// SPDX-License-Identifier: GPL-2.0+ /* Broadcom BCM54140 Quad SGMII/QSGMII Copper/Fiber Gigabit PHY * * Copyright (c) 2020 Michael Walle */ #include #include #include #include #include #include "bcm-phy-lib.h" /* RDB per-port registers */ #define BCM54140_RDB_ISR 0x00a /* interrupt status */ #define BCM54140_RDB_IMR 0x00b /* interrupt mask */ #define BCM54140_RDB_INT_LINK BIT(1) /* link status changed */ #define BCM54140_RDB_INT_SPEED BIT(2) /* link speed change */ #define BCM54140_RDB_INT_DUPLEX BIT(3) /* duplex mode changed */ #define BCM54140_RDB_SPARE1 0x012 /* spare control 1 */ #define BCM54140_RDB_SPARE1_LSLM BIT(2) /* link speed LED mode */ #define BCM54140_RDB_SPARE2 0x014 /* spare control 2 */ #define BCM54140_RDB_SPARE2_WS_RTRY_DIS BIT(8) /* wirespeed retry disable */ #define BCM54140_RDB_SPARE2_WS_RTRY_LIMIT GENMASK(4, 2) /* retry limit */ #define BCM54140_RDB_SPARE3 0x015 /* spare control 3 */ #define BCM54140_RDB_SPARE3_BIT0 BIT(0) #define BCM54140_RDB_LED_CTRL 0x019 /* LED control */ #define BCM54140_RDB_LED_CTRL_ACTLINK0 BIT(4) #define BCM54140_RDB_LED_CTRL_ACTLINK1 BIT(8) #define BCM54140_RDB_C_APWR 0x01a /* auto power down control */ #define BCM54140_RDB_C_APWR_SINGLE_PULSE BIT(8) /* single pulse */ #define BCM54140_RDB_C_APWR_APD_MODE_DIS 0 /* ADP disable */ #define BCM54140_RDB_C_APWR_APD_MODE_EN 1 /* ADP enable */ #define BCM54140_RDB_C_APWR_APD_MODE_DIS2 2 /* ADP disable */ #define BCM54140_RDB_C_APWR_APD_MODE_EN_ANEG 3 /* ADP enable w/ aneg */ #define BCM54140_RDB_C_APWR_APD_MODE_MASK GENMASK(6, 5) #define BCM54140_RDB_C_APWR_SLP_TIM_MASK BIT(4)/* sleep timer */ #define BCM54140_RDB_C_APWR_SLP_TIM_2_7 0 /* 2.7s */ #define BCM54140_RDB_C_APWR_SLP_TIM_5_4 1 /* 5.4s */ #define BCM54140_RDB_C_PWR 0x02a /* copper power control */ #define BCM54140_RDB_C_PWR_ISOLATE BIT(5) /* super isolate mode */ #define BCM54140_RDB_C_MISC_CTRL 0x02f /* misc copper control */ #define BCM54140_RDB_C_MISC_CTRL_WS_EN BIT(4) /* wirespeed enable */ /* RDB global registers */ #define BCM54140_RDB_TOP_IMR 0x82d /* interrupt mask */ #define BCM54140_RDB_TOP_IMR_PORT0 BIT(4) #define BCM54140_RDB_TOP_IMR_PORT1 BIT(5) #define BCM54140_RDB_TOP_IMR_PORT2 BIT(6) #define BCM54140_RDB_TOP_IMR_PORT3 BIT(7) #define BCM54140_RDB_MON_CTRL 0x831 /* monitor control */ #define BCM54140_RDB_MON_CTRL_V_MODE BIT(3) /* voltage mode */ #define BCM54140_RDB_MON_CTRL_SEL_MASK GENMASK(2, 1) #define BCM54140_RDB_MON_CTRL_SEL_TEMP 0 /* meassure temperature */ #define BCM54140_RDB_MON_CTRL_SEL_1V0 1 /* meassure AVDDL 1.0V */ #define BCM54140_RDB_MON_CTRL_SEL_3V3 2 /* meassure AVDDH 3.3V */ #define BCM54140_RDB_MON_CTRL_SEL_RR 3 /* meassure all round-robin */ #define BCM54140_RDB_MON_CTRL_PWR_DOWN BIT(0) /* power-down