// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved. * Copyright (C) 2018-2021 Linaro Ltd. */ #include #include #include #include #include #include "ipa.h" #include "ipa_clock.h" #include "ipa_modem.h" #include "ipa_data.h" /** * DOC: IPA Clocking * * The "IPA Clock" manages both the IPA core clock and the interconnects * (buses) the IPA depends on as a single logical entity. A reference count * is incremented by "get" operations and decremented by "put" operations. * Transitions of that count from 0 to 1 result in the clock and interconnects * being enabled, and transitions of the count from 1 to 0 cause them to be * disabled. We currently operate the core clock at a fixed clock rate, and * all buses at a fixed average and peak bandwidth. As more advanced IPA * features are enabled, we can make better use of clock and bus scaling. * * An IPA clock reference must be held for any access to IPA hardware. */ /** * struct ipa_interconnect - IPA interconnect information * @path: Interconnect path * @average_bandwidth: Average interconnect bandwidth (KB/second) * @peak_bandwidth: Peak interconnect bandwidth (KB/second) */ struct ipa_interconnect { struct icc_path *path; u32 average_bandwidth; u32 peak_bandwidth; }; /** * struct ipa_clock - IPA clocking information * @count: Clocking reference count * @mutex: Protects clock enable/disable * @core: IPA core clock * @interconnect_count: Number of elements in interconnect[] * @interconnect: Interconnect array */ struct ipa_clock { refcount_t count; struct mutex mutex; /* protects clock enable/disable */ struct clk *core; u32 interconnect_count; struct ipa_interconnect *interconnect; }; static int ipa_interconnect_init_one(struct device *dev, struct ipa_interconnect *interconnect, const struct ipa_interconnect_data *data) { struct icc_path *path; path = of_icc_get(dev, data->name); if (IS_ERR(path)) { int ret = PTR_ERR(path); dev_err_probe(dev, ret, "error getting %s interconnect\n", data->name); return ret; } interconnect->path = path; interconnect->average_bandwidth = data->average_bandwidth; interconnect->peak_bandwidth = data->peak_bandwidth; return 0; } static void ipa_interconnect_exit_one(struct ipa_interconnect *interconnect) { icc_put(interconnect->path); memset(interconnect, 0, sizeof(*interconnect)); } /* Initialize interconnects required for IPA operation */ static int ipa_interconnect_init(struct ipa_clock *clock, struct device *dev, const struct ipa_interconnect_data *data) { struct ipa_interconnect *interconnect; u32 count; int ret; count = clock->interconnect_count; interconnect = kcalloc(count, sizeof(*interconnect), GFP_KERNEL); if (!interconnect) return -ENOMEM; clock->interconnect = interconnect; while (count--) { ret = ipa_interconnect_init_one(dev, interconnect, data++); if (ret) goto out_unwind; interconnect++; } return 0; out_unwind: while (interconnect-- > clock->interconnect) ipa_interconnect_exit_one(interconnect); kfree(clock->interconnect); clock->interconnect = NULL; return ret; } /* Inverse of ipa_interconnect_init() */ static void ipa_interconnect_exit(struct ipa_clock *clock) { struct ipa_interconnect *interconnect; interconnect = clock->interconnect + clock->interconnect_count; while (interconnect-- > clock->interconnect) ipa_interconnect_exit_one(interconnect); kfree(clock->interconnect); clock->interconnect = NULL; } /* Currently we only use one bandwidth level, so just "enable" interconnects */ static int ipa_interconnect_enable(struct ipa *ipa) { struct ipa_interconnect *interconnect; struct ipa_clock *clock = ipa->clock; int ret; u32 i; interconnect = clock->interconnect; for (i = 0; i < clock->interconnect_count; i++) { ret = icc_set_bw(interconnect->path, interconnect->average_bandwidth, interconnect->peak_bandwidth); if (ret) goto out_unwind; interconnect++; } return 0; out_unwind: while (interconnect-- > clock->interconnect) (void)icc_set_bw(interconnect->path, 