss(struct idpf_vport *vport); int idpf_init_rss(struct idpf_vport *vport); void idpf_deinit_rss(struct idpf_vport *vport); int idpf_rx_bufs_init_all(struct idpf_vport *vport); void idpf_rx_add_frag(struct idpf_rx_buf *rx_buf, struct sk_buff *skb, unsigned int size); struct sk_buff *idpf_rx_construct_skb(struct idpf_queue *rxq, struct idpf_rx_buf *rx_buf, unsigned int size); bool idpf_init_rx_buf_hw_alloc(struct idpf_queue *rxq, struct idpf_rx_buf *buf); void idpf_rx_buf_hw_update(struct idpf_queue *rxq, u32 val); void idpf_tx_buf_hw_update(struct idpf_queue *tx_q, u32 val, bool xmit_more); unsigned int idpf_size_to_txd_count(unsigned int size); netdev_tx_t idpf_tx_drop_skb(struct idpf_queue *tx_q, struct sk_buff *skb); void idpf_tx_dma_map_error(struct idpf_queue *txq, struct sk_buff *skb, struct idpf_tx_buf *first, u16 ring_idx); unsigned int idpf_tx_desc_count_required(struct idpf_queue *txq, struct sk_buff *skb); bool idpf_chk_linearize(struct sk_buff *skb, unsigned int max_bufs, unsigned int count); int idpf_tx_maybe_stop_common(struct idpf_queue *tx_q, unsigned int size); void idpf_tx_timeout(struct net_device *netdev, unsigned int txqueue); netdev_tx_t idpf_tx_splitq_start(struct sk_buff *skb, struct net_device *netdev); netdev_tx_t idpf_tx_singleq_start(struct sk_buff *skb, struct net_device *netdev); bool idpf_rx_singleq_buf_hw_alloc_all(struct idpf_queue *rxq, u16 cleaned_count); int idpf_tso(struct sk_buff *skb, struct idpf_tx_offload_params *off); #endif /* !_IDPF_TXRX_H_ */