monitor */ #define BCM54140_RDB_MON_TEMP_VAL 0x832 /* temperature value */ #define BCM54140_RDB_MON_TEMP_MAX 0x833 /* temperature high thresh */ #define BCM54140_RDB_MON_TEMP_MIN 0x834 /* temperature low thresh */ #define BCM54140_RDB_MON_TEMP_DATA_MASK GENMASK(9, 0) #define BCM54140_RDB_MON_1V0_VAL 0x835 /* AVDDL 1.0V value */ #define BCM54140_RDB_MON_1V0_MAX 0x836 /* AVDDL 1.0V high thresh */ #define BCM54140_RDB_MON_1V0_MIN 0x837 /* AVDDL 1.0V low thresh */ #define BCM54140_RDB_MON_1V0_DATA_MASK GENMASK(10, 0) #define BCM54140_RDB_MON_3V3_VAL 0x838 /* AVDDH 3.3V value */ #define BCM54140_RDB_MON_3V3_MAX 0x839 /* AVDDH 3.3V high thresh */ #define BCM54140_RDB_MON_3V3_MIN 0x83a /* AVDDH 3.3V low thresh */ #define BCM54140_RDB_MON_3V3_DATA_MASK GENMASK(11, 0) #define BCM54140_RDB_MON_ISR 0x83b /* interrupt status */ #define BCM54140_RDB_MON_ISR_3V3 BIT(2) /* AVDDH 3.3V alarm */ #define BCM54140_RDB_MON_ISR_1V0 BIT(1) /* AVDDL 1.0V alarm */ #define BCM54140_RDB_MON_ISR_TEMP BIT(0) /* temperature alarm */ /* According to the datasheet the formula is: * T = 413.35 - (0.49055 * bits[9:0]) */ #define BCM54140_HWMON_TO_TEMP(v) (413350L - (v) * 491) #define BCM54140_HWMON_FROM_TEMP(v) DIV_ROUND_CLOSEST_ULL(413350L - (v), 491) /* According to the datasheet the formula is: * U = bits[11:0] / 1024 * 220 / 0.2 * * Normalized: * U = bits[11:0] / 4096 * 2514 */ #define BCM54140_HWMON_TO_IN_1V0(v) ((v) * 2514 >> 11) #define BCM54140_HWMON_FROM_IN_1V0(v) DIV_ROUND_CLOSEST_ULL(((v) << 11), 2514) /* According to the datasheet the formula is: * U = bits[10:0] / 1024 * 880 / 0.7 * * Normalized: * U = bits[10:0] / 2048 * 4400 */ #define BCM54140_HWMON_TO_IN_3V3(v) ((v) * 4400 >> 12) #define BCM54140_HWMON_FROM_IN_3V3(v) DIV_ROUND_CLOSEST_ULL(((v) << 12), 4400) #define BCM54140_HWMON_TO_IN(ch, v) ((ch) ? BCM54140_HWMON_TO_IN_3V3(v) \ : BCM54140_HWMON_TO_IN_1V0(v)) #define BCM54140_HWMON_FROM_IN(ch, v) ((ch) ? BCM54140_HWMON_FROM_IN_3V3(v) \ : BCM54140_HWMON_FROM_IN_1V0(v)) #define BCM54140_HWMON_IN_MASK(ch) ((ch) ? BCM54140_RDB_MON_3V3_DATA_MASK \ : BCM54140_RDB_MON_1V0_DATA_MASK) #define BCM54140_HWMON_IN_VAL_REG(ch) ((ch) ? BCM54140_RDB_MON_3V3_VAL \ : BCM54140_RDB_MON_1V0_VAL) #define BCM54140_HWMON_IN_MIN_REG(ch) ((ch) ? BCM54140_RDB_MON_3V3_MIN \ : BCM54140_RDB_MON_1V0_MIN) #define BCM54140_HWMON_IN_MAX_REG(ch) ((ch) ? BCM54140_RDB_MON_3V3_MAX \ : BCM54140_RDB_MON_1V0_MAX) #define BCM54140_HWMON_IN_ALARM_BIT(ch) ((ch) ? BCM54140_RDB_MON_ISR_3V3 \ : BCM54140_RDB_MON_ISR_1V0) /* This PHY has two different PHY IDs depening on its MODE_SEL pin. This * pin choses between 4x SGMII and QSGMII mode: * AE02_5009 4x SGMII * AE02_5019 QSGMII */ #define BCM54140_PHY_ID_MASK 0xffffffe8 #define