#include #include #include #include #include #include #include #include #include #include #include #include #include #include "mdio-i2c.h" #include "sfp.h" #include "swphy.h" enum { GPIO_MODDEF0, GPIO_LOS, GPIO_TX_FAULT, GPIO_TX_DISABLE, GPIO_RATE_SELECT, GPIO_MAX, SFP_F_PRESENT = BIT(GPIO_MODDEF0), SFP_F_LOS = BIT(GPIO_LOS), SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT), SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE), SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT), SFP_E_INSERT = 0, SFP_E_REMOVE, SFP_E_DEV_DOWN, SFP_E_DEV_UP, SFP_E_TX_FAULT, SFP_E_TX_CLEAR, SFP_E_LOS_HIGH, SFP_E_LOS_LOW, SFP_E_TIMEOUT, SFP_MOD_EMPTY = 0, SFP_MOD_PROBE, SFP_MOD_PRESENT, SFP_MOD_ERROR, SFP_DEV_DOWN = 0, SFP_DEV_UP, SFP_S_DOWN = 0, SFP_S_INIT, SFP_S_WAIT_LOS, SFP_S_LINK_UP, SFP_S_TX_FAULT, SFP_S_REINIT, SFP_S_TX_DISABLE, }; static const char *gpio_of_names[] = { "moddef0", "los", "tx-fault", "tx-disable", "rate-select", }; static const enum gpiod_flags gpio_flags[] = { GPIOD_IN, GPIOD_IN, GPIOD_IN, GPIOD_ASIS, GPIOD_ASIS, }; #define T_INIT_JIFFIES msecs_to_jiffies(300) #define T_RESET_US 10 #define T_FAULT_RECOVER msecs_to_jiffies(1000) /* SFP module presence detection is poor: the three MOD DEF signals are * the same length on the PCB, which means it's possible for MOD DEF 0 to * connect before the I2C bus on MOD DEF 1/2. * * The SFP MSA specifies 300ms as t_init (the time taken for TX_FAULT to * be deasserted) but makes no mention of the earliest time before we can * access the I2C EEPROM. However, Avago modules require 300ms. */ #define T_PROBE_INIT msecs_to_jiffies(300) #define T_PROBE_RETRY msecs_to_jiffies(100) /* * SFP modules appear to always have their PHY configured for bus address * 0x56 (which with mdio-i2c, translates to a PHY address of 22). */ #define SFP_PHY_ADDR 22 /* * Give this long for the PHY to reset. */ #define T_PHY_RESET_MS 50 static DEFINE_MUTEX(sfp_mutex); struct sfp { struct device *dev; struct i2c_adapter *i2c; struct mii_bus *i2c_mii; struct sfp_bus *sfp_bus; struct phy_device *mod_phy; unsigned int (*get_state)(struct sfp *); void (*set_state)(struct sfp *, unsigned int); int (*read)(struct sfp *, bool, u8, void *, size_t); struct gpio_desc *gpio[GPIO_MAX]; unsigned int state; struct delayed_work poll; struct delayed_work timeout; struct mutex sm_mutex; unsigned char sm_mod_state; unsigned char sm_dev_state; unsigned short sm_state; unsigned int sm_retries; struct sfp_eeprom_id id; }; static unsigned long poll_jiffies; static unsigned int sfp_gpio_get_state(struct sfp *sfp) { unsigned int i, state, v; for (i = state = 0; i < GPIO_MAX; i++) { if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) continue; v = gpiod_get_value_cansleep(sfp->gpio[i]); if (v) state |= BIT(i); } return state; } static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state) { if (state & SFP_F_PRESENT) { /* If the module is present, drive the signals */ if (sfp->gpio[GPIO_TX_DISABLE]) gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE], state & SFP_F_TX_DISABLE); if (state & SFP_F_RATE_SELECT) gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT], state & SFP_F_RATE_SELECT); } else { /* Otherwise, let them float to the pull-ups */ if (sfp->gpio[GPIO_TX_DISABLE]) gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]); if (state & SFP_F_RATE_SELECT) gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]); } } static int sfp__i2c_read(struct i2c_adapter *i2c, u8 bus_addr, u8 dev_addr, void *buf, size_t len) { struct i2c_msg msgs[2]; int ret; msgs[0].addr = bus_addr; msgs[0].flags = 0; msgs[0].len = 1; msgs[0].buf = &dev_addr; msgs[1].addr = bus_addr; msgs[1].flags = I2C_M_RD; msgs[1].len = len; msgs[1].buf = buf; ret = i2c_transfer(i2c, msgs, ARRAY_SIZE(msgs)); if (ret < 0) return ret; return ret == ARRAY_SIZE(msgs) ? len : 0; } static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) { return sfp__i2c_read(sfp->i2c, a2 ? 0x51 : 0x50, addr, buf, len); } static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c) { struct mii_bus *i2c_mii; int ret; if (!i2c_check_functionality(i2c, I2C_FUNC_I2C)) return -EINVAL; sfp->i2c = i2c; sfp->read = sfp_i2c_read; i2c_mii = mdio_i2c_alloc(sfp->dev, i2c); if (IS_ERR(i2c_mii)) return PTR_ERR(i2c_mii); i2c_mii->name = "SFP I2C Bus"; i2c_mii->phy_mask = ~0; ret = mdiobus_register(i2c_mii); if (ret < 0) { mdiobus_free(i2c_mii); return ret; } sfp->i2c_mii = i2c_mii; return 0; } /* Interface */ static unsigned int sfp_get_state(struct sfp *sfp) { return sfp->get_state(sfp); } static void sfp_set_state(struct sfp *sfp, unsigned int state) { sfp->set_state(sfp, state); } static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) { return sfp->read(sfp, a2, addr, buf, len); } static unsigned int sfp_check(void *buf, size_t len) { u8 *p, check; for (p = buf, check = 0; len; p++, len--) check += *p; return check; } static const char *sfp_link_len(char *buf, size_t size, unsigned int length, unsigned int multiplier) { if (length == 0) return "unsupported/unspecified"; if (length == 255) { *buf++ = '>'; size -= 1; length -= 1; } length *= multiplier; if (length >= 1000) snprintf(buf, size, "%u.%0*ukm", length / 1000, multiplier > 100 ? 1 : multiplier > 10 ? 2 : 3, length % 1000); else snprintf(buf, size, "%um", length); return buf; } struct bitfield { unsigned int mask; unsigned int val; const char *str; }; static const struct bitfield sfp_options[] = { { .mask = SFP_OPTIONS_HIGH_POWER_LEVEL, .val = SFP_OPTIONS_HIGH_POWER_LEVEL, .str = "hpl", }, { .mask = SFP_OPTIONS_PAGING_A2, .val = SFP_OPTIONS_PAGING_A2, .str = "paginga2", }, { .mask = SFP_OPTIONS_RETIMER, .val = SFP_OPTIONS_RETIMER, .str = "retimer", }, { .mask = SFP_OPTIONS_COOLED_XCVR, .val = SFP_OPTIONS_COOLED_XCVR, .str = "cooled", }, { .mask = SFP_OPTIONS_POWER_DECL, .val = SFP_OPTIONS_POWER_DECL, .str = "powerdecl", }, { .mask = SFP_OPTIONS_RX_LINEAR_OUT, .val = SFP_OPTIONS_RX_LINEAR_OUT, .str = "rxlinear", }, { .mask = SFP_OPTIONS_RX_DECISION_THRESH, .val = SFP_OPTIONS_RX_DECISION_THRESH, .str = "rxthresh", }, { .mask = SFP_OPTIONS_TUNABLE_TX, .val = SFP_OPTIONS_TUNABLE_TX, .str = "tunabletx", }, { .mask = SFP_OPTIONS_RATE_SELECT, .val = SFP_OPTIONS_RATE_SELECT, .str = "ratesel", }, { .mask = SFP_OPTIONS_TX_DISABLE, .val = SFP_OPTIONS_TX_DISABLE, .str = "txdisable", }, { .mask = SFP_OPTIONS_TX_FAULT, .val = SFP_OPTIONS_TX_FAULT, .str = "txfault", }, { .mask = SFP_OPTIONS_LOS_INVERTED, .val = SFP_OPTIONS_LOS_INVERTED, .str = "los-", }, { .mask = SFP_OPTIONS_LOS_NORMAL, .val = SFP_OPTIONS_LOS_NORMAL, .str = "los+", }, { } }; static const struct bitfield diagmon[] = { { .mask = SFP_DIAGMON_DDM, .val = SFP_DIAGMON_DDM, .str = "ddm", }, { .mask = SFP_DIAGMON_INT_CAL, .val = SFP_DIAGMON_INT_CAL, .str = "intcal", }, { .mask = SFP_DIAGMON_EXT_CAL, .val = SFP_DIAGMON_EXT_CAL, .str = "extcal", }, { .mask = SFP_DIAGMON_RXPWR_AVG, .val = SFP_DIAGMON_RXPWR_AVG, .str = "rxpwravg", }, { } }; static const char *sfp_bitfield(char *out, size_t outsz, const struct bitfield *bits, unsigned int val) { char *p = out; int n; *p = '\0'; while (bits->mask) { if ((val & bits->mask) == bits->val) { n = snprintf(p, outsz, "%s%s", out != p ? ", " : "", bits->str); if (n == outsz) break; p += n; outsz -= n; } bits++; } return out; } static const char *sfp_connector(unsigned int connector) { switch (connector) { case SFP_CONNECTOR_UNSPEC: return "unknown/unspecified"; case SFP_CONNECTOR_SC: return "SC"; case SFP_CONNECTOR_FIBERJACK: return "Fiberjack"; case SFP_CONNECTOR_LC: return "LC"; case SFP_CONNECTOR_MT_RJ: return "MT-RJ"; case SFP_CONNECTOR_MU: return "MU"; case SFP_CONNECTOR_SG: return "SG"; case SFP_CONNECTOR_OPTICAL_PIGTAIL: return "Optical pigtail"; case SFP_CONNECTOR_HSSDC_II: return "HSSDC II"; case SFP_CONNECTOR_COPPER_PIGTAIL: return "Copper pigtail"; default: return "unknown"; } } static const char *sfp_encoding(unsigned int encoding) { switch (encoding) { case SFP_ENCODING_UNSPEC: return "unspecified"; case SFP_ENCODING_8472_64B66B: return "64b66b"; case SFP_ENCODING_8B10B: return "8b10b"; case SFP_ENCODING_4B5B: return "4b5b"; case SFP_ENCODING_NRZ: return "NRZ"; case SFP_ENCODING_8472_MANCHESTER: return "MANCHESTER"; default: return "unknown"; } } /* Helpers */ static void sfp_module_tx_disable(struct sfp *sfp) { dev_dbg(sfp->dev, "tx disable %u -> %u\n", sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1); sfp->state |= SFP_F_TX_DISABLE; sfp_set_state(sfp, sfp->state); } static void sfp_module_tx_enable(struct sfp *sfp) { dev_dbg(sfp->dev, "tx disable %u -> %u\n", sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0); sfp->state &= ~SFP_F_TX_DISABLE; sfp_set_state(sfp, sfp->state); } static void sfp_module_tx_fault_reset(struct sfp *sfp) { unsigned int state = sfp->state; if (state & SFP_F_TX_DISABLE) return; sfp_set_state(sfp, state | SFP_F_TX_DISABLE); udelay(T_RESET_US); sfp_set_state(sfp, state); } /* SFP state machine */ static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout) { if (timeout) mod_delayed_work(system_power_efficient_wq, &sfp->timeout, timeout); else cancel_delayed_work(&sfp->timeout); } static void sfp_sm_next(struct sfp *sfp, unsigned int state, unsigned int timeout) { sfp->sm_state = state; sfp_sm_set_timer(sfp, timeout); } static void sfp_sm_ins_next(struct sfp *sfp, unsigned int state, unsigned int timeout) { sfp->sm_mod_state = state; sfp_sm_set_timer(sfp, timeout); } static void sfp_sm_phy_detach(struct sfp *sfp) { phy_stop(sfp->mod_phy); sfp_remove_phy(sfp->sfp_bus); phy_device_remove(sfp->mod_phy); phy_device_free(sfp->mod_phy); sfp->mod_phy = NULL; } static void sfp_sm_probe_phy(struct sfp *sfp) { struct phy_device *phy; int err; msleep(T_PHY_RESET_MS); phy = mdiobus_scan(sfp->i2c_mii, SFP_PHY_ADDR); if (IS_ERR(phy)) { dev_err(sfp->dev, "mdiobus scan returned %ld\n", PTR_ERR(phy)); return; } if (!phy) { dev_info(sfp->dev, "no PHY detected\n"); return; } err = sfp_add_phy(sfp->sfp_bus, phy); if (err) { phy_device_remove(phy); phy_device_free(phy); dev_err(sfp->dev, "sfp_add_phy failed: %d\n", err); return; } sfp->mod_phy = phy; phy_start(phy); } static void sfp_sm_link_up(struct sfp *sfp) { sfp_link_up(sfp->sfp_bus); sfp_sm_next(sfp, SFP_S_LINK_UP, 0); } static void sfp_sm_link_down(struct sfp *sfp) { sfp_link_down(sfp->sfp_bus); } static void sfp_sm_link_check_los(struct sfp *sfp) { unsigned int los = sfp->state & SFP_F_LOS; /* FIXME: what if neither SFP_OPTIONS_LOS_INVERTED nor * SFP_OPTIONS_LOS_NORMAL are set? For now, we assume * the same as SFP_OPTIONS_LOS_NORMAL set. */ if (sfp->id.ext.options & SFP_OPTIONS_LOS_INVERTED) los ^= SFP_F_LOS; if (los) sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); else sfp_sm_link_up(sfp); } static void sfp_sm_fault(struct sfp *sfp, bool warn) { if (sfp->sm_retries && !--sfp->sm_retries) { dev_err(sfp->dev, "module persistently indicates fault, disabling\n"); sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0); } else { if (warn) dev_err(sfp->dev, "module transmit fault indicated\n"); sfp_sm_next(sfp, SFP_S_TX_FAULT, T_FAULT_RECOVER); } } static void sfp_sm_mod_init(struct sfp *sfp) { sfp_module_tx_enable(sfp); /* Wait t_init before indicating that the link is up, provided the * current state indicates no TX_FAULT. If TX_FAULT clears before * this time, that's fine too. */ sfp_sm_next(sfp, SFP_S_INIT, T_INIT_JIFFIES); sfp->sm_retries = 5; /* Setting the serdes link mode is guesswork: there's no * field in the EEPROM which indicates what mode should * be used. * * If it's a gigabit-only fiber module, it probably does * not have a PHY, so switch to 802.3z negotiation mode. * Otherwise, switch to SGMII mode (which is required to * support non-gigabit speeds) and probe for a PHY. */ if (sfp->id.base.e1000_base_t || sfp->id.base.e100_base_lx || sfp->id.base.e100_base_fx) sfp_sm_probe_phy(sfp); } static int sfp_sm_mod_probe(struct sfp *sfp) { /* SFP module inserted - read I2C data */ struct sfp_eeprom_id id; char vendor[17]; char part[17]; char sn[17]; char date[9]; char rev[5]; char options[80]; u8 check; int err; err = sfp_read(sfp, false, 0, &id, sizeof(id)); if (err < 0) { dev_err(sfp->dev, "failed to read EEPROM: %d\n", err); return -EAGAIN; } if (err != sizeof(id)) { dev_err(sfp->dev, "EEPROM short read: %d\n", err); return -EAGAIN; } /* Validate the checksum over the base structure */ check = sfp_check(&id.base, sizeof(id.base) - 1); if (check != id.base.cc_base) { dev_err(sfp->dev, "EEPROM base structure checksum failure: 0x%02x\n", check); print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, 16, 1, &id, sizeof(id.base) - 1, true); return -EINVAL; } check = sfp_check(&id.ext, sizeof(id.ext) - 1); if (check != id.ext.cc_ext) { dev_err(sfp->dev, "EEPROM