// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved. * Copyright (C) 2019-2021 Linaro Ltd. */ #include #include #include #include #include #include #include "gsi.h" #include "gsi_trans.h" #include "ipa.h" #include "ipa_data.h" #include "ipa_endpoint.h" #include "ipa_cmd.h" #include "ipa_mem.h" #include "ipa_modem.h" #include "ipa_table.h" #include "ipa_gsi.h" #include "ipa_power.h" #define atomic_dec_not_zero(v) atomic_add_unless((v), -1, 0) #define IPA_REPLENISH_BATCH 16 /* RX buffer is 1 page (or a power-of-2 contiguous pages) */ #define IPA_RX_BUFFER_SIZE 8192 /* PAGE_SIZE > 4096 wastes a LOT */ /* The amount of RX buffer space consumed by standard skb overhead */ #define IPA_RX_BUFFER_OVERHEAD (PAGE_SIZE - SKB_MAX_ORDER(NET_SKB_PAD, 0)) /* Where to find the QMAP mux_id for a packet within modem-supplied metadata */ #define IPA_ENDPOINT_QMAP_METADATA_MASK 0x000000ff /* host byte order */ #define IPA_ENDPOINT_RESET_AGGR_RETRY_MAX 3 #define IPA_AGGR_TIME_LIMIT 500 /* microseconds */ /** enum ipa_status_opcode - status element opcode hardware values */ enum ipa_status_opcode { IPA_STATUS_OPCODE_PACKET = 0x01, IPA_STATUS_OPCODE_DROPPED_PACKET = 0x04, IPA_STATUS_OPCODE_SUSPENDED_PACKET = 0x08, IPA_STATUS_OPCODE_PACKET_2ND_PASS = 0x40, }; /** enum ipa_status_exception - status element exception type */ enum ipa_status_exception { /* 0 means no exception */ IPA_STATUS_EXCEPTION_DEAGGR = 0x01, }; /* Status element provided by hardware */ struct ipa_status { u8 opcode; /* enum ipa_status_opcode */ u8 exception; /* enum ipa_status_exception */ __le16 mask; __le16 pkt_len; u8 endp_src_idx; u8 endp_dst_idx; __le32 metadata; __le32 flags1; __le64 flags2; __le32 flags3; __le32 flags4; }; /* Field masks for struct ipa_status structure fields */ #define IPA_STATUS_MASK_TAG_VALID_FMASK GENMASK(4, 4) #define IPA_STATUS_SRC_IDX_FMASK GENMASK(4, 0) #define IPA_STATUS_DST_IDX_FMASK GENMASK(4, 0) #define IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK GENMASK(31, 22) #define IPA_STATUS_FLAGS2_TAG_FMASK GENMASK_ULL(63, 16) static bool ipa_endpoint_data_valid_one(struct ipa *ipa, u32 count, const struct ipa_gsi_endpoint_data *all_data, const struct ipa_gsi_endpoint_data *data) { const struct ipa_gsi_endpoint_data *other_data; struct device *dev = &ipa->pdev->dev; enum ipa_endpoint_name other_name; if (ipa_gsi_endpoint_data_empty(data)) return true; if (!data->toward_ipa) { if (data->endpoint.filter_support) { dev_err(dev, "filtering not supported for " "RX endpoint %u\n", data->endpoint_id); return false; } return true; /* Nothing more to check for RX */ } if (data->endpoint.config.status_enable) { other_name = data->endpoint.config.tx.status_endpoint; if (other_name >= count) { dev_err(dev, "status endpoint name %u out of range " "for endpoint %u\n", other_name, data->endpoint_id); return false; } /* Status endpoint must be defined... */ other_data = &all_data[other_name]; if (ipa_gsi_endpoint_data_empty(other_data)) { dev_err(dev, "DMA endpoint name %u undefined " "for endpoint %u\n", other_name, data->endpoint_id); return false; } /* ...and has to be an RX endpoint... */ if (other_data->toward_ipa) { dev_err(dev, "status endpoint for endpoint %u not RX\n", data->endpoint_id); return false; } /* ...and if it's to be an AP endpoint... */ if (other_data->ee_id == GSI_EE_AP) { /* ...make sure it has status enabled. */ if (!other_data->endpoint.config.status_enable) { dev_err(dev, "status not enabled for endpoint %u\n", other_data->endpoint_id); return false; } } } if (data->endpoint.config.dma_mode) { other_name = data->endpoint.config.dma_endpoint; if (other_name >= count) { dev_err(dev, "DMA endpoint name %u out of range " "for endpoint %u\n", other_name, data->endpoint_id); return false; } other_data = &all_data[other_name]; if (ipa_gsi_endpoint_data_empty(other_data)) { dev_err(dev, "DMA endpoint name %u undefined " "for endpoint %u\n", other_name, data->endpoint_id); return false; } } return true; } static u32 aggr_byte_limit_max(enum ipa_version version) { if (version < IPA_VERSION_4_5) return field_max(aggr_byte_limit_fmask(true)); return field_max(aggr_byte_limit_fmask(false)); } static bool ipa_endpoint_data_valid(struct ipa *ipa, u32 count, const struct ipa_gsi_endpoint_data *data) { const struct ipa_gsi_endpoint_data *dp = data; struct device *dev = &ipa->pdev->dev; enum ipa_endpoint_name name; u32 limit; if (count > IPA_ENDPOINT_COUNT) { dev_err(dev, "too many endpoints specified (%u > %u)\n", count, IPA_ENDPOINT_COUNT); return false; } /* The aggregation byte limit defines the point at which an * aggregation window will close. It is programmed into the * IPA hardware as a number of KB. We don't use "hard byte * limit" aggregation, which means that we need to supply * enough space in a receive buffer to hold a complete MTU * plus normal skb overhead *after* that aggregation byte * limit has been crossed. * * This check ensures we don't define a receive buffer size * that would exceed what we can represent in the field that * is used to program its size. */ limit = aggr_byte_limit_max(ipa->version) * SZ_1K; limit += IPA_MTU + IPA_RX_BUFFER_OVERHEAD; if (limit < IPA_RX_BUFFER_SIZE) { dev_err(dev, "buffer size too big for aggregation (%u > %u)\n", IPA_RX_BUFFER_SIZE, limit); return false; } /* Make sure needed endpoints have defined data */ if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_COMMAND_TX])) { dev_err(dev, "command TX endpoint not defined\n"); return false; } if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_LAN_RX])) { dev_err(dev, "LAN RX endpoint not defined\n"); return false; } if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_TX])) { dev_err(dev, "AP->modem TX endpoint not defined\n"); return false; } if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_RX])) { dev_err(dev, "AP<-modem RX endpoint not defined\n"); return false; } for (name = 0; name < count; name++, dp++) if (!ipa_endpoint_data_valid_one(ipa, count, data, dp)) return false; return true; } /* Allocate a transaction to use on a non-command endpoint */ static struct gsi_trans *ipa_endpoint_trans_alloc(struct ipa_endpoint *endpoint, u32 tre_count) { struct gsi *gsi = &endpoint->ipa->gsi; u32 channel_id = endpoint->channel_id; enum dma_data_direction direction; direction = endpoint->toward_ipa ? DMA_TO_DEVICE : DMA_FROM_DEVICE; return gsi_channel_trans_alloc(gsi, channel_id, tre_count, direction); } /* suspend_delay represents suspend for RX, delay for TX endpoints. * Note that suspend is not supported starting with IPA v4.0. */ static bool ipa_endpoint_init_ctrl(struct ipa_endpoint *endpoint, bool suspend_delay) { u32 offset = IPA_REG_ENDP_INIT_CTRL_N_OFFSET(endpoint->endpoint_id); struct ipa *ipa = endpoint->ipa; bool state; u32 mask; u32 val; /* Suspend is not supported for IPA v4.0+. Delay doesn't work * correctly on IPA v4.2. */ if (endpoint->toward_ipa) WARN_ON(ipa->version == IPA_VERSION_4_2); else WARN_ON(ipa->version >= IPA_VERSION_4_0); mask = endpoint->toward_ipa ? ENDP_DELAY_FMASK : ENDP_SUSPEND_FMASK; val = ioread32(ipa->reg_virt + offset); state = !!