BCM54140_PHY_ID_REV(phy_id) ((phy_id) & 0x7) #define BCM54140_REV_B0 1 #define BCM54140_DEFAULT_DOWNSHIFT 5 #define BCM54140_MAX_DOWNSHIFT 9 struct bcm54140_priv { int port; int base_addr; #if IS_ENABLED(CONFIG_HWMON) /* protect the alarm bits */ struct mutex alarm_lock; u16 alarm; #endif }; #if IS_ENABLED(CONFIG_HWMON) static umode_t bcm54140_hwmon_is_visible(const void *data, enum hwmon_sensor_types type, u32 attr, int channel) { switch (type) { case hwmon_in: switch (attr) { case hwmon_in_min: case hwmon_in_max: return 0644; case hwmon_in_label: case hwmon_in_input: case hwmon_in_alarm: return 0444; default: return 0; } case hwmon_temp: switch (attr) { case hwmon_temp_min: case hwmon_temp_max: return 0644; case hwmon_temp_input: case hwmon_temp_alarm: return 0444; default: return 0; } default: return 0; } } static int bcm54140_hwmon_read_alarm(struct device *dev, unsigned int bit, long *val) { struct phy_device *phydev = dev_get_drvdata(dev); struct bcm54140_priv *priv = phydev->priv; int tmp, ret = 0; mutex_lock(&priv->alarm_lock); /* latch any alarm bits */ tmp = bcm_phy_read_rdb(phydev, BCM54140_RDB_MON_ISR); if (tmp < 0) { ret = tmp; goto out; } priv->alarm |= tmp; *val = !!(priv->alarm & bit); priv->alarm &= ~bit; out: mutex_unlock(&priv->alarm_lock); return ret; } static int bcm54140_hwmon_read_temp(struct device *dev, u32 attr, long *val) { struct phy_device *phydev = dev_get_drvdata(dev); u16 reg; int tmp; switch (attr) { case hwmon_temp_input: reg = BCM54140_RDB_MON_TEMP_VAL; break; case hwmon_temp_min: reg = BCM54140_RDB_MON_TEMP_MIN; break; case hwmon_temp_max: reg = BCM54140_RDB_MON_TEMP_MAX; break; case hwmon_temp_alarm: return bcm54140_hwmon_read_alarm(dev, BCM54140_RDB_MON_ISR_TEMP, val); default: return -EOPNOTSUPP; } tmp = bcm_phy_read_rdb(phydev, reg); if (tmp < 0) return tmp; *val = BCM54140_HWMON_TO_TEMP(tmp & BCM54140_RDB_MON_TEMP_DATA_MASK); return 0; } static int bcm54140_hwmon_read_in(struct device *dev, u32 attr, int channel, long *val) { struct phy_device *phydev = dev_get_drvdata(dev); u16 bit, reg; int tmp; switch (attr) { case hwmon_in_input: reg = BCM54140_HWMON_IN_VAL_REG(channel); break; case hwmon_in_min: reg = BCM54140_HWMON_IN_MIN_REG(channel); break; case hwmon_in_max: reg = BCM54140_HWMON_IN_MAX_REG(channel); break; case hwmon_in_alarm: bit = BCM54140_HWMON_IN_ALARM_BIT(channel); return bcm54140_hwmon_read_alarm(dev, bit, val); default: return -EOPNOTSUPP; } tmp = bcm_phy_read_rdb(phydev, reg); if (tmp < 0) return tmp; tmp &= BCM54140_HWMON_IN_MASK(channel); *val = BCM54140_HWMON_TO_IN(channel, tmp); return 0; } static int bcm54140_hwmon_read(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long *val) { switch (type) { case hwmon_temp: return