/* * Driver for Microsemi VSC85xx PHYs * * Author: Nagaraju Lakkaraju * License: Dual MIT/GPL * Copyright (c) 2016 Microsemi Corporation */ #include #include #include #include #include #include #include #include enum rgmii_rx_clock_delay { RGMII_RX_CLK_DELAY_0_2_NS = 0, RGMII_RX_CLK_DELAY_0_8_NS = 1, RGMII_RX_CLK_DELAY_1_1_NS = 2, RGMII_RX_CLK_DELAY_1_7_NS = 3, RGMII_RX_CLK_DELAY_2_0_NS = 4, RGMII_RX_CLK_DELAY_2_3_NS = 5, RGMII_RX_CLK_DELAY_2_6_NS = 6, RGMII_RX_CLK_DELAY_3_4_NS = 7 }; /* Microsemi VSC85xx PHY registers */ /* IEEE 802. Std Registers */ #define MSCC_PHY_BYPASS_CONTROL 18 #define DISABLE_HP_AUTO_MDIX_MASK 0x0080 #define DISABLE_PAIR_SWAP_CORR_MASK 0x0020 #define DISABLE_POLARITY_CORR_MASK 0x0010 #define MSCC_PHY_EXT_PHY_CNTL_1 23 #define MAC_IF_SELECTION_MASK 0x1800 #define MAC_IF_SELECTION_GMII 0 #define MAC_IF_SELECTION_RMII 1 #define MAC_IF_SELECTION_RGMII 2 #define MAC_IF_SELECTION_POS 11 #define FAR_END_LOOPBACK_MODE_MASK 0x0008 #define MII_VSC85XX_INT_MASK 25 #define MII_VSC85XX_INT_MASK_MASK 0xa000 #define MII_VSC85XX_INT_MASK_WOL 0x0040 #define MII_VSC85XX_INT_STATUS 26 #define MSCC_PHY_WOL_MAC_CONTROL 27 #define EDGE_RATE_CNTL_POS 5 #define EDGE_RATE_CNTL_MASK 0x00E0 #define MSCC_PHY_DEV_AUX_CNTL 28 #define HP_AUTO_MDIX_X_OVER_IND_MASK 0x2000 #define MSCC_PHY_LED_MODE_SEL 29 #define LED_1_MODE_SEL_MASK 0x00F0 #define LED_0_MODE_SEL_MASK 0x000F #define LED_1_MODE_SEL_POS 4 #define MSCC_EXT_PAGE_ACCESS 31 #define MSCC_PHY_PAGE_STANDARD 0x0000 /* Standard registers */ #define MSCC_PHY_PAGE_EXTENDED 0x0001 /* Extended registers */ #define MSCC_PHY_PAGE_EXTENDED_2 0x0002 /* Extended reg - page 2 */ /* Extended Page 1 Registers */ #define MSCC_PHY_EXT_MODE_CNTL 19 #define FORCE_MDI_CROSSOVER_MASK 0x000C #define FORCE_MDI_CROSSOVER_MDIX 0x000C #define FORCE_MDI_CROSSOVER_MDI 0x0008 #define MSCC_PHY_ACTIPHY_CNTL 20 #define DOWNSHIFT_CNTL_MASK 0x001C #define DOWNSHIFT_EN 0x0010 #define DOWNSHIFT_CNTL_POS 2 /* Extended Page 2 Registers */ #define MSCC_PHY_RGMII_CNTL 20 #define RGMII_RX_CLK_DELAY_MASK 0x0070 #define RGMII_RX_CLK_DELAY_POS 4 #define MSCC_PHY_WOL_LOWER_MAC_ADDR 21 #define MSCC_PHY_WOL_MID_MAC_ADDR 22 #define MSCC_PHY_WOL_UPPER_MAC_ADDR 23 #define MSCC_PHY_WOL_LOWER_PASSWD 24 #define MSCC_PHY_WOL_MID_PASSWD 25 #define MSCC_PHY_WOL_UPPER_PASSWD 26 #define MSCC_PHY_WOL_MAC_CONTROL 27 #define SECURE_ON_ENABLE 0x8000 #define SECURE_ON_PASSWD_LEN_4 0x4000 /* Microsemi PHY ID's */ #define PHY_ID_VSC8530 0x00070560 #define PHY_ID_VSC8531 0x00070570 #define PHY_ID_VSC8540 0x00070760 #define PHY_ID_VSC8541 0x00070770 #define MSCC_VDDMAC_1500 1500 #define MSCC_VDDMAC_1800 1800 #define MSCC_VDDMAC_2500 2500 #define MSCC_VDDMAC_3300 3300 #define DOWNSHIFT_COUNT_MAX 5 struct vsc8531_private { int rate_magic; u8 led_0_mode; u8 led_1_mode; }; #ifdef CONFIG_OF_MDIO struct vsc8531_edge_rate_table { u16 vddmac; u8 slowdown[8]; }; static const struct vsc8531_edge_rate_table edge_table[] = { {MSCC_VDDMAC_3300, { 0, 2, 4, 7, 10, 17, 29, 53} }, {MSCC_VDDMAC_2500, { 0, 3, 6, 10, 14, 23, 37, 63} }, {MSCC_VDDMAC_1800, { 0, 5, 9, 16, 23, 35, 52, 76} }, {MSCC_VDDMAC_1500, { 0, 6, 14, 21, 29, 42, 58, 77} }, }; #endif /* CONFIG_OF_MDIO */ static int vsc85xx_phy_page_set(struct phy_device *phydev, u8 page) { int rc; rc = phy_write(phydev, MSCC_EXT_PAGE_ACCESS, page); return rc; } static int vsc85xx_led_cntl_set(struct phy_device *phydev, u8 led_num, u8 mode) { int rc; u16 reg_val; mutex_lock(&phydev->lock); reg_val = phy_read(phydev, MSCC_PHY_LED_MODE_SEL); if (led_num) { reg_val &= ~LED_1_MODE_SEL_MASK; reg_val |= (((u16)mode << LED_1_MODE_SEL_POS) & LED_1_MODE_SEL_MASK); } else { reg_val &= ~LED_0_MODE_SEL_MASK; reg_val |= ((u16)mode & LED_0_MODE_SEL_MASK); } rc = phy_write(phydev, MSCC_PHY_LED_MODE_SEL, reg_val); mutex_unlock(&phydev->lock); return rc; } static int vsc85xx_mdix_get(struct phy_device *phydev, u8 *mdix) { u16 reg_val; reg_val = phy_read(phydev, MSCC_PHY_DEV_AUX_CNTL); if (reg_val & HP_AUTO_MDIX_X_OVER_IND_MASK) *mdix = ETH_TP_MDI_X; else *mdix = ETH_TP_MDI; return 0; } static int vsc85xx_mdix_set(struct phy_device *phydev, u8 mdix) { int rc; u16 reg_val; reg_val = phy_read(phydev, MSCC_PHY_BYPASS_CONTROL); if ((mdix == ETH_TP_MDI) || (mdix == ETH_TP_MDI_X)) { reg_val |= (DISABLE_PAIR_SWAP_CORR_MASK | DISABLE_POLARITY_CORR_MASK | DISABLE_HP_AUTO_MDIX_MASK); } else { reg_val &= ~(DISABLE_PAIR_SWAP_CORR_MASK | DISABLE_POLARITY_CORR_MASK | DISABLE_HP_AUTO_MDIX_MASK); } rc = phy_write(phydev, MSCC_PHY_BYPASS_CONTROL, reg_val); if (rc != 0) return rc; rc = vsc85xx_phy_page_set(phydev, MSCC_PHY_PAGE_EXTENDED); if (rc != 0) return rc; reg_val = phy_read(phydev, MSCC_PHY_EXT_MODE_CNTL); reg_val &= ~(FORCE_MDI_CROSSOVER_MASK); if (mdix == ETH_TP_MDI) reg_val |= FORCE_MDI_CROSSOVER_MDI; else if (mdix == ETH_TP_MDI_X) reg_val |= FORCE_MDI_CROSSOVER_MDIX; rc = phy_write(phydev, MSCC_PHY_EXT_MODE_CNTL, reg_val); if (rc != 0) return rc; rc = vsc85xx_phy_page_set(phydev, MSCC_PHY_PAGE_STANDARD); if (rc != 0) return rc; return genphy_restart_aneg(phydev); } static int vsc85xx_downshift_get(struct phy_device *phydev, u8 *count) { int rc; u16 reg_val; rc = vsc85xx_phy_page_set(phydev, MSCC_PHY_PAGE_EXTENDED); if (rc != 0) goto out; reg_val = phy_read(phydev, MSCC_PHY_ACTIPHY_CNTL); reg_val &= DOWNSHIFT_CNTL_MASK; if (!