(val & mask); /* Don't bother if it's already in the requested state */ if (suspend_delay != state) { val ^= mask; iowrite32(val, ipa->reg_virt + offset); } return state; } /* We currently don't care what the previous state was for delay mode */ static void ipa_endpoint_program_delay(struct ipa_endpoint *endpoint, bool enable) { WARN_ON(!endpoint->toward_ipa); /* Delay mode doesn't work properly for IPA v4.2 */ if (endpoint->ipa->version != IPA_VERSION_4_2) (void)ipa_endpoint_init_ctrl(endpoint, enable); } static bool ipa_endpoint_aggr_active(struct ipa_endpoint *endpoint) { u32 mask = BIT(endpoint->endpoint_id); struct ipa *ipa = endpoint->ipa; u32 offset; u32 val; WARN_ON(!(mask & ipa->available)); offset = ipa_reg_state_aggr_active_offset(ipa->version); val = ioread32(ipa->reg_virt + offset); return !!(val & mask); } static void ipa_endpoint_force_close(struct ipa_endpoint *endpoint) { u32 mask = BIT(endpoint->endpoint_id); struct ipa *ipa = endpoint->ipa; WARN_ON(!(mask & ipa->available)); iowrite32(mask, ipa->reg_virt + IPA_REG_AGGR_FORCE_CLOSE_OFFSET); } /** * ipa_endpoint_suspend_aggr() - Emulate suspend interrupt * @endpoint: Endpoint on which to emulate a suspend * * Emulate suspend IPA interrupt to unsuspend an endpoint suspended * with an open aggregation frame. This is to work around a hardware * issue in IPA version 3.5.1 where the suspend interrupt will not be * generated when it should be. */ static void ipa_endpoint_suspend_aggr(struct ipa_endpoint *endpoint) { struct ipa *ipa = endpoint->ipa; if (!endpoint->data->aggregation) return; /* Nothing to do if the endpoint doesn't have aggregation open */ if (!ipa_endpoint_aggr_active(endpoint)) return; /* Force close aggregation */ ipa_endpoint_force_close(endpoint); ipa_interrupt_simulate_suspend(ipa->interrupt); } /* Returns previous suspend state (true means suspend was enabled) */ static bool ipa_endpoint_program_suspend(struct ipa_endpoint *endpoint, bool enable) { bool suspended; if (endpoint->ipa->version >= IPA_VERSION_4_0) return enable; /* For IPA v4.0+, no change made */ WARN_ON(endpoint->toward_ipa); suspended = ipa_endpoint_init_ctrl(endpoint, enable); /* A client suspended with an open aggregation frame will not * generate a SUSPEND IPA interrupt. If enabling suspend, have * ipa_endpoint_suspend_aggr() handle this. */ if (enable && !suspended) ipa_endpoint_suspend_aggr(endpoint); return suspended; } /* Enable or disable delay or suspend mode on all modem endpoints */ void ipa_endpoint_modem_pause_all(struct ipa *ipa, bool enable) { u32 endpoint_id; /* DELAY mode doesn't work correctly on IPA v4.2 */ if (ipa->version == IPA_VERSION_4_2) return; for (endpoint_id = 0; endpoint_id < IPA_ENDPOINT_MAX; endpoint_id++) { struct ipa_endpoint *endpoint = &ipa->endpoint[endpoint_id]; if (endpoint->ee_id != GSI_EE_MODEM) continue; /* Set TX delay mode or RX suspend mode */ if (endpoint->toward_ipa) ipa_endpoint_program_delay(endpoint, enable); else (void)ipa_endpoint_program_suspend(endpoint, enable); } } /* Reset all modem endpoints to use the default exception endpoint */ int ipa_endpoint_modem_exception_reset_all(struct ipa *ipa) { u32 initialized = ipa->initialized; struct gsi_trans *trans; u32 count; /* We need one command per modem TX endpoint. We can get an upper * bound on that by assuming all initialized endpoints are modem->IPA. * That won't happen, and we could be more precise, but this is fine * for now. End the transaction with commands to clear the pipeline. */ count = hweight32(initialized) + ipa_cmd_pipeline_clear_count(); trans = ipa_cmd_trans_alloc(ipa, count); if (!trans) { dev_err(&ipa->pdev->dev, "no transaction to reset modem exception endpoints\n"); return -EBUSY; } while (initialized) { u32 endpoint_id = __ffs(initialized); struct ipa_endpoint *endpoint; u32 offset; initialized ^= BIT(endpoint_id); /* We only reset modem TX endpoints */ endpoint = &ipa->endpoint[endpoint_id]; if (!(endpoint->ee_id == GSI_EE_MODEM && endpoint->toward_ipa)) continue; offset = IPA_REG_ENDP_STATUS_N_OFFSET(endpoint_id); /* Value written is 0, and all bits are updated. That * means status is disabled on the endpoint, and as a * result all other fields in the register are ignored. */ ipa_cmd_register_write_add(trans, offset, 0, ~0, false); } ipa_cmd_pipeline_clear_add(trans); /* XXX This should have a 1 second timeout */ gsi_trans_commit_wait(trans); ipa_cmd_pipeline_clear_wait(ipa); return 0; } static void ipa_endpoint_init_cfg(struct ipa_endpoint *endpoint) { u32 offset = IPA_REG_ENDP_INIT_CFG_N_OFFSET(endpoint->endpoint_id); enum ipa_cs_offload_en enabled; u32 val = 0; /* FRAG_OFFLOAD_EN is 0 */ if (endpoint->data->checksum) { enum ipa_version version = endpoint->ipa->version; if (endpoint->toward_ipa) { u32 checksum_offset; /* Checksum header offset is in 4-byte units */ checksum_offset = sizeof(struct rmnet_map_header); checksum_offset /= sizeof(u32); val |= u32_encode_bits(checksum_offset, CS_METADATA_HDR_OFFSET_FMASK); enabled = version < IPA_VERSION_4_5 ? IPA_CS_OFFLOAD_UL : IPA_CS_OFFLOAD_INLINE; } else { enabled = version < IPA_VERSION_4_5 ? IPA_CS_OFFLOAD_DL : IPA_CS_OFFLOAD_INLINE; } } else { enabled = IPA_CS_OFFLOAD_NONE; } val |= u32_encode_bits(enabled, CS_OFFLOAD_EN_FMASK); /* CS_GEN_QMB_MASTER_SEL is 0 */ iowrite32(val, endpoint->ipa->reg_virt + offset); } static void ipa_endpoint_init_nat(struct ipa_endpoint *endpoint) { u32 offset; u32 val; if (!endpoint->toward_ipa) return; offset = IPA_REG_ENDP_INIT_NAT_N_OFFSET(endpoint->endpoint_id); val = u32_encode_bits(IPA_NAT_BYPASS, NAT_EN_FMASK); iowrite32(val, endpoint->ipa->reg_virt + offset); } static u32 