bcm54140_hwmon_read_temp(dev, attr, val); case hwmon_in: return bcm54140_hwmon_read_in(dev, attr, channel, val); default: return -EOPNOTSUPP; } } static const char *const bcm54140_hwmon_in_labels[] = { "AVDDL", "AVDDH", }; static int bcm54140_hwmon_read_string(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, const char **str) { switch (type) { case hwmon_in: switch (attr) { case hwmon_in_label: *str = bcm54140_hwmon_in_labels[channel]; return 0; default: return -EOPNOTSUPP; } default: return -EOPNOTSUPP; } } static int bcm54140_hwmon_write_temp(struct device *dev, u32 attr, int channel, long val) { struct phy_device *phydev = dev_get_drvdata(dev); u16 mask = BCM54140_RDB_MON_TEMP_DATA_MASK; u16 reg; val = clamp_val(val, BCM54140_HWMON_TO_TEMP(mask), BCM54140_HWMON_TO_TEMP(0)); switch (attr) { case hwmon_temp_min: reg = BCM54140_RDB_MON_TEMP_MIN; break; case hwmon_temp_max: reg = BCM54140_RDB_MON_TEMP_MAX; break; default: return -EOPNOTSUPP; } return bcm_phy_modify_rdb(phydev, reg, mask, BCM54140_HWMON_FROM_TEMP(val)); } static int bcm54140_hwmon_write_in(struct device *dev, u32 attr, int channel, long val) { struct phy_device *phydev = dev_get_drvdata(dev); u16 mask = BCM54140_HWMON_IN_MASK(channel); u16 reg; val = clamp_val(val, 0, BCM54140_HWMON_TO_IN(channel, mask)); switch (attr) { case hwmon_in_min: reg = BCM54140_HWMON_IN_MIN_REG(channel); break; case hwmon_in_max: reg = BCM54140_HWMON_IN_MAX_REG(channel); break; default: return -EOPNOTSUPP; } return bcm_phy_modify_rdb(phydev, reg, mask, BCM54140_HWMON_FROM_IN(channel, val)); } static int bcm54140_hwmon_write(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long val) { switch (type) { case hwmon_temp: return bcm54140_hwmon_write_temp(dev, attr, channel, val); case hwmon_in: return bcm54140_hwmon_write_in(dev, attr, channel, val); default: return -EOPNOTSUPP; } } static const struct hwmon_channel_info *bcm54140_hwmon_info[] = { HWMON_CHANNEL_INFO(temp, HWMON_T_INPUT | HWMON_T_MIN | HWMON_T_MAX | HWMON_T_ALARM), HWMON_CHANNEL_INFO(in, HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX | HWMON_I_ALARM | HWMON_I_LABEL, HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX | HWMON_I_ALARM | HWMON_I_LABEL), NULL }; static const struct hwmon_ops bcm54140_hwmon_ops = { .is_visible = bcm54140_hwmon_is_visible, .read = bcm54140_hwmon_read, .read_string = bcm54140_hwmon_read_string, .write = bcm54140_hwmon_write, }; static const struct hwmon_chip_info bcm54140_chip_info = { .ops = &bcm54140_hwmon_ops, .info = bcm54140_hwmon_info, }; static int bcm54140_enable_monitoring(struct phy_device *phydev) { u16 mask, set; /* 3.3V voltage mode */ set = BCM54140_RDB_MON_CTRL_V_MODE; /* select round-robin */ mask = BCM54140_RDB_MON_CTRL_SEL_MASK; set |= FIELD_PREP(BCM54140_RDB_MON_CTRL_SEL_MASK, BCM54140_RDB_MON_CTRL_SEL_RR); /* remove power-down bit */ mask |= BCM54140_RDB_MON_CTRL_PWR_DOWN; return bcm_phy_modify_rdb(phydev, BCM54140_RDB_MON_CTRL, mask, set); } static int bcm54140_probe_once(struct phy_device *phydev) { struct device *hwmon; int ret; /* enable hardware monitoring */ ret = bcm54140_enable_monitoring(phydev); if (ret) return ret; hwmon = devm_hwmon_device_register_with_info(&phydev->mdio.dev, "BCM54140", phydev, &bcm54140_chip_info, NULL); return PTR_ERR_OR_ZERO(hwmon); } #endif static int bcm54140_base_read_rdb(struct phy_device *phydev, u16 rdb) { int ret; phy_lock_mdio_bus(phydev); ret = __phy_package_write(phydev, MII_BCM54XX_RDB_ADDR, rdb); if (ret < 0) goto out; ret = __phy_package_read(phydev, MII_BCM54XX_RDB_DATA); out: phy_unlock_mdio_bus(phydev); return ret; } static int bcm54140_base_write_rdb(struct phy_device *phydev, u16 rdb, u16 val) { int ret; phy_lock_mdio_bus(phydev); ret = __phy_package_write(phydev, MII_BCM54XX_RDB_ADDR, rdb); if (ret < 0) goto out; ret = __phy_package_write(phydev, MII_BCM54XX_RDB_DATA, val); out: phy_unlock_mdio_bus(phydev); return ret; } /* Under some circumstances a core PLL may not lock, this will then prevent * a successful link establishment. Restart the PLL after the voltages are * stable to workaround this issue. */ static int bcm54140_b0_workaround(struct phy_device *phydev) { int spare3; int ret; spare3 = bcm_phy_read_rdb(phydev, BCM54140_RDB_SPARE3); if (spare3 < 0) return spare3; spare3 &= ~BCM54140_RDB_SPARE3_BIT0; ret = bcm_phy_write_rdb(phydev, BCM54140_RDB_SPARE3, spare3); if (ret) return ret; ret = phy_modify(phydev, MII_BMCR, 0, BMCR_PDOWN); if (ret) return ret; ret = phy_modify(phydev, MII_BMCR, BMCR_PDOWN, 0); if (ret) return ret; spare3 |= BCM54140_RDB_SPARE3_BIT0; return bcm_phy_write_rdb(phydev, BCM54140_RDB_SPARE3, spare3); } /* The BCM54140 is a quad PHY where only the first port has access to the * global register. Thus we need to find out its PHY address. * */ static int bcm54140_get_base_addr_and_port(struct phy_device *phydev) { struct bcm54140_priv *priv = phydev->priv; struct mii_bus *bus = phydev->mdio.bus; int addr, min_addr, max_addr; int step = 1; u32 phy_id; int tmp; min_addr = phydev->mdio.addr; max_addr = phydev->mdio.addr; addr = phydev->mdio.addr; /* We scan forward and backwards and look for PHYs which have the * same phy_id like we do. Step 1 will scan forward, step 2 * backwards. Once we are finished, we have a min_addr and * max_addr which resembles the range of PHY addresses of the same * type of PHY. There is one caveat; there may be many PHYs of * the same type, but we know that each PHY takes exactly 4 * consecutive addresses. Therefore we can deduce our offset * to the base address of this quad PHY. */ while (1) { if (step == 3) { break; } else if (step == 1) { max_addr = addr; addr++; } else { min_addr = addr; addr--; } if (addr < 0 || addr >= PHY_MAX_ADDR) { addr = phydev->mdio.addr; step++; continue; } /* read the PHY id */ tmp = mdiobus_read(bus, addr, MII_PHYSID1); if (tmp < 0) return tmp; phy_id = tmp << 16; tmp = mdiobus_read(bus, addr, MII_PHYSID2); if (tmp < 0) return tmp; phy_id |= tmp; /* see if it is still the same PHY */ if ((phy_id & phydev->drv->phy_id_mask) != (phydev->drv->phy_id & phydev->drv->phy_id_mask)) { addr = phydev->mdio.addr; step++; } } /* The range we get should be a multiple of four. Please note that both * the min_addr and max_addr are inclusive. So we have to add one if we * subtract them. */ if ((max_addr - min_addr + 1) % 4) { dev_err(&phydev->mdio.dev, "Detected Quad PHY IDs %d..%d doesn't make sense.\n", min_addr, max_addr); return -EINVAL; } priv->port = (phydev->mdio.addr - min_addr) % 4; priv->base_addr = phydev->mdio.addr - priv->port; return 0; } static int bcm54140_probe(struct phy_device *phydev) { struct bcm54140_priv *priv; int ret; priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; phydev->priv = priv; ret = bcm54140_get_base_addr_and_port(phydev); if (ret) return ret; devm_phy_package_join(&phydev->mdio.dev, phydev, priv->base_addr, 0); #if IS_ENABLED(CONFIG_HWMON) mutex_init(&priv->alarm_lock); if (phy_package_init_once(phydev)) { ret = bcm54140_probe_once(phydev); if (ret) return ret; } #endif phydev_dbg(phydev, "probed (port %d, base PHY address %d)\n", priv->port, priv->base_addr); return 0; } static int bcm54140_config_init(struct phy_device *phydev) { u16 reg = 0xffff; int ret; /* Apply hardware errata */ if (BCM54140_PHY_ID_REV(phydev->phy_id) == BCM54140_REV_B0) { ret = bcm54140_b0_workaround(phydev); if (ret) return ret; } /* Unmask events we are interested in. */ reg &= ~(BCM54140_RDB_INT_DUPLEX | BCM54140_RDB_INT_SPEED | BCM54140_RDB_INT_LINK); ret = bcm_phy_write_rdb(phydev, BCM54140_RDB_IMR, reg); if (ret) return ret; /* LED1=LINKSPD[1], LED2=LINKSPD[2], LED3=LINK/ACTIVITY */ ret = bcm_phy_modify_rdb(phydev, BCM54140_RDB_SPARE1, 0, BCM54140_RDB_SPARE1_LSLM); if (ret) return ret; ret = bcm_phy_modify_rdb(phydev, BCM54140_RDB_LED_CTRL, 0, BCM54140_RDB_LED_CTRL_ACTLINK0); if (ret) return ret; /* disable super isolate mode */ return bcm_phy_modify_rdb(phydev, BCM54140_RDB_C_PWR, BCM54140_RDB_C_PWR_ISOLATE, 0); } static irqreturn_t bcm54140_handle_interrupt(struct phy_device *phydev) { int irq_status, irq_mask; irq_status = bcm_phy_read_rdb(phydev, BCM54140_RDB_ISR); if (irq_status < 0) { phy_error(phydev); return IRQ_NONE; } irq_mask = bcm_phy_read_rdb(phydev, BCM54140_RDB_IMR); if (irq_mask < 0) { phy_error(phydev); return IRQ_NONE; } irq_mask = ~irq_mask; if (!