0, 0); return ret; } /* To disable an interconnect, we just its bandwidth to 0 */ static void ipa_interconnect_disable(struct ipa *ipa) { struct ipa_interconnect *interconnect; struct ipa_clock *clock = ipa->clock; int result = 0; u32 count; int ret; count = clock->interconnect_count; interconnect = clock->interconnect + count; while (count--) { interconnect--; ret = icc_set_bw(interconnect->path, 0, 0); if (ret && !result) result = ret; } if (result) dev_err(&ipa->pdev->dev, "error %d disabling IPA interconnects\n", ret); } /* Turn on IPA clocks, including interconnects */ static int ipa_clock_enable(struct ipa *ipa) { int ret; ret = ipa_interconnect_enable(ipa); if (ret) return ret; ret = clk_prepare_enable(ipa->clock->core); if (ret) ipa_interconnect_disable(ipa); return ret; } /* Inverse of ipa_clock_enable() */ static void ipa_clock_disable(struct ipa *ipa) { clk_disable_unprepare(ipa->clock->core); ipa_interconnect_disable(ipa); } /* Get an IPA clock reference, but only if the reference count is * already non-zero. Returns true if the additional reference was * added successfully, or false otherwise. */ bool ipa_clock_get_additional(struct ipa *ipa) { return refcount_inc_not_zero(&ipa->clock->count); } /* Get an IPA clock reference. If the reference count is non-zero, it is * incremented and return is immediate. Otherwise it is checked again * under protection of the mutex, and if appropriate the IPA clock * is enabled. * * Incrementing the reference count is intentionally deferred until * after the clock is running and endpoints are resumed. */ void ipa_clock_get(struct ipa *ipa) { struct ipa_clock *clock = ipa->clock; int ret; /* If the clock is running, just bump the reference count */ if (ipa_clock_get_additional(ipa)) return; /* Otherwise get the mutex and check again */ mutex_lock(&clock->mutex); /* A reference might have been added before we got the mutex. */ if (ipa_clock_get_additional(ipa)) goto out_mutex_unlock; ret = ipa_clock_enable(ipa); if (ret) { dev_err(&ipa->pdev->dev, "error %d enabling IPA clock\n", ret); goto out_mutex_unlock; } refcount_set(&clock->count, 1); out_mutex_unlock: mutex_unlock(&clock->mutex); } /* Attempt to remove an IPA clock reference. If this represents the * last reference, disable the IPA clock under protection of the mutex. */ void ipa_clock_put(struct ipa *ipa) { struct ipa_clock *clock = ipa->clock; /* If this is not the last reference there's nothing more to do */ if (!refcount_dec_and_mutex_lock(&clock->count, &clock->mutex)) return; ipa_clock_disable(ipa); mutex_unlock(&clock->mutex); } /* Return the current IPA core clock rate */ u32 ipa_clock_rate(struct ipa *ipa) { return ipa->clock ? (u32)clk_get_rate(ipa->clock->core) : 0; } /* Initialize IPA clocking */ struct ipa_clock * ipa_clock_init(struct device *dev, const struct ipa_clock_data *data) { struct ipa_clock *clock; struct clk *clk; int ret; clk = clk_get(dev, "core"); if (IS_ERR(clk)) { dev_err_probe(dev, PTR_ERR(clk), "error getting core clock\n"); return ERR_CAST(clk); } ret = clk_set_rate(clk, data->core_clock_rate); if (ret) { dev_err(dev, "error %d setting core clock rate to %u\n", ret, data->core_clock_rate); goto err_clk_put; } clock = kzalloc(sizeof(*clock), GFP_KERNEL); if (!clock) { ret = -ENOMEM; goto err_clk_put; } clock->core = clk; clock->interconnect_count = data->interconnect_count; ret = ipa_interconnect_init(clock, dev, data->interconnect_data); if (ret) goto err_kfree; mutex_init(&clock->mutex); refcount_set(&clock->count, 0); return clock; err_kfree: kfree(clock); err_clk_put: clk_put(clk); return ERR_PTR(ret); } /* Inverse of ipa_clock_init() */ void ipa_clock_exit(struct ipa_clock *clock) { struct clk *clk = clock->core; WARN_ON(refcount_read(&clock->count) != 0); mutex_destroy(&clock->mutex); ipa_interconnect_exit(clock); kfree(clock); clk_put(clk); }