ipa_qmap_header_size(enum ipa_version version, struct ipa_endpoint *endpoint) { u32 header_size = sizeof(struct rmnet_map_header); /* Without checksum offload, we just have the MAP header */ if (!endpoint->data->checksum) return header_size; if (version < IPA_VERSION_4_5) { /* Checksum header inserted for AP TX endpoints only */ if (endpoint->toward_ipa) header_size += sizeof(struct rmnet_map_ul_csum_header); } else { /* Checksum header is used in both directions */ header_size += sizeof(struct rmnet_map_v5_csum_header); } return header_size; } /** * ipa_endpoint_init_hdr() - Initialize HDR endpoint configuration register * @endpoint: Endpoint pointer * * We program QMAP endpoints so each packet received is preceded by a QMAP * header structure. The QMAP header contains a 1-byte mux_id and 2-byte * packet size field, and we have the IPA hardware populate both for each * received packet. The header is configured (in the HDR_EXT register) * to use big endian format. * * The packet size is written into the QMAP header's pkt_len field. That * location is defined here using the HDR_OFST_PKT_SIZE field. * * The mux_id comes from a 4-byte metadata value supplied with each packet * by the modem. It is *not* a QMAP header, but it does contain the mux_id * value that we want, in its low-order byte. A bitmask defined in the * endpoint's METADATA_MASK register defines which byte within the modem * metadata contains the mux_id. And the OFST_METADATA field programmed * here indicates where the extracted byte should be placed within the QMAP * header. */ static void ipa_endpoint_init_hdr(struct ipa_endpoint *endpoint) { u32 offset = IPA_REG_ENDP_INIT_HDR_N_OFFSET(endpoint->endpoint_id); struct ipa *ipa = endpoint->ipa; u32 val = 0; if (endpoint->data->qmap) { enum ipa_version version = ipa->version; size_t header_size; header_size = ipa_qmap_header_size(version, endpoint); val = ipa_header_size_encoded(version, header_size); /* Define how to fill fields in a received QMAP header */ if (!endpoint->toward_ipa) { u32 offset; /* Field offset within header */ /* Where IPA will write the metadata value */ offset = offsetof(struct rmnet_map_header, mux_id); val |= ipa_metadata_offset_encoded(version, offset); /* Where IPA will write the length */ offset = offsetof(struct rmnet_map_header, pkt_len); /* Upper bits are stored in HDR_EXT with IPA v4.5 */ if (version >= IPA_VERSION_4_5) offset &= field_mask(HDR_OFST_PKT_SIZE_FMASK); val |= HDR_OFST_PKT_SIZE_VALID_FMASK; val |= u32_encode_bits(offset, HDR_OFST_PKT_SIZE_FMASK); } /* For QMAP TX, metadata offset is 0 (modem assumes this) */ val |= HDR_OFST_METADATA_VALID_FMASK; /* HDR_ADDITIONAL_CONST_LEN is 0; (RX only) */ /* HDR_A5_MUX is 0 */ /* HDR_LEN_INC_DEAGG_HDR is 0 */ /* HDR_METADATA_REG_VALID is 0 (TX only, version < v4.5) */ } iowrite32(val, ipa->reg_virt + offset); } static void ipa_endpoint_init_hdr_ext(struct ipa_endpoint *endpoint) { u32 offset = IPA_REG_ENDP_INIT_HDR_EXT_N_OFFSET(endpoint->endpoint_id); u32 pad_align = endpoint->data->rx.pad_align; struct ipa *ipa = endpoint->ipa; u32 val = 0; val |= HDR_ENDIANNESS_FMASK; /* big endian */ /* A QMAP header contains a 6 bit pad field at offset 0. The RMNet * driver assumes this field is meaningful in packets it receives, * and assumes the header's payload length includes that padding. * The RMNet driver does *not* pad packets it sends, however, so * the pad field (although 0) should be ignored. */ if (endpoint->data->qmap && !endpoint->toward_ipa) { val |= HDR_TOTAL_LEN_OR_PAD_VALID_FMASK; /* HDR_TOTAL_LEN_OR_PAD is 0 (pad, not total_len) */ val |= HDR_PAYLOAD_LEN_INC_PADDING_FMASK; /* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0 */ } /* HDR_PAYLOAD_LEN_INC_PADDING is 0 */ if (!endpoint->toward_ipa) val |= u32_encode_bits(pad_align, HDR_PAD_TO_ALIGNMENT_FMASK); /* IPA v4.5 adds some most-significant bits to a few fields, * two of which are defined in the HDR (not HDR_EXT) register. */ if (ipa->version >= IPA_VERSION_4_5) { /* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0, so MSB is 0 */ if (endpoint->data->qmap && !endpoint->toward_ipa) { u32 offset; offset = offsetof(struct rmnet_map_header, pkt_len); offset >>= hweight32(HDR_OFST_PKT_SIZE_FMASK); val |= u32_encode_bits(offset, HDR_OFST_PKT_SIZE_MSB_FMASK); /* HDR_ADDITIONAL_CONST_LEN is 0 so MSB is 0 */ } } iowrite32(val, ipa->reg_virt + offset); } static void ipa_endpoint_init_hdr_metadata_mask(struct ipa_endpoint *endpoint) { u32 endpoint_id = endpoint->endpoint_id; u32 val = 0; u32 offset; if (endpoint->toward_ipa) return; /* Register not valid for TX endpoints */ offset = IPA_REG_ENDP_INIT_HDR_METADATA_MASK_N_OFFSET(endpoint_id); /* Note that HDR_ENDIANNESS indicates big endian header fields */ if (endpoint->data->qmap) val = (__force u32)cpu_to_be32(IPA_ENDPOINT_QMAP_METADATA_MASK); iowrite32(val, endpoint->ipa->reg_virt + offset); } static void ipa_endpoint_init_mode(struct ipa_endpoint *endpoint) { u32 offset = IPA_REG_ENDP_INIT_MODE_N_OFFSET(endpoint->endpoint_id); u32 val; if (!endpoint->toward_ipa) return; /* Register not valid for RX endpoints */ if (endpoint->data->dma_mode) { enum ipa_endpoint_name name = endpoint->data->dma_endpoint; u32 dma_endpoint_id; dma_endpoint_id = endpoint->ipa->name_map[name]->endpoint_id; val = u32_encode_bits(IPA_DMA, MODE_FMASK); val |= u32_encode_bits(dma_endpoint_id, DEST_PIPE_INDEX_FMASK); } else { val = u32_encode_bits(IPA_BASIC, MODE_FMASK); } /* All other bits unspecified (and 0) */ iowrite32(val, endpoint->ipa->reg_virt + offset); } /* Compute the aggregation size value to use for a given buffer size */ static u32 ipa_aggr_size_kb(u32 rx_buffer_size) { /* We don't use "hard byte limit" aggregation, so we define the * aggregation limit such that our buffer has enough space *after* * that limit to receive a full MTU of data, plus overhead. */ rx_buffer_size -= IPA_MTU + IPA_RX_BUFFER_OVERHEAD; return rx_buffer_size / SZ_1K; } /* Encoded values for AGGR endpoint register fields */ static u32 aggr_byte_limit_encoded(enum ipa_version version, u32 limit) { if (version < IPA_VERSION_4_5) return u32_encode_bits(limit, aggr_byte_limit_fmask(true)); return u32_encode_bits(limit, aggr_byte_limit_fmask(false)); } /* Encode the aggregation timer limit (microseconds) based on IPA version */ static u32 aggr_time_limit_encoded(enum ipa_version version, u32 limit) { u32 