(irq_status & irq_mask)) return IRQ_NONE; phy_trigger_machine(phydev); return IRQ_HANDLED; } static int bcm54140_ack_intr(struct phy_device *phydev) { int reg; /* clear pending interrupts */ reg = bcm_phy_read_rdb(phydev, BCM54140_RDB_ISR); if (reg < 0) return reg; return 0; } static int bcm54140_config_intr(struct phy_device *phydev) { struct bcm54140_priv *priv = phydev->priv; static const u16 port_to_imr_bit[] = { BCM54140_RDB_TOP_IMR_PORT0, BCM54140_RDB_TOP_IMR_PORT1, BCM54140_RDB_TOP_IMR_PORT2, BCM54140_RDB_TOP_IMR_PORT3, }; int reg, err; if (priv->port >= ARRAY_SIZE(port_to_imr_bit)) return -EINVAL; reg = bcm54140_base_read_rdb(phydev, BCM54140_RDB_TOP_IMR); if (reg < 0) return reg; if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { err = bcm54140_ack_intr(phydev); if (err) return err; reg &= ~port_to_imr_bit[priv->port]; err = bcm54140_base_write_rdb(phydev, BCM54140_RDB_TOP_IMR, reg); } else { reg |= port_to_imr_bit[priv->port]; err = bcm54140_base_write_rdb(phydev, BCM54140_RDB_TOP_IMR, reg); if (err) return err; err = bcm54140_ack_intr(phydev); } return err; } static int bcm54140_get_downshift(struct phy_device *phydev, u8 *data) { int val; val = bcm_phy_read_rdb(phydev, BCM54140_RDB_C_MISC_CTRL); if (val < 0) return val; if (!(val & BCM54140_RDB_C_MISC_CTRL_WS_EN)) { *data = DOWNSHIFT_DEV_DISABLE; return 0; } val = bcm_phy_read_rdb(phydev, BCM54140_RDB_SPARE2); if (val < 0) return val; if (val & BCM54140_RDB_SPARE2_WS_RTRY_DIS) *data = 1; else *data = FIELD_GET(BCM54140_RDB_SPARE2_WS_RTRY_LIMIT, val) + 2; return 0; } static int bcm54140_set_downshift(struct phy_device *phydev, u8 cnt) { u16 mask, set; int ret; if (cnt > BCM54140_MAX_DOWNSHIFT && cnt != DOWNSHIFT_DEV_DEFAULT_COUNT) return -EINVAL; if (!cnt) return bcm_phy_modify_rdb(phydev, BCM54140_RDB_C_MISC_CTRL, BCM54140_RDB_C_MISC_CTRL_WS_EN, 0); if (cnt == DOWNSHIFT_DEV_DEFAULT_COUNT) cnt = BCM54140_DEFAULT_DOWNSHIFT; if (cnt == 1) { mask = 0; set = BCM54140_RDB_SPARE2_WS_RTRY_DIS; } else { mask = BCM54140_RDB_SPARE2_WS_RTRY_DIS; mask |= BCM54140_RDB_SPARE2_WS_RTRY_LIMIT; set = FIELD_PREP(BCM54140_RDB_SPARE2_WS_RTRY_LIMIT, cnt - 2); } ret = bcm_phy_modify_rdb(phydev, BCM54140_RDB_SPARE2, mask, set); if (ret) return ret; return bcm_phy_modify_rdb(phydev, BCM54140_RDB_C_MISC_CTRL, 0, BCM54140_RDB_C_MISC_CTRL_WS_EN); } static int bcm54140_get_edpd(struct phy_device *phydev, u16 *tx_interval) { int val; val = bcm_phy_read_rdb(phydev, BCM54140_RDB_C_APWR); if (val < 0) return val; switch (FIELD_GET(BCM54140_RDB_C_APWR_APD_MODE_MASK, val)) { case BCM54140_RDB_C_APWR_APD_MODE_DIS: case BCM54140_RDB_C_APWR_APD_MODE_DIS2: *tx_interval = ETHTOOL_PHY_EDPD_DISABLE; break; case BCM54140_RDB_C_APWR_APD_MODE_EN: case BCM54140_RDB_C_APWR_APD_MODE_EN_ANEG: switch (FIELD_GET(BCM54140_RDB_C_APWR_SLP_TIM_MASK, val)) { case BCM54140_RDB_C_APWR_SLP_TIM_2_7: *tx_interval = 2700; break; case BCM54140_RDB_C_APWR_SLP_TIM_5_4: *tx_interval = 5400; break; } } return 0; } static int bcm54140_set_edpd(struct phy_device *phydev, u16 tx_interval) { u16 mask, set; mask = BCM54140_RDB_C_APWR_APD_MODE_MASK; if (tx_interval == ETHTOOL_PHY_EDPD_DISABLE) set = FIELD_PREP(BCM54140_RDB_C_APWR_APD_MODE_MASK, BCM54140_RDB_C_APWR_APD_MODE_DIS); else set = FIELD_PREP(BCM54140_RDB_C_APWR_APD_MODE_MASK, BCM54140_RDB_C_APWR_APD_MODE_EN_ANEG); /* enable single pulse mode */ set |= BCM54140_RDB_C_APWR_SINGLE_PULSE; /* set sleep timer */ mask |= BCM54140_RDB_C_APWR_SLP_TIM_MASK; switch (tx_interval) { case ETHTOOL_PHY_EDPD_DFLT_TX_MSECS: case ETHTOOL_PHY_EDPD_DISABLE: case 2700: set |= BCM54140_RDB_C_APWR_SLP_TIM_2_7; break; case 5400: set |= BCM54140_RDB_C_APWR_SLP_TIM_5_4; break; default: return -EINVAL; } return bcm_phy_modify_rdb(phydev, BCM54140_RDB_C_APWR, mask, set); } static int bcm54140_get_tunable(struct phy_device *phydev, struct ethtool_tunable *tuna, void *data) { switch (tuna->id) { case ETHTOOL_PHY_DOWNSHIFT: return bcm54140_get_downshift(phydev, data); case ETHTOOL_PHY_EDPD: return bcm54140_get_edpd(phydev, data); default: return -EOPNOTSUPP; } } static int bcm54140_set_tunable(struct phy_device *phydev, struct ethtool_tunable *tuna, const void *data) { switch (tuna->id) { case ETHTOOL_PHY_DOWNSHIFT: return bcm54140_set_downshift(phydev, *(const u8 *)data); case ETHTOOL_PHY_EDPD: return bcm54140_set_edpd(phydev, *(const u16 *)data); default: return -EOPNOTSUPP; } } static struct phy_driver bcm54140_drivers[] = { { .phy_id = PHY_ID_BCM54140, .phy_id_mask = BCM54140_PHY_ID_MASK, .name = "Broadcom BCM54140", .flags = PHY_POLL_CABLE_TEST, .features = PHY_GBIT_FEATURES, .config_init = bcm54140_config_init, .handle_interrupt = bcm54140_handle_interrupt, .config_intr = bcm54140_config_intr, .probe = bcm54140_probe, .suspend = genphy_suspend, .resume = genphy_resume, .soft_reset = genphy_soft_reset, .get_tunable = bcm54140_get_tunable, .set_tunable = bcm54140_set_tunable, .cable_test_start = bcm_phy_cable_test_start_rdb, .cable_test_get_status = bcm_phy_cable_test_get_status_rdb, }, }; module_phy_driver(bcm54140_drivers); static struct mdio_device_id __maybe_unused bcm54140_tbl[] = { { PHY_ID_BCM54140, BCM54140_PHY_ID_MASK }, { } }; MODULE_AUTHOR("Michael Walle"); MODULE_DESCRIPTION("Broadcom BCM54140 PHY driver"); MODULE_DEVICE_TABLE(mdio, bcm54140_tbl); MODULE_LICENSE("GPL");