extended structure checksum failure: 0x%02x\n", check); memset(&id.ext, 0, sizeof(id.ext)); } sfp->id = id; memcpy(vendor, sfp->id.base.vendor_name, 16); vendor[16] = '\0'; memcpy(part, sfp->id.base.vendor_pn, 16); part[16] = '\0'; memcpy(rev, sfp->id.base.vendor_rev, 4); rev[4] = '\0'; memcpy(sn, sfp->id.ext.vendor_sn, 16); sn[16] = '\0'; date[0] = sfp->id.ext.datecode[4]; date[1] = sfp->id.ext.datecode[5]; date[2] = '-'; date[3] = sfp->id.ext.datecode[2]; date[4] = sfp->id.ext.datecode[3]; date[5] = '-'; date[6] = sfp->id.ext.datecode[0]; date[7] = sfp->id.ext.datecode[1]; date[8] = '\0'; dev_info(sfp->dev, "module %s %s rev %s sn %s dc %s\n", vendor, part, rev, sn, date); dev_info(sfp->dev, " %s connector, encoding %s, nominal bitrate %u.%uGbps +%u%% -%u%%\n", sfp_connector(sfp->id.base.connector), sfp_encoding(sfp->id.base.encoding), sfp->id.base.br_nominal / 10, sfp->id.base.br_nominal % 10, sfp->id.ext.br_max, sfp->id.ext.br_min); dev_info(sfp->dev, " 1000BaseSX%c 1000BaseLX%c 1000BaseCX%c 1000BaseT%c 100BaseTLX%c 1000BaseFX%c BaseBX10%c BasePX%c\n", sfp->id.base.e1000_base_sx ? '+' : '-', sfp->id.base.e1000_base_lx ? '+' : '-', sfp->id.base.e1000_base_cx ? '+' : '-', sfp->id.base.e1000_base_t ? '+' : '-', sfp->id.base.e100_base_lx ? '+' : '-', sfp->id.base.e100_base_fx ? '+' : '-', sfp->id.base.e_base_bx10 ? '+' : '-', sfp->id.base.e_base_px ? '+' : '-'); dev_info(sfp->dev, " 10GBaseSR%c 10GBaseLR%c 10GBaseLRM%c 10GBaseER%c\n", sfp->id.base.e10g_base_sr ? '+' : '-', sfp->id.base.e10g_base_lr ? '+' : '-', sfp->id.base.e10g_base_lrm ? '+' : '-', sfp->id.base.e10g_base_er ? '+' : '-'); if (!sfp->id.base.sfp_ct_passive && !sfp->id.base.sfp_ct_active && !sfp->id.base.e1000_base_t) { char len_9um[16], len_om[16]; dev_info(sfp->dev, " Wavelength %unm, fiber lengths:\n", be16_to_cpup(&sfp->id.base.optical_wavelength)); if (sfp->id.base.link_len[0] == 255) strcpy(len_9um, ">254km"); else if (sfp->id.base.link_len[1] && sfp->id.base.link_len[1] != 255) sprintf(len_9um, "%um", sfp->id.base.link_len[1] * 100); else if (sfp->id.base.link_len[0]) sprintf(len_9um, "%ukm", sfp->id.base.link_len[0]); else if (sfp->id.base.link_len[1] == 255) strcpy(len_9um, ">25.4km"); else strcpy(len_9um, "unsupported"); dev_info(sfp->dev, " 9µm SM : %s\n", len_9um); dev_info(sfp->dev, " 62.5µm MM OM1: %s\n", sfp_link_len(len_om, sizeof(len_om), sfp->id.base.link_len[3], 10)); dev_info(sfp->dev, " 50µm MM OM2: %s\n", sfp_link_len(len_om, sizeof(len_om), sfp->id.base.link_len[2], 10)); dev_info(sfp->dev, " 50µm MM OM3: %s\n", sfp_link_len(len_om, sizeof(len_om), sfp->id.base.link_len[5], 10)); dev_info(sfp->dev, " 50µm MM OM4: %s\n", sfp_link_len(len_om, sizeof(len_om), sfp->id.base.link_len[4], 10)); } else { char len[16]; dev_info(sfp->dev, " Copper length: %s\n", sfp_link_len(len, sizeof(len), sfp->id.base.link_len[4], 1)); } dev_info(sfp->dev, " Options: %s\n", sfp_bitfield(options, sizeof(options), sfp_options, be16_to_cpu(sfp->id.ext.options))); dev_info(sfp->dev, " Diagnostics: %s\n", sfp_bitfield(options, sizeof(options), diagmon, sfp->id.ext.diagmon)); /* We only support SFP modules, not the legacy GBIC modules. */ if