gran_sel; u32 fmask; u32 val; if (version < IPA_VERSION_4_5) { /* We set aggregation granularity in ipa_hardware_config() */ limit = DIV_ROUND_CLOSEST(limit, IPA_AGGR_GRANULARITY); return u32_encode_bits(limit, aggr_time_limit_fmask(true)); } /* IPA v4.5 expresses the time limit using Qtime. The AP has * pulse generators 0 and 1 available, which were configured * in ipa_qtime_config() to have granularity 100 usec and * 1 msec, respectively. Use pulse generator 0 if possible, * otherwise fall back to pulse generator 1. */ fmask = aggr_time_limit_fmask(false); val = DIV_ROUND_CLOSEST(limit, 100); if (val > field_max(fmask)) { /* Have to use pulse generator 1 (millisecond granularity) */ gran_sel = AGGR_GRAN_SEL_FMASK; val = DIV_ROUND_CLOSEST(limit, 1000); } else { /* We can use pulse generator 0 (100 usec granularity) */ gran_sel = 0; } return gran_sel | u32_encode_bits(val, fmask); } static u32 aggr_sw_eof_active_encoded(enum ipa_version version, bool enabled) { u32 val = enabled ? 1 : 0; if (version < IPA_VERSION_4_5) return u32_encode_bits(val, aggr_sw_eof_active_fmask(true)); return u32_encode_bits(val, aggr_sw_eof_active_fmask(false)); } static void ipa_endpoint_init_aggr(struct ipa_endpoint *endpoint) { u32 offset = IPA_REG_ENDP_INIT_AGGR_N_OFFSET(endpoint->endpoint_id); enum ipa_version version = endpoint->ipa->version; u32 val = 0; if (endpoint->data->aggregation) { if (!endpoint->toward_ipa) { bool close_eof; u32 limit; val |= u32_encode_bits(IPA_ENABLE_AGGR, AGGR_EN_FMASK); val |= u32_encode_bits(IPA_GENERIC, AGGR_TYPE_FMASK); limit = ipa_aggr_size_kb(IPA_RX_BUFFER_SIZE); val |= aggr_byte_limit_encoded(version, limit); limit = IPA_AGGR_TIME_LIMIT; val |= aggr_time_limit_encoded(version, limit); /* AGGR_PKT_LIMIT is 0 (unlimited) */ close_eof = endpoint->data->rx.aggr_close_eof; val |= aggr_sw_eof_active_encoded(version, close_eof); /* AGGR_HARD_BYTE_LIMIT_ENABLE is 0 */ } else { val |= u32_encode_bits(IPA_ENABLE_DEAGGR, AGGR_EN_FMASK); val |= u32_encode_bits(IPA_QCMAP, AGGR_TYPE_FMASK); /* other fields ignored */ } /* AGGR_FORCE_CLOSE is 0 */ /* AGGR_GRAN_SEL is 0 for IPA v4.5 */ } else { val |= u32_encode_bits(IPA_BYPASS_AGGR, AGGR_EN_FMASK); /* other fields ignored */ } iowrite32(val, endpoint->ipa->reg_virt + offset); } /* Return the Qtime-based head-of-line blocking timer value that * represents the given number of microseconds. The result * includes both the timer value and the selected timer granularity. */ static u32 hol_block_timer_qtime_val(struct ipa *ipa, u32 microseconds) { u32 gran_sel; u32 val; /* IPA v4.5 expresses time limits using Qtime. The AP has * pulse generators 0 and 1 available, which were configured * in ipa_qtime_config() to have granularity 100 usec and * 1 msec, respectively. Use pulse generator 0 if possible, * otherwise fall back to pulse generator 1. */ val = DIV_ROUND_CLOSEST(microseconds, 100); if (val > field_max(TIME_LIMIT_FMASK)) { /* Have to use pulse generator 1 (millisecond granularity) */ gran_sel = GRAN_SEL_FMASK; val = DIV_ROUND_CLOSEST(microseconds, 1000); } else { /* We can use pulse generator 0 (100 usec granularity) */ gran_sel = 0; } return gran_sel | u32_encode_bits(val, TIME_LIMIT_FMASK); } /* The head-of-line blocking timer is defined as a tick count. For * IPA version 4.5 the tick count is based on the Qtimer, which is * derived from the 19.2 MHz SoC XO clock. For older IPA versions * each tick represents 128 cycles of the IPA core clock. * * Return the encoded value that should be written to that register * that represents the timeout period provided. For IPA v4.2 this * encodes a base and scale value, while for earlier versions the * value is a simple tick count. */ static u32 hol_block_timer_val(struct ipa *ipa, u32 microseconds) { u32 width; u32 scale; u64 ticks; u64 rate; u32 high; u32 val; if (!microseconds) return 0; /* Nothing to compute if timer period is 0 */ if (ipa->version >= IPA_VERSION_4_5) return hol_block_timer_qtime_val(ipa, microseconds); /* Use 64 bit arithmetic to avoid overflow... */ rate = ipa_core_clock_rate(ipa); ticks = DIV_ROUND_CLOSEST(microseconds * rate, 128 * USEC_PER_SEC); /* ...but we still need to fit into a 32-bit register */ WARN_ON(ticks > U32_MAX); /* IPA v3.5.1 through v4.1 just record the tick count */ if (ipa->version < IPA_VERSION_4_2) return (u32)ticks; /* For IPA v4.2, the tick count is represented by base and * scale fields within the 32-bit timer register, where: * ticks = base << scale; * The best precision is achieved when the base value is as * large as possible. Find the highest set bit in the tick * count, and extract the number of bits in the base field * such that high bit is included. */ high = fls(ticks); /* 1..32 */ width = HWEIGHT32(BASE_VALUE_FMASK); scale = high > width ? high - width : 0; if (scale) { /* If we're scaling, round up to get a closer result */ ticks += 1 << (scale - 1); /* High bit was set, so rounding might have affected it */ if (fls(ticks) != high) scale++; } val = u32_encode_bits(scale, SCALE_FMASK); val |= u32_encode_bits(ticks >> scale, BASE_VALUE_FMASK); return val; } /* If microseconds is 0, timeout is immediate */ static void ipa_endpoint_init_hol_block_timer(struct ipa_endpoint *endpoint, u32 microseconds) { u32 endpoint_id = endpoint->endpoint_id; struct ipa *ipa = endpoint->ipa; u32 offset; u32 val; /* This should only be changed when HOL_BLOCK_EN is disabled */ offset = IPA_REG_ENDP_INIT_HOL_BLOCK_TIMER_N_OFFSET(endpoint_id); val = hol_block_timer_val(ipa, microseconds); iowrite32(val, ipa->reg_virt + offset); } static void ipa_endpoint_init_hol_block_enable(struct ipa_endpoint *endpoint, bool enable) { u32 endpoint_id = endpoint->endpoint_id; u32 offset; u32 val; val = enable ? HOL_BLOCK_EN_FMASK : 0; offset = IPA_REG_ENDP_INIT_HOL_BLOCK_EN_N_OFFSET(endpoint_id); iowrite32(val, endpoint->ipa->reg_virt + offset); /* When enabling, the register must be written twice for IPA v4.5+ */ if (enable && endpoint->ipa->version >= IPA_VERSION_4_5) iowrite32(val, endpoint->ipa->reg_virt + offset); } void ipa_endpoint_modem_hol_block_clear_all(struct ipa *ipa) { u32 i; for (i = 0; i < IPA_ENDPOINT_MAX; i++) { struct ipa_endpoint *endpoint = &ipa->endpoint[i]; if (endpoint->toward_ipa || endpoint->ee_id != GSI_EE_MODEM) continue; ipa_endpoint_init_hol_block_enable(endpoint, false); ipa_endpoint_init_hol_block_timer(endpoint, 