(reg_val & DOWNSHIFT_EN)) *count = DOWNSHIFT_DEV_DISABLE; else *count = ((reg_val & ~DOWNSHIFT_EN) >> DOWNSHIFT_CNTL_POS) + 2; rc = vsc85xx_phy_page_set(phydev, MSCC_PHY_PAGE_STANDARD); out: return rc; } static int vsc85xx_downshift_set(struct phy_device *phydev, u8 count) { int rc; u16 reg_val; if (count == DOWNSHIFT_DEV_DEFAULT_COUNT) { /* Default downshift count 3 (i.e. Bit3:2 = 0b01) */ count = ((1 << DOWNSHIFT_CNTL_POS) | DOWNSHIFT_EN); } else if (count > DOWNSHIFT_COUNT_MAX || count == 1) { phydev_err(phydev, "Downshift count should be 2,3,4 or 5\n"); return -ERANGE; } else if (count) { /* Downshift count is either 2,3,4 or 5 */ count = (((count - 2) << DOWNSHIFT_CNTL_POS) | DOWNSHIFT_EN); } rc = vsc85xx_phy_page_set(phydev, MSCC_PHY_PAGE_EXTENDED); if (rc != 0) goto out; reg_val = phy_read(phydev, MSCC_PHY_ACTIPHY_CNTL); reg_val &= ~(DOWNSHIFT_CNTL_MASK); reg_val |= count; rc = phy_write(phydev, MSCC_PHY_ACTIPHY_CNTL, reg_val); if (rc != 0) goto out; rc = vsc85xx_phy_page_set(phydev, MSCC_PHY_PAGE_STANDARD); out: return rc; } static int vsc85xx_wol_set(struct phy_device *phydev, struct ethtool_wolinfo *wol) { int rc; u16 reg_val; u8 i; u16 pwd[3] = {0, 0, 0}; struct ethtool_wolinfo *wol_conf = wol; u8 *mac_addr = phydev->attached_dev->dev_addr; mutex_lock(&phydev->lock); rc = vsc85xx_phy_page_set(phydev, MSCC_PHY_PAGE_EXTENDED_2); if (rc != 0) goto out_unlock; if (wol->wolopts & WAKE_MAGIC) { /* Store the device address for the magic packet */ for (i = 0; i < ARRAY_SIZE(pwd); i++) pwd[i] = mac_addr[5 - (i * 2 + 1)] << 8 | mac_addr[5 - i * 2]; phy_write(phydev, MSCC_PHY_WOL_LOWER_MAC_ADDR, pwd[0]); phy_write(phydev, MSCC_PHY_WOL_MID_MAC_ADDR, pwd[1]); phy_write(phydev, MSCC_PHY_WOL_UPPER_MAC_ADDR, pwd[2]); } else { phy_write(phydev, MSCC_PHY_WOL_LOWER_MAC_ADDR, 0); phy_write(phydev, MSCC_PHY_WOL_MID_MAC_ADDR, 0); phy_write(phydev, MSCC_PHY_WOL_UPPER_MAC_ADDR, 0); } if (wol_conf->wolopts & WAKE_MAGICSECURE) { for (i = 0; i < ARRAY_SIZE(pwd); i++) pwd[i] = wol_conf->sopass[5 - (i * 2 + 1)] << 8 | wol_conf->sopass[5 - i * 2]; phy_write(phydev, MSCC_PHY_WOL_LOWER_PASSWD, pwd[0]); phy_write(phydev, MSCC_PHY_WOL_MID_PASSWD, pwd[1]); phy_write(phydev, MSCC_PHY_WOL_UPPER_PASSWD, pwd[2]); } else { phy_write(phydev, MSCC_PHY_WOL_LOWER_PASSWD, 0); phy_write(phydev, MSCC_PHY_WOL_MID_PASSWD, 0); phy_write(phydev, MSCC_PHY_WOL_UPPER_PASSWD, 0); } reg_val = phy_read(phydev, MSCC_PHY_WOL_MAC_CONTROL); if (wol_conf->wolopts & WAKE_MAGICSECURE) reg_val |= SECURE_ON_ENABLE; else reg_val &= ~SECURE_ON_ENABLE; phy_write(phydev, MSCC_PHY_WOL_MAC_CONTROL, reg_val); rc = vsc85xx_phy_page_set(phydev, MSCC_PHY_PAGE_STANDARD); if (rc != 0) goto out_unlock; if (wol->wolopts & WAKE_MAGIC) { /* Enable the WOL interrupt */ reg_val = phy_read(phydev, MII_VSC85XX_INT_MASK); reg_val |= MII_VSC85XX_INT_MASK_WOL; rc = phy_write(phydev, MII_VSC85XX_INT_MASK, reg_val); if (rc != 0) goto out_unlock; } else { /* Disable the WOL interrupt */ reg_val = phy_read(phydev, MII_VSC85XX_INT_MASK); reg_val &= (~MII_VSC85XX_INT_MASK_WOL); rc = phy_write(phydev, MII_VSC85XX_INT_MASK, reg_val); if (rc != 0) goto out_unlock; } /* Clear WOL iterrupt status */ reg_val = phy_read(phydev, MII_VSC85XX_INT_STATUS); out_unlock: mutex_unlock(&phydev->lock); return rc; } static void vsc85xx_wol_get(struct phy_device *phydev, struct ethtool_wolinfo *wol) { int rc; u16 reg_val; u8 i; u16 pwd[3] = {0, 0, 0}; struct ethtool_wolinfo *wol_conf = wol; mutex_lock(&phydev->lock); rc = vsc85xx_phy_page_set(phydev, MSCC_PHY_PAGE_EXTENDED_2); if (rc != 0) goto out_unlock; reg_val = phy_read(phydev, MSCC_PHY_WOL_MAC_CONTROL); if (reg_val & SECURE_ON_ENABLE) wol_conf->wolopts |= WAKE_MAGICSECURE; if (wol_conf->wolopts & WAKE_MAGICSECURE) { pwd[0] = phy_read(phydev, MSCC_PHY_WOL_LOWER_PASSWD); pwd[1] = phy_read(phydev, MSCC_PHY_WOL_MID_PASSWD); pwd[2] = phy_read(phydev, MSCC_PHY_WOL_UPPER_PASSWD); for (i = 0; i < ARRAY_SIZE(pwd); i++) { wol_conf->sopass[5 - i * 2] = pwd[i] & 0x00ff; wol_conf->sopass[5 - (i * 2 + 1)] = (pwd[i] & 0xff00) >> 8; } } rc = vsc85xx_phy_page_set(phydev, MSCC_PHY_PAGE_STANDARD); out_unlock: mutex_unlock(&phydev->lock); } #ifdef CONFIG_OF_MDIO static int vsc85xx_edge_rate_magic_get(struct phy_device *phydev) { u8 sd; u16 vdd; int rc, i, j; struct device *dev = &phydev->mdio.dev; struct device_node *of_node = dev->of_node; u8 sd_array_size = ARRAY_SIZE(edge_table[0].slowdown); if (!of_node) return -ENODEV; rc = of_property_read_u16(of_node, "vsc8531,vddmac", &vdd); if (rc != 0) vdd = MSCC_VDDMAC_3300; rc = of_property_read_u8(of_node, "vsc8531,edge-slowdown", &sd); if (rc != 0) sd = 0; for (i = 0; i < ARRAY_SIZE(edge_table); i++) if (edge_table[i].vddmac == vdd) for (j = 0; j < sd_array_size; j++) if (edge_table[i].slowdown[j] == sd) return (sd_array_size - j - 1); return -EINVAL; } static int vsc85xx_dt_led_mode_get(struct phy_device *phydev, char *led, u8 default_mode) { struct device *dev = &phydev->mdio.dev; struct device_node *of_node = dev->of_node; u8 led_mode; int err; if (!of_node) return -ENODEV; led_mode = default_mode; err = of_property_read_u8(of_node, led, &led_mode); if (!err && (led_mode > 15 || led_mode == 7 || led_mode == 11)) { phydev_err(phydev, "DT %s invalid\n", led); return -EINVAL; } return led_mode; } #else static int vsc85xx_edge_rate_magic_get(struct phy_device *phydev) { return 0; } static int vsc85xx_dt_led_mode_get(struct phy_device *phydev, char *led, u8 default_mode) { return default_mode; } #endif /* CONFIG_OF_MDIO */ static int vsc85xx_edge_rate_cntl_set(struct phy_device *phydev, u8 edge_rate) { int rc; u16 reg_val; mutex_lock(&phydev->lock); rc = vsc85xx_phy_page_set(phydev, MSCC_PHY_PAGE_EXTENDED_2); if (rc != 0) goto out_unlock; reg_val = phy_read(phydev, MSCC_PHY_WOL_MAC_CONTROL); reg_val &= ~(EDGE_RATE_CNTL_MASK); reg_val |= (edge_rate << EDGE_RATE_CNTL_POS); rc = phy_write(phydev, MSCC_PHY_WOL_MAC_CONTROL, reg_val); if (rc != 0) goto out_unlock; rc = vsc85xx_phy_page_set(phydev, MSCC_PHY_PAGE_STANDARD); out_unlock: mutex_unlock(&phydev->lock); return rc; } static int vsc85xx_mac_if_set(struct phy_device *phydev, phy_interface_t interface) { int rc; u16 reg_val; mutex_lock(&phydev->lock); reg_val = phy_read(phydev, MSCC_PHY_EXT_PHY_CNTL_1); reg_val &= ~(MAC_IF_SELECTION_MASK); switch (interface) { case PHY_INTERFACE_MODE_RGMII: reg_val |= (MAC_IF_SELECTION_RGMII << MAC_IF_SELECTION_POS); break; case PHY_INTERFACE_MODE_RMII: reg_val |= (MAC_IF_SELECTION_RMII << MAC_IF_SELECTION_POS); break; case PHY_INTERFACE_MODE_MII: case PHY_INTERFACE_MODE_GMII: reg_val |= (MAC_IF_SELECTION_GMII << MAC_IF_SELECTION_POS); break; default: rc = -EINVAL; goto out_unlock; } rc = phy_write(phydev, MSCC_PHY_EXT_PHY_CNTL_1, reg_val); if (rc != 0) goto out_unlock; rc = genphy_soft_reset(phydev); out_unlock: mutex_unlock(&phydev->lock); return rc; } static int vsc85xx_default_config(struct phy_device *phydev) { int rc; u16 reg_val; phydev->mdix_ctrl = ETH_TP_MDI_AUTO; mutex_lock(&phydev->lock); rc = vsc85xx_phy_page_set(phydev, MSCC_PHY_PAGE_EXTENDED_2); if (rc != 0) goto out_unlock; reg_val = phy_read(phydev, MSCC_PHY_RGMII_CNTL); reg_val &= ~(RGMII_RX_CLK_DELAY_MASK); reg_val |= (RGMII_RX_CLK_DELAY_1_1_NS << RGMII_RX_CLK_DELAY_POS); phy_write(phydev, MSCC_PHY_RGMII_CNTL, reg_val); rc = vsc85xx_phy_page_set(phydev, MSCC_PHY_PAGE_STANDARD); out_unlock: mutex_unlock(&phydev->lock); return rc; } static int vsc85xx_get_tunable(struct phy_device *phydev, struct ethtool_tunable *tuna, void *data) { switch (tuna->id) { case ETHTOOL_PHY_DOWNSHIFT: return vsc85xx_downshift_get(phydev, (u8 *)data); default: return -EINVAL; } } static int vsc85xx_set_tunable(struct phy_device *phydev, struct ethtool_tunable *tuna, const void *data) { switch (tuna->id) { case ETHTOOL_PHY_DOWNSHIFT: return vsc85xx_downshift_set(phydev, *(u8 *)data); default: return -EINVAL; } } static int vsc85xx_config_init(struct phy_device *phydev) { int rc; struct vsc8531_private *vsc8531 = phydev->priv; rc = vsc85xx_default_config(phydev); if (rc) return rc; rc = vsc85xx_mac_if_set(phydev, phydev->interface); if (rc) return rc; rc = vsc85xx_edge_rate_cntl_set(phydev, vsc8531->rate_magic); if (rc) return rc; rc = vsc85xx_led_cntl_set(phydev, 1, vsc8531->led_1_mode); if (rc) return rc; rc = vsc85xx_led_cntl_set(phydev, 0, vsc8531->led_0_mode); if (rc) return rc; rc = genphy_config_init(phydev); return rc; } static int vsc85xx_ack_interrupt(struct phy_device *phydev) { int rc = 0; if (phydev->interrupts == PHY_INTERRUPT_ENABLED) rc = phy_read(phydev, MII_VSC85XX_INT_STATUS); return (rc < 0) ? rc : 0; } static int vsc85xx_config_intr(struct phy_device *phydev) { int rc; if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { rc = phy_write(phydev, MII_VSC85XX_INT_MASK, MII_VSC85XX_INT_MASK_MASK); } else { rc = phy_write(phydev, MII_VSC85XX_INT_MASK, 0); if (rc < 0) return rc; rc = phy_read(phydev, MII_VSC85XX_INT_STATUS); } return rc; } static int vsc85xx_config_aneg(struct phy_device *phydev) { int rc; rc = vsc85xx_mdix_set(phydev, phydev->mdix_ctrl); if (rc < 0) return rc; return genphy_config_aneg(phydev); } static int vsc85xx_read_status(struct phy_device *phydev) { int rc; rc = vsc85xx_mdix_get(phydev, &phydev->mdix); if (rc < 0) return rc; return genphy_read_status(phydev); } static int vsc85xx_probe(struct phy_device *phydev) { struct vsc8531_private *vsc8531; int rate_magic; int led_mode; rate_magic = vsc85xx_edge_rate_magic_get(phydev); if (rate_magic < 0) return rate_magic; vsc8531 = devm_kzalloc(&phydev->mdio.dev, sizeof(*vsc8531), GFP_KERNEL); if (!vsc8531) return -ENOMEM; phydev->priv = vsc8531; vsc8531->rate_magic = rate_magic; /* LED[0] and LED[1] mode */ led_mode = vsc85xx_dt_led_mode_get(phydev, "vsc8531,led-0-mode", VSC8531_LINK_1000_ACTIVITY); if (led_mode < 0) return led_mode; vsc8531->led_0_mode = led_mode; led_mode = vsc85xx_dt_led_mode_get(phydev, "vsc8531,led-1-mode", VSC8531_LINK_100_ACTIVITY); if (led_mode < 0) return led_mode; vsc8531->led_1_mode = led_mode; return 0; } /* Microsemi VSC85xx PHYs */ static struct phy_driver vsc85xx_driver[] = { { .phy_id = PHY_ID_VSC8530, .name = "Microsemi FE VSC8530", .phy_id_mask = 0xfffffff0, .features = PHY_BASIC_FEATURES, .flags = PHY_HAS_INTERRUPT, .soft_reset = &genphy_soft_reset, .config_init = &vsc85xx_config_init, .config_aneg = &vsc85xx_config_aneg, .aneg_done = &genphy_aneg_done, .read_status = &vsc85xx_read_status, .ack_interrupt = &vsc85xx_ack_interrupt, .config_intr = &vsc85xx_config_intr, .suspend = &genphy_suspend, .resume = &genphy_resume, .probe = &vsc85xx_probe, .set_wol = &vsc85xx_wol_set, .get_wol = &vsc85xx_wol_get, .get_tunable = &vsc85xx_get_tunable, .set_tunable = &vsc85xx_set_tunable, }, { .phy_id = PHY_ID_VSC8531, .name = "Microsemi VSC8531", .phy_id_mask = 0xfffffff0, .features = PHY_GBIT_FEATURES, .flags = PHY_HAS_INTERRUPT, .soft_reset = &genphy_soft_reset, .config_init = &vsc85xx_config_init, .config_aneg = &vsc85xx_config_aneg, .aneg_done = &genphy_aneg_done, .read_status = &vsc85xx_read_status, .ack_interrupt = &vsc85xx_ack_interrupt, .config_intr = &vsc85xx_config_intr, .suspend = &genphy_suspend, .resume = &genphy_resume, .probe = &vsc85xx_probe, .set_wol = &vsc85xx_wol_set, .get_wol = &vsc85xx_wol_get, .get_tunable = &vsc85xx_get_tunable, .set_tunable = &vsc85xx_set_tunable, }, { .phy_id = PHY_ID_VSC8540, .name = "Microsemi FE VSC8540 SyncE", .phy_id_mask = 0xfffffff0, .features = PHY_BASIC_FEATURES, .flags = PHY_HAS_INTERRUPT, .soft_reset = &genphy_soft_reset, .config_init = &vsc85xx_config_init, .config_aneg = &vsc85xx_config_aneg, .aneg_done = &genphy_aneg_done, .read_status = &vsc85xx_read_status, .ack_interrupt = &vsc85xx_ack_interrupt, .config_intr = &vsc85xx_config_intr, .suspend = &genphy_suspend, .resume = &genphy_resume, .probe = &vsc85xx_probe, .set_wol = &vsc85xx_wol_set, .get_wol = &vsc85xx_wol_get, .get_tunable = &vsc85xx_get_tunable, .set_tunable = &vsc85xx_set_tunable, }, { .phy_id = PHY_ID_VSC8541, .name = "Microsemi VSC8541 SyncE", .phy_id_mask = 0xfffffff0, .features = PHY_GBIT_FEATURES, .flags = PHY_HAS_INTERRUPT, .soft_reset = &genphy_soft_reset, .config_init = &vsc85xx_config_init, .config_aneg = &vsc85xx_config_aneg, .aneg_done = &genphy_aneg_done, .read_status = &vsc85xx_read_status, .ack_interrupt = &vsc85xx_ack_interrupt, .config_intr = &vsc85xx_config_intr, .suspend = &genphy_suspend, .resume = &genphy_resume, .probe = &vsc85xx_probe, .set_wol = &vsc85xx_wol_set, .get_wol = &vsc85xx_wol_get, .get_tunable = &vsc85xx_get_tunable, .set_tunable = &vsc85xx_set_tunable, } }; module_phy_driver(vsc85xx_driver); static struct mdio_device_id __maybe_unused vsc85xx_tbl[] = { { PHY_ID_VSC8530, 0xfffffff0, }, { PHY_ID_VSC8531, 0xfffffff0, }, { PHY_ID_VSC8540, 0xfffffff0, }, { PHY_ID_VSC8541, 0xfffffff0, }, { } }; MODULE_DEVICE_TABLE(mdio, vsc85xx_tbl); MODULE_DESCRIPTION("Microsemi VSC85xx PHY driver"); MODULE_AUTHOR("Nagaraju Lakkaraju"); MODULE_LICENSE("Dual MIT/GPL");