// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 2009 - 2018 Intel Corporation. */ #include "vf.h" static s32 e1000_check_for_link_vf(struct e1000_hw *hw); static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed, u16 *duplex); static s32 e1000_init_hw_vf(struct e1000_hw *hw); static s32 e1000_reset_hw_vf(struct e1000_hw *hw); static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *, u32, u32, u32); static void e1000_rar_set_vf(struct e1000_hw *, u8 *, u32); static s32 e1000_read_mac_addr_vf(struct e1000_hw *); static s32 e1000_set_uc_addr_vf(struct e1000_hw *hw, u32 subcmd, u8 *addr); static s32 e1000_set_vfta_vf(struct e1000_hw *, u16, bool); /** * e1000_init_mac_params_vf - Inits MAC params * @hw: pointer to the HW structure **/ static s32 e1000_init_mac_params_vf(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; /* VF's have no MTA Registers - PF feature only */ mac->mta_reg_count = 128; /* VF's have no access to RAR entries */ mac->rar_entry_count = 1; /* Function pointers */ /* reset */ mac->ops.reset_hw = e1000_reset_hw_vf; /* hw initialization */ mac->ops.init_hw = e1000_init_hw_vf; /* check for link */ mac->ops.check_for_link = e1000_check_for_link_vf; /* link info */ mac->ops.get_link_up_info = e1000_get_link_up_info_vf; /* multicast address update */ mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_vf; /* set mac address */ mac->ops.rar_set = e1000_rar_set_vf; /* read mac address */ mac->ops.read_mac_addr = e1000_read_mac_addr_vf; /* set mac filter */ mac->ops.set_uc_addr = e1000_set_uc_addr_vf; /* set vlan filter table array */ mac->ops.set_vfta = e1000_set_vfta_vf; return E1000_SUCCESS; } /** * e1000_init_function_pointers_vf - Inits function pointers * @hw: pointer to the HW structure **/ void e1000_init_function_pointers_vf(struct e1000_hw *hw) { hw->mac.ops.init_params = e1000_init_mac_params_vf; hw->mbx.ops.init_params = e1000_init_mbx_params_vf; } /** * e1000_get_link_up_info_vf - Gets link info. * @hw: pointer to the HW structure * @speed: pointer to 16 bit value to store link speed. * @duplex: pointer to 16 bit value to store duplex. * * Since we cannot read the PHY and get accurate link info, we must rely upon * the status register's data which is often stale and inaccurate. **/ static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed, u16 *duplex) { s32 status; status = er32(STATUS); if (status & E1000_STATUS_SPEED_1000) *speed = SPEED_1000; else if (status & E1000_STATUS_SPEED_100) *speed = SPEED_100; else *speed = SPEED_10; if (status & E1000_STATUS_FD) *duplex = FULL_DUPLEX; else *duplex = HALF_DUPLEX; return E1000_SUCCESS; } /** * e1000_reset_hw_vf - Resets the HW * @hw: pointer to the HW structure * * VF's provide a function level reset. This is done using bit 26 of ctrl_reg. * This is all the reset we can perform on a VF. **/ static s32 e1000_reset_hw_vf(struct e1000_hw *hw) { struct e1000_mbx_info *mbx = &hw->mbx; u32 timeout = E1000_VF_INIT_TIMEOUT; u32 ret_val = -E1000_ERR_MAC_INIT; u32 msgbuf[3]; u8 *addr = (u8 *)(&msgbuf[1]); u32 ctrl; /* assert VF queue/interrupt reset */ ctrl = er32(CTRL); ew32(CTRL, ctrl | E1000_CTRL_RST); /* we cannot initialize while the RSTI / RSTD bits are asserted */ while (!mbx->ops.check_for_rst(hw) && timeout) { timeout--; udelay(5); } if (timeout) { /* mailbox timeout can now become active */ mbx->timeout = E1000_VF_MBX_INIT_TIMEOUT; /* notify PF of VF reset completion */ msgbuf[0] = E1000_VF_RESET; mbx->ops.write_posted(hw, msgbuf, 1); mdelay(10); /* set our "perm_addr" based on info provided by PF */ ret_val = mbx->ops.read_posted(hw, msgbuf, 3); if (!ret_val) { if (msgbuf[0] == (E1000_VF_RESET | E1000_VT_MSGTYPE_ACK)) memcpy(hw->mac.perm_addr, addr, ETH_ALEN); else ret_val = -E1000_ERR_MAC_INIT; } } return