0); ipa_endpoint_init_hol_block_enable(endpoint, true); } } static void ipa_endpoint_init_deaggr(struct ipa_endpoint *endpoint) { u32 offset = IPA_REG_ENDP_INIT_DEAGGR_N_OFFSET(endpoint->endpoint_id); u32 val = 0; if (!endpoint->toward_ipa) return; /* Register not valid for RX endpoints */ /* DEAGGR_HDR_LEN is 0 */ /* PACKET_OFFSET_VALID is 0 */ /* PACKET_OFFSET_LOCATION is ignored (not valid) */ /* MAX_PACKET_LEN is 0 (not enforced) */ iowrite32(val, endpoint->ipa->reg_virt + offset); } static void ipa_endpoint_init_rsrc_grp(struct ipa_endpoint *endpoint) { u32 offset = IPA_REG_ENDP_INIT_RSRC_GRP_N_OFFSET(endpoint->endpoint_id); struct ipa *ipa = endpoint->ipa; u32 val; val = rsrc_grp_encoded(ipa->version, endpoint->data->resource_group); iowrite32(val, ipa->reg_virt + offset); } static void ipa_endpoint_init_seq(struct ipa_endpoint *endpoint) { u32 offset = IPA_REG_ENDP_INIT_SEQ_N_OFFSET(endpoint->endpoint_id); u32 val = 0; if (!endpoint->toward_ipa) return; /* Register not valid for RX endpoints */ /* Low-order byte configures primary packet processing */ val |= u32_encode_bits(endpoint->data->tx.seq_type, SEQ_TYPE_FMASK); /* Second byte configures replicated packet processing */ val |= u32_encode_bits(endpoint->data->tx.seq_rep_type, SEQ_REP_TYPE_FMASK); iowrite32(val, endpoint->ipa->reg_virt + offset); } /** * ipa_endpoint_skb_tx() - Transmit a socket buffer * @endpoint: Endpoint pointer * @skb: Socket buffer to send * * Returns: 0 if successful, or a negative error code */ int ipa_endpoint_skb_tx(struct ipa_endpoint *endpoint, struct sk_buff *skb) { struct gsi_trans *trans; u32 nr_frags; int ret; /* Make sure source endpoint's TLV FIFO has enough entries to * hold the linear portion of the skb and all its fragments. * If not, see if we can linearize it before giving up. */ nr_frags = skb_shinfo(skb)->nr_frags; if (1 + nr_frags > endpoint->trans_tre_max) { if (skb_linearize(skb)) return -E2BIG; nr_frags = 0; } trans = ipa_endpoint_trans_alloc(endpoint, 1 + nr_frags); if (!trans) return -EBUSY; ret = gsi_trans_skb_add(trans, skb); if (ret) goto err_trans_free; trans->data = skb; /* transaction owns skb now */ gsi_trans_commit(trans, !netdev_xmit_more()); return 0; err_trans_free: gsi_trans_free(trans); return -ENOMEM; } static void ipa_endpoint_status(struct ipa_endpoint *endpoint) { u32 endpoint_id = endpoint->endpoint_id; struct ipa *ipa = endpoint->ipa; u32 val = 0; u32 offset; offset = IPA_REG_ENDP_STATUS_N_OFFSET(endpoint_id); if (endpoint->data->status_enable) { val |= STATUS_EN_FMASK; if (endpoint->toward_ipa) { enum ipa_endpoint_name name; u32 status_endpoint_id; name = endpoint->data->tx.status_endpoint; status_endpoint_id = ipa->name_map[name]->endpoint_id; val |= u32_encode_bits(status_endpoint_id, STATUS_ENDP_FMASK); } /* STATUS_LOCATION is 0, meaning status element precedes * packet (not present for IPA v4.5) */ /* STATUS_PKT_SUPPRESS_FMASK is 0 (not present for v3.5.1) */ } iowrite32(val, ipa->reg_virt + offset); } static int ipa_endpoint_replenish_one(struct ipa_endpoint *endpoint) { struct gsi_trans *trans; bool doorbell = false; struct page *page; u32 offset; u32 len; int ret; page = dev_alloc_pages(get_order(IPA_RX_BUFFER_SIZE)); if (!page) return -ENOMEM; trans = ipa_endpoint_trans_alloc(endpoint, 1); if (!trans) goto err_free_pages; /* Offset the buffer to make space for skb headroom */ offset = NET_SKB_PAD; len = IPA_RX_BUFFER_SIZE - offset; ret = gsi_trans_page_add(trans, page, len, offset); if (ret) goto err_trans_free; trans->data = page; /* transaction owns page now */ if (++endpoint->replenish_ready == IPA_REPLENISH_BATCH) { doorbell = true; endpoint->replenish_ready = 0; } gsi_trans_commit(trans, doorbell); return 0; err_trans_free: gsi_trans_free(trans); err_free_pages: __free_pages(page, get_order(IPA_RX_BUFFER_SIZE)); return -ENOMEM; } /** * ipa_endpoint_replenish() - Replenish endpoint receive buffers * @endpoint: Endpoint to be replenished * @add_one: Whether this is replacing a just-consumed buffer * * The IPA hardware can hold a fixed number of receive buffers for an RX * endpoint, based on the number of entries in the underlying channel ring * buffer. If an endpoint's "backlog" is non-zero, it indicates how many * more receive buffers can be supplied to the hardware. Replenishing for * an endpoint can be disabled, in which case requests to replenish a * buffer are "saved", and transferred to the backlog once it is re-enabled * again. */ static void ipa_endpoint_replenish(struct ipa_endpoint *endpoint, bool add_one) { struct gsi *gsi; u32 backlog; if (!endpoint->replenish_enabled) { if (add_one) atomic_inc(&endpoint->replenish_saved); return; } while (atomic_dec_not_zero(&endpoint->replenish_backlog)) if (ipa_endpoint_replenish_one(endpoint)) goto try_again_later; if (add_one) atomic_inc(&endpoint->replenish_backlog); return; try_again_later: /* The last one didn't succeed, so fix the backlog */ backlog = atomic_inc_return(&endpoint->replenish_backlog); if (add_one) atomic_inc(&endpoint->replenish_backlog); /* Whenever a receive buffer transaction completes we'll try to * replenish again. It's unlikely, but if we fail to supply even * one buffer, nothing will trigger another replenish attempt. * Receive buffer transactions use one TRE, so schedule work to * try replenishing again if our backlog is *all* available TREs. */ gsi = &endpoint->ipa->gsi; if (backlog == gsi_channel_tre_max(gsi, endpoint->channel_id)) schedule_delayed_work(&endpoint->replenish_work, msecs_to_jiffies(1)); } static void ipa_endpoint_replenish_enable(struct ipa_endpoint *endpoint) { struct gsi *gsi = &endpoint->ipa->gsi; u32 max_backlog; u32 saved; endpoint->replenish_enabled = true; while ((saved = atomic_xchg(&endpoint->replenish_saved, 0))) atomic_add(saved, &endpoint->replenish_backlog); /* Start replenishing if hardware currently has no buffers */ max_backlog = gsi_channel_tre_max(gsi, endpoint->channel_id); if (atomic_read(&endpoint->replenish_backlog) == max_backlog) ipa_endpoint_replenish(endpoint, false); } static void ipa_endpoint_replenish_disable(struct ipa_endpoint *endpoint) { u32 backlog; endpoint->replenish_enabled = false; while ((backlog = atomic_xchg(&endpoint->replenish_backlog, 0))) atomic_add(backlog, &endpoint->replenish_saved); } static void ipa_endpoint_replenish_work(struct work_struct *work) { struct delayed_work *dwork = to_delayed_work(work); struct ipa_endpoint *endpoint; endpoint = container_of(dwork, struct ipa_endpoint, replenish_work); ipa_endpoint_replenish(endpoint, false); } static void ipa_endpoint_skb_copy(struct ipa_endpoint *endpoint, void *data, u32 len, u32 extra) { struct sk_buff *skb; skb = __dev_alloc_skb(len, GFP_ATOMIC); if (skb) { skb_put(skb, len); memcpy(skb->data, data, len); skb->truesize += extra; } /* Now receive it, or drop it if there's no netdev */ if (endpoint->netdev) ipa_modem_skb_rx(endpoint->netdev, skb); else if (skb) dev_kfree_skb_any(skb); } static bool ipa_endpoint_skb_build(struct ipa_endpoint *endpoint, struct page *page, u32 len) { struct sk_buff *skb; /* Nothing to do if there's no netdev */ if (!endpoint->netdev) return false; WARN_ON(len > SKB_WITH_OVERHEAD(IPA_RX_BUFFER_SIZE - NET_SKB_PAD)); skb = build_skb(page_address(page), IPA_RX_BUFFER_SIZE); if (skb) { /* Reserve the headroom and account for the data */ skb_reserve(skb, NET_SKB_PAD); skb_put(skb, len); } /* Receive the buffer (or record drop if unable to build it) */ ipa_modem_skb_rx(endpoint->netdev, skb); return skb != NULL; } /* The format of a packet status element is the same for several status * types (opcodes). Other types aren't currently supported. */ static bool ipa_status_format_packet(enum ipa_status_opcode opcode) { switch (opcode) { case IPA_STATUS_OPCODE_PACKET: case IPA_STATUS_OPCODE_DROPPED_PACKET: case IPA_STATUS_OPCODE_SUSPENDED_PACKET: case IPA_STATUS_OPCODE_PACKET_2ND_PASS: return true; default: return false; } } static bool ipa_endpoint_status_skip(struct ipa_endpoint *endpoint, const struct ipa_status *status) { u32 endpoint_id; if (!ipa_status_format_packet(status->opcode)) return true; if (!status->pkt_len) return true; endpoint_id = u8_get_bits(status->endp_dst_idx, IPA_STATUS_DST_IDX_FMASK); if (endpoint_id != endpoint->endpoint_id) return true; return false; /* Don't skip this packet, process it */ } static bool ipa_endpoint_status_tag(struct ipa_endpoint *endpoint, const struct ipa_status *status) { struct ipa_endpoint *command_endpoint; struct ipa *ipa = endpoint->ipa; u32 endpoint_id; if (!le16_get_bits(status->mask, IPA_STATUS_MASK_TAG_VALID_FMASK)) return false; /* No valid tag */ /* The status contains a valid tag. We know the packet was sent to * this endpoint (already verified by ipa_endpoint_status_skip()). * If the packet came from the AP->command TX endpoint we know * this packet was sent as part of the pipeline clear process. */ endpoint_id = u8_get_bits(status->endp_src_idx, IPA_STATUS_SRC_IDX_FMASK); command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]; if (endpoint_id == command_endpoint->endpoint_id) { complete(&ipa->completion); } else { dev_err(&ipa->pdev->dev, "unexpected tagged packet from endpoint %u\n", endpoint_id); } return true; } /* Return whether the status indicates the packet should be dropped */ static bool ipa_endpoint_status_drop(struct ipa_endpoint *endpoint, const struct ipa_status *status) { u32 val; /* If the status indicates a tagged transfer, we'll drop the packet */ if (ipa_endpoint_status_tag(endpoint, status)) return true; /* Deaggregation exceptions we drop; all other types we consume */ if (status->exception) return status->exception == IPA_STATUS_EXCEPTION_DEAGGR; /* Drop the packet if it fails to match a routing rule; otherwise no */ val = le32_get_bits(status->flags1, IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK); return val == field_max(IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK); } static void ipa_endpoint_status_parse(struct ipa_endpoint *endpoint, struct page *page, u32 total_len) { void *data = page_address(page) + NET_SKB_PAD; u32 unused = IPA_RX_BUFFER_SIZE - total_len; u32 resid = total_len; while (resid) { const struct ipa_status *status = data; u32 align; u32 len; if (resid < sizeof(*status)) { dev_err(&endpoint->ipa->pdev->dev, "short message (%u bytes < %zu byte status)\n", resid, sizeof(*status)); break; } /* Skip over status packets that lack packet data */ if (ipa_endpoint_status_skip(endpoint, status)) { data += sizeof(*status); resid -= sizeof(*status); continue; } /* Compute the amount of buffer space consumed by the packet, * including the status element. If the hardware is configured * to pad packet data to an aligned boundary, account for that. * And if checksum offload is enabled a trailer containing * computed checksum information will be appended. */ align = endpoint->data->rx.pad_align ? : 1; len = le16_to_cpu(status->pkt_len); len = sizeof(*status) + ALIGN(len, align); if (endpoint->data->checksum) len += sizeof(struct rmnet_map_dl_csum_trailer); if (!ipa_endpoint_status_drop(endpoint, status)) { void *data2; u32 extra; u32 len2; /* Client receives only packet data (no status) */ data2 = data + sizeof(*status); len2 = le16_to_cpu(status->pkt_len); /* Have the true size reflect the extra unused space in * the original receive buffer. Distribute the "cost" * proportionately across all aggregated packets in the * buffer. */ extra = DIV_ROUND_CLOSEST(unused * len, total_len); ipa_endpoint_skb_copy(endpoint, data2, len2, extra); } /* Consume status and the full packet it describes */ data += len; resid -= len; } } /* Complete a TX transaction, command or from ipa_endpoint_skb_tx() */ static void ipa_endpoint_tx_complete(struct ipa_endpoint *endpoint, struct gsi_trans *trans) { } /* Complete transaction initiated in ipa_endpoint_replenish_one() */ static void ipa_endpoint_rx_complete(struct ipa_endpoint *endpoint, struct gsi_trans *trans) { struct page *page; ipa_endpoint_replenish(endpoint, true); if (trans->cancelled) return; /* Parse or build a socket buffer using the actual received length */ page = trans->data; if (endpoint->data->status_enable) ipa_endpoint_status_parse(endpoint, page, trans->len); else if (ipa_endpoint_skb_build(endpoint, page, trans->len)) trans->data = NULL; /* Pages have been consumed */ } void ipa_endpoint_trans_complete(struct ipa_endpoint *endpoint, struct gsi_trans *trans) { if (endpoint->toward_ipa) ipa_endpoint_tx_complete(endpoint, trans); else ipa_endpoint_rx_complete(endpoint, trans); } void ipa_endpoint_trans_release(struct ipa_endpoint *endpoint, struct gsi_trans *trans) { if (endpoint->toward_ipa) { struct ipa *ipa = endpoint->ipa; /* Nothing to do for command transactions */ if (endpoint != ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]) { struct sk_buff *skb = trans->data; if (skb) dev_kfree_skb_any(skb); } } else { struct page *page = trans->data; if (page) __free_pages(page, get_order(IPA_RX_BUFFER_SIZE)); } } void ipa_endpoint_default_route_set(struct ipa *ipa, u32 endpoint_id) { u32 val; /* ROUTE_DIS is 0 */ val = u32_encode_bits(endpoint_id, ROUTE_DEF_PIPE_FMASK); val |= ROUTE_DEF_HDR_TABLE_FMASK; val |= u32_encode_bits(0, ROUTE_DEF_HDR_OFST_FMASK); val |= u32_encode_bits(endpoint_id, ROUTE_FRAG_DEF_PIPE_FMASK); val |= ROUTE_DEF_RETAIN_HDR_FMASK; iowrite32(val, ipa->reg_virt + IPA_REG_ROUTE_OFFSET); } void ipa_endpoint_default_route_clear(struct ipa *ipa) { ipa_endpoint_default_route_set(ipa, 0); } /** * ipa_endpoint_reset_rx_aggr() - Reset RX endpoint with aggregation active * @endpoint: Endpoint to be reset * * If aggregation is active on an RX endpoint when a reset is performed * on its underlying GSI channel, a special sequence of actions must be * taken to ensure the IPA pipeline is properly cleared. * * Return: 0 if successful, or a negative error code */ static int ipa_endpoint_reset_rx_aggr(struct ipa_endpoint *endpoint) { struct device *dev = &endpoint->ipa->pdev->dev; struct ipa *ipa = endpoint->ipa; struct gsi *gsi = &ipa->gsi; bool suspended = false; dma_addr_t addr; u32 retries; u32 len = 1; void *virt; int ret; virt = kzalloc(len, GFP_KERNEL); if (!virt) return -ENOMEM; addr = dma_map_single(dev, virt, len, DMA_FROM_DEVICE); if (dma_mapping_error(dev, addr)) { ret = -ENOMEM; goto out_kfree; } /* Force close aggregation before issuing the reset */ ipa_endpoint_force_close(endpoint); /* Reset and reconfigure the channel with the doorbell engine * disabled. Then poll until we know aggregation is no longer * active. We'll re-enable the doorbell (if appropriate) when * we reset again below. */ gsi_channel_reset(gsi, endpoint->channel_id, false); /* Make sure the channel isn't suspended */ suspended = ipa_endpoint_program_suspend(endpoint, false); /* Start channel and do a 1 byte read */ ret = gsi_channel_start(gsi, endpoint->channel_id); if (ret) goto out_suspend_again; ret = gsi_trans_read_byte(gsi, endpoint->channel_id, addr); if (ret) goto err_endpoint_stop; /* Wait for aggregation to be closed on the channel */ retries = IPA_ENDPOINT_RESET_AGGR_RETRY_MAX; do { if (!ipa_endpoint_aggr_active(endpoint)) break; usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC); } while (retries--); /* Check one last time */ if (ipa_endpoint_aggr_active(endpoint)) dev_err(dev, "endpoint %u still active during reset\n", endpoint->endpoint_id); gsi_trans_read_byte_done(gsi, endpoint->channel_id); ret = gsi_channel_stop(gsi, endpoint->channel_id); if (ret) goto out_suspend_again; /* Finally, reset and reconfigure the channel again (re-enabling * the doorbell engine if appropriate). Sleep for 1 millisecond to * complete the channel reset sequence. Finish by suspending the * channel again (if necessary). */ gsi_channel_reset(gsi, endpoint->channel_id, true); usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC); goto out_suspend_again; err_endpoint_stop: (void)gsi_channel_stop(gsi, endpoint->channel_id); out_suspend_again: if (suspended) (void)ipa_endpoint_program_suspend(endpoint, true); dma_unmap_single(dev, addr, len, DMA_FROM_DEVICE); out_kfree: kfree(virt); return ret; } static void ipa_endpoint_reset(struct ipa_endpoint *endpoint) { u32 channel_id = endpoint->channel_id; struct ipa *ipa = endpoint->ipa; bool special; int ret = 0; /* On IPA v3.5.1, if an RX endpoint is reset while aggregation * is active, we need to handle things specially to recover. * All other cases just need to reset the underlying GSI channel. */ special = ipa->version < IPA_VERSION_4_0 && !endpoint->toward_ipa && endpoint->data->aggregation; if (special && ipa_endpoint_aggr_active(endpoint)) ret = ipa_endpoint_reset_rx_aggr(endpoint); else gsi_channel_reset(&ipa->gsi, channel_id, true); if (ret) dev_err(&ipa->pdev->dev, "error %d resetting channel %u for endpoint %u\n", ret, endpoint->channel_id, endpoint->endpoint_id); } static void ipa_endpoint_program(struct ipa_endpoint *endpoint) { if (endpoint->toward_ipa) ipa_endpoint_program_delay(endpoint, false); else (void)ipa_endpoint_program_suspend(endpoint, false); ipa_endpoint_init_cfg(endpoint); ipa_endpoint_init_nat(endpoint); ipa_endpoint_init_hdr(endpoint); ipa_endpoint_init_hdr_ext(endpoint); ipa_endpoint_init_hdr_metadata_mask(endpoint); ipa_endpoint_init_mode(endpoint); ipa_endpoint_init_aggr(endpoint); ipa_endpoint_init_deaggr(endpoint); ipa_endpoint_init_rsrc_grp(endpoint); ipa_endpoint_init_seq(endpoint); ipa_endpoint_status(endpoint); } int ipa_endpoint_enable_one(struct ipa_endpoint *endpoint) { struct ipa *ipa = endpoint->ipa; struct gsi *gsi = &ipa->gsi; int ret; ret = gsi_channel_start(gsi, endpoint->channel_id); if (ret) { dev_err(&ipa->pdev->dev, "error %d starting %cX channel %u for endpoint %u\n", ret, endpoint->toward_ipa ? 'T' : 'R', endpoint->channel_id, endpoint->endpoint_id); return ret; } if (!endpoint->toward_ipa) { ipa_interrupt_suspend_enable(ipa->interrupt, endpoint->endpoint_id); ipa_endpoint_replenish_enable(endpoint); } ipa->enabled |= BIT(endpoint->endpoint_id); return 0; } void ipa_endpoint_disable_one(struct ipa_endpoint *endpoint) { u32 mask = BIT(endpoint->endpoint_id); struct ipa *ipa = endpoint->ipa; struct gsi *gsi = &ipa->gsi; int ret; if (!(ipa->enabled & mask)) return; ipa->enabled ^= mask; if (!endpoint->toward_ipa) { ipa_endpoint_replenish_disable(endpoint); ipa_interrupt_suspend_disable(ipa->interrupt, endpoint->endpoint_id); } /* Note that if stop fails, the channel's state is not well-defined */ ret = gsi_channel_stop(gsi, endpoint->channel_id); if (ret) dev_err(&ipa->pdev->dev, "error %d attempting to stop endpoint %u\n", ret, endpoint->endpoint_id); } void ipa_endpoint_suspend_one(struct ipa_endpoint *endpoint) { struct device *dev = &endpoint->ipa->pdev->dev; struct gsi *gsi = &endpoint->ipa->gsi; int ret; if (!(endpoint->ipa->enabled & BIT(endpoint->endpoint_id))) return; if (!endpoint->toward_ipa) { ipa_endpoint_replenish_disable(endpoint); (void)ipa_endpoint_program_suspend(endpoint, true); } ret = gsi_channel_suspend(gsi, endpoint->channel_id); if (ret) dev_err(dev, "error %d suspending channel %u\n", ret, endpoint->channel_id); } void ipa_endpoint_resume_one(struct ipa_endpoint *endpoint) { struct device *dev = &endpoint->ipa->pdev->dev; struct gsi *gsi = &endpoint->ipa->gsi; int ret; if (!(endpoint->ipa->enabled & BIT(endpoint->endpoint_id))) return; if (!endpoint->toward_ipa) (void)ipa_endpoint_program_suspend(endpoint, false); ret = gsi_channel_resume(gsi, endpoint->channel_id); if (ret) dev_err(dev, "error %d resuming channel %u\n", ret, endpoint->channel_id); else if (!endpoint->toward_ipa) ipa_endpoint_replenish_enable(endpoint); } void ipa_endpoint_suspend(struct ipa *ipa) { if (!ipa->setup_complete) return; if (ipa->modem_netdev) ipa_modem_suspend(ipa->modem_netdev); ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]); ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]); } void ipa_endpoint_resume(struct ipa *ipa) { if (!ipa->setup_complete) return; ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]); ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]); if (ipa->modem_netdev) ipa_modem_resume(ipa->modem_netdev); } static void ipa_endpoint_setup_one(struct ipa_endpoint *endpoint) { struct gsi *gsi = &endpoint->ipa->gsi; u32 channel_id = endpoint->channel_id; /* Only AP endpoints get set up */ if (endpoint->ee_id != GSI_EE_AP) return; endpoint->trans_tre_max = gsi_channel_trans_tre_max(gsi, channel_id); if (!endpoint->toward_ipa) { /* RX transactions require a single TRE, so the maximum * backlog is the same as the maximum outstanding TREs. */ endpoint->replenish_enabled = false; atomic_set(&endpoint->replenish_saved, gsi_channel_tre_max(gsi, endpoint->channel_id)); atomic_set(&endpoint->replenish_backlog, 0); INIT_DELAYED_WORK(&endpoint->replenish_work, ipa_endpoint_replenish_work); } ipa_endpoint_program(endpoint); endpoint->ipa->set_up |= BIT(endpoint->endpoint_id); } static void ipa_endpoint_teardown_one(struct ipa_endpoint *endpoint) { endpoint->ipa->set_up &= ~BIT(endpoint->endpoint_id); if (!endpoint->toward_ipa) cancel_delayed_work_sync(&endpoint->replenish_work); ipa_endpoint_reset(endpoint); } void ipa_endpoint_setup(struct ipa *ipa) { u32 initialized = ipa->initialized; ipa->set_up = 0; while (initialized) { u32 endpoint_id = __ffs(initialized); initialized ^= BIT(endpoint_id); ipa_endpoint_setup_one(&ipa->endpoint[endpoint_id]); } } void ipa_endpoint_teardown(struct ipa *ipa) { u32 set_up = ipa->set_up; while (set_up) { u32 endpoint_id = __fls(set_up); set_up ^= BIT(endpoint_id); ipa_endpoint_teardown_one(&ipa->endpoint[endpoint_id]); } ipa->set_up = 0; } int ipa_endpoint_config(struct ipa *ipa) { struct device *dev = &ipa->pdev->dev; u32 initialized; u32 rx_base; u32 rx_mask; u32 tx_mask; int ret = 0; u32 max; u32 val; /* Prior to IPAv3.5, the FLAVOR_0 register was not supported. * Furthermore, the endpoints were not grouped such that TX * endpoint numbers started with 0 and RX endpoints had numbers * higher than all TX endpoints, so we can't do the simple * direction check used for newer hardware below. * * For hardware that doesn't support the FLAVOR_0 register, * just set the available mask to support any endpoint, and * assume the configuration is valid. */ if (ipa->version < IPA_VERSION_3_5) { ipa->available = ~0; return 0; } /* Find out about the endpoints supplied by the hardware, and ensure * the highest one doesn't exceed the number we support. */ val = ioread32(ipa->reg_virt + IPA_REG_FLAVOR_0_OFFSET); /* Our RX is an IPA producer */ rx_base = u32_get_bits(val, IPA_PROD_LOWEST_FMASK); max = rx_base + u32_get_bits(val, IPA_MAX_PROD_PIPES_FMASK); if (max > IPA_ENDPOINT_MAX) { dev_err(dev, "too many endpoints (%u > %u)\n", max, IPA_ENDPOINT_MAX); return -EINVAL; } rx_mask = GENMASK(max - 1, rx_base); /* Our TX is an IPA consumer */ max = u32_get_bits(val, IPA_MAX_CONS_PIPES_FMASK); tx_mask = GENMASK(max - 1, 0); ipa->available = rx_mask | tx_mask; /* Check for initialized endpoints not supported by the hardware */ if (ipa->initialized & ~ipa->available) { dev_err(dev, "unavailable endpoint id(s) 0x%08x\n", ipa->initialized & ~ipa->available); ret = -EINVAL; /* Report other errors too */ } initialized = ipa->initialized; while (initialized) { u32 endpoint_id = __ffs(initialized); struct ipa_endpoint *endpoint; initialized ^= BIT(endpoint_id); /* Make sure it's pointing in the right direction */ endpoint = &ipa->endpoint[endpoint_id]; if ((endpoint_id < rx_base) != endpoint->toward_ipa) { dev_err(dev, "endpoint id %u wrong direction\n", endpoint_id); ret = -EINVAL; } } return ret; } void ipa_endpoint_deconfig(struct ipa *ipa) { ipa->available = 0; /* Nothing more to do */ } static void ipa_endpoint_init_one(struct ipa *ipa, enum ipa_endpoint_name name, const struct ipa_gsi_endpoint_data *data) { struct ipa_endpoint *endpoint; endpoint = &ipa->endpoint[data->endpoint_id]; if (data->ee_id == GSI_EE_AP) ipa->channel_map[data->channel_id] = endpoint; ipa->name_map[name] = endpoint; endpoint->ipa = ipa; endpoint->ee_id = data->ee_id; endpoint->channel_id = data->channel_id; endpoint->endpoint_id = data->endpoint_id; endpoint->toward_ipa = data->toward_ipa; endpoint->data = &data->endpoint.config; ipa->initialized |= BIT(endpoint->endpoint_id); } static void ipa_endpoint_exit_one(struct ipa_endpoint *endpoint) { endpoint->ipa->initialized &= ~BIT(endpoint->endpoint_id); memset(endpoint, 0, sizeof(*endpoint)); } void ipa_endpoint_exit(struct ipa *ipa) { u32 initialized = ipa->initialized; while (initialized) { u32 endpoint_id = __fls(initialized); initialized ^= BIT(endpoint_id); ipa_endpoint_exit_one(&ipa->endpoint[endpoint_id]); } memset(ipa->name_map, 0, sizeof(ipa->name_map)); memset(ipa->channel_map, 0, sizeof(ipa->channel_map)); } /* Returns a bitmask of endpoints that support filtering, or 0 on error */ u32 ipa_endpoint_init(struct ipa *ipa, u32 count, const struct ipa_gsi_endpoint_data *data) { enum ipa_endpoint_name name; u32 filter_map; if (!ipa_endpoint_data_valid(ipa, count, data)) return 0; /* Error */ ipa->initialized = 0; filter_map = 0; for (name = 0; name < count; name++, data++) { if (ipa_gsi_endpoint_data_empty(data)) continue; /* Skip over empty slots */ ipa_endpoint_init_one(ipa, name, data); if (data->endpoint.filter_support) filter_map |= BIT(data->endpoint_id); } if (!ipa_filter_map_valid(ipa, filter_map)) goto err_endpoint_exit; return filter_map; /* Non-zero bitmask */ err_endpoint_exit: ipa_endpoint_exit(ipa); return 0; /* Error */ }