ret_val; } /** * e1000_init_hw_vf - Inits the HW * @hw: pointer to the HW structure * * Not much to do here except clear the PF Reset indication if there is one. **/ static s32 e1000_init_hw_vf(struct e1000_hw *hw) { /* attempt to set and restore our mac address */ e1000_rar_set_vf(hw, hw->mac.addr, 0); return E1000_SUCCESS; } /** * e1000_hash_mc_addr_vf - Generate a multicast hash value * @hw: pointer to the HW structure * @mc_addr: pointer to a multicast address * * Generates a multicast address hash value which is used to determine * the multicast filter table array address and new table value. See * e1000_mta_set_generic() **/ static u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr) { u32 hash_value, hash_mask; u8 bit_shift = 0; /* Register count multiplied by bits per register */ hash_mask = (hw->mac.mta_reg_count * 32) - 1; /* The bit_shift is the number of left-shifts * where 0xFF would still fall within the hash mask. */ while (hash_mask >> bit_shift != 0xFF) bit_shift++; hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | (((u16)mc_addr[5]) << bit_shift))); return hash_value; } /** * e1000_update_mc_addr_list_vf - Update Multicast addresses * @hw: pointer to the HW structure * @mc_addr_list: array of multicast addresses to program * @mc_addr_count: number of multicast addresses to program * @rar_used_count: the first RAR register free to program * @rar_count: total number of supported Receive Address Registers * * Updates the Receive Address Registers and Multicast Table Array. * The caller must have a packed mc_addr_list of multicast addresses. * The parameter rar_count will usually be hw->mac.rar_entry_count * unless there are workarounds that change this. **/ static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *mc_addr_list, u32 mc_addr_count, u32 rar_used_count, u32 rar_count) { struct e1000_mbx_info *mbx = &hw->mbx; u32 msgbuf[E1000_VFMAILBOX_SIZE]; u16 *hash_list = (u16 *)&msgbuf[1]; u32 hash_value; u32 cnt, i; s32 ret_val; /* Each entry in the list uses 1 16 bit word. We have 30 * 16 bit words available in our HW msg buffer (minus 1 for the * msg type). That's 30 hash values if we pack 'em right. If * there are more than 30 MC addresses to add then punt the * extras for now and then add code to handle more than 30 later. * It would be unusual for a server to request that many multi-cast * addresses except for in large enterprise network environments. */ cnt = (mc_addr_count > 30) ? 30 : mc_addr_count; msgbuf[0] = E1000_VF_SET_MULTICAST; msgbuf[0] |= cnt << E1000_VT_MSGINFO_SHIFT; for (i = 0; i < cnt; i++) { hash_value = e1000_hash_mc_addr_vf(hw, mc_addr_list); hash_list[i] = hash_value & 0x0FFFF; mc_addr_list += ETH_ALEN; } ret_val = mbx->ops.write_posted(hw, msgbuf, E1000_VFMAILBOX_SIZE); if (!ret_val) mbx->ops.read_posted(hw, msgbuf, 1); } /** * e1000_set_vfta_vf - Set/Unset vlan filter table address * @hw: pointer to the HW structure * @vid: determines the vfta register and bit to set/unset * @set: if true then set bit, else clear bit **/ static s32 e1000_set_vfta_vf(struct e1000_hw *hw, u16 vid, bool set) { struct e1000_mbx_info *mbx = &hw->mbx; u32 msgbuf[2]; s32 err; msgbuf[0] = E1000_VF_SET_VLAN; msgbuf[1] = vid; /* Setting the 8 bit field MSG INFO to true indicates "add" */ if (set) msgbuf[0] |= BIT(E1000_VT_MSGINFO_SHIFT); mbx->ops.write_posted(hw, msgbuf, 2); err = mbx->ops.read_posted(hw, msgbuf, 2); msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS; /* if nacked the vlan was rejected */ if (!err && (msgbuf[0] == (E1000_VF_SET_VLAN | E1000_VT_MSGTYPE_NACK))) err = -E1000_ERR_MAC_INIT; return err; } /** * e1000_rlpml_set_vf - Set the maximum receive packet length * @hw: pointer to the HW structure * @max_size: value to assign to max frame size **/ void e1000_rlpml_set_vf(struct e1000_hw *hw, u16 max_size) { struct e1000_mbx_info *mbx = &hw->mbx; u32 msgbuf[2]; s32 ret_val; msgbuf[0] = E1000_VF_SET_LPE; msgbuf[1] = max_size; ret_val = mbx->ops.write_posted(hw, msgbuf, 2); if (!ret_val) mbx->ops.read_posted(hw, msgbuf, 1); } /** * e1000_rar_set_vf - set device MAC address * @hw: pointer to the HW structure * @addr: pointer to the receive address * @index: receive address array register **/ static void e1000_rar_set_vf(struct e1000_hw *hw, u8 *addr, u32 index) { struct e1000_mbx_info *mbx = &hw->mbx; u32 msgbuf[3]; u8 *msg_addr = (u8 *)(&msgbuf[1]); s32 ret_val; memset(msgbuf, 0, 12); msgbuf[0] = E1000_VF_SET_MAC_ADDR; memcpy(msg_addr, addr, ETH_ALEN); ret_val = mbx->ops.write_posted(hw, msgbuf, 3); if (!ret_val) ret_val = mbx->ops.read_posted(hw, msgbuf, 3); msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS; /* if nacked the address was rejected, use "perm_addr" */ if (!ret_val && (msgbuf[0] == (E1000_VF_SET_MAC_ADDR | E1000_VT_MSGTYPE_NACK))) e1000_read_mac_addr_vf(hw); } /** * e1000_read_mac_addr_vf - Read device MAC address * @hw: pointer to the HW structure **/ static s32 e1000_read_mac_addr_vf(struct e1000_hw *hw) { memcpy(hw->mac.addr, hw->mac.perm_addr, ETH_ALEN); return E1000_SUCCESS; } /** * e1000_set_uc_addr_vf - Set or clear unicast filters * @hw: pointer to the HW structure * @sub_cmd: add or clear filters * @addr: pointer to the filter MAC address **/ static s32 e1000_set_uc_addr_vf(struct e1000_hw *hw, u32 sub_cmd, u8 *addr) { struct e1000_mbx_info *mbx = &hw->mbx; u32 msgbuf[3], msgbuf_chk; u8 *msg_addr = (u8 *)(&msgbuf[1]); s32 ret_val; memset(msgbuf, 0, sizeof(msgbuf)); msgbuf[0] |= sub_cmd; msgbuf[0] |= E1000_VF_SET_MAC_ADDR; msgbuf_chk = msgbuf[0]; if (addr) memcpy(msg_addr, addr, ETH_ALEN); ret_val = mbx->ops.write_posted(hw, msgbuf, 3); if (!ret_val) ret_val = mbx->ops.read_posted(hw, msgbuf, 3); msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS; if (!ret_val) { msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS; if (msgbuf[0] == (msgbuf_chk | E1000_VT_MSGTYPE_NACK)) return -ENOSPC; } return ret_val; } /** * e1000_check_for_link_vf - Check for link for a virtual interface * @hw: pointer to the HW structure * * Checks to see if the underlying PF is still talking to the VF and * if it is then it reports the link state to the hardware, otherwise * it reports link down and returns an error. **/ static s32 e1000_check_for_link_vf(struct e1000_hw *hw) { struct e1000_mbx_info *mbx = &hw->mbx; struct e1000_mac_info *mac = &hw->mac; s32 ret_val = E1000_SUCCESS; u32 in_msg = 0; /* We only want to run this if there has been a rst asserted. * in this case that could mean a link change, device reset, * or a virtual function reset */ /* If we were hit with a reset or timeout drop the link */ if (!mbx->ops.check_for_rst(hw) || !mbx->timeout) mac->get_link_status = true; if (!mac->get_link_status) goto out; /* if link status is down no point in checking to see if PF is up */ if (!(er32(STATUS) & E1000_STATUS_LU)) goto out; /* if the read failed it could just be a mailbox collision, best wait * until we are called again and don't report an error */ if (mbx->ops.read(hw, &in_msg, 1)) goto out; /* if incoming message isn't clear to send we are waiting on response */ if (!(in_msg & E1000_VT_MSGTYPE_CTS)) { /* msg is not CTS and is NACK we must have lost CTS status */ if (in_msg & E1000_VT_MSGTYPE_NACK) ret_val = -E1000_ERR_MAC_INIT; goto out; } /* the PF is talking, if we timed out in the past we reinit */ if (!mbx->timeout) { ret_val = -E1000_ERR_MAC_INIT; goto out; } /* if we passed all the tests above then the link is up and we no * longer need to check for link */ mac->get_link_status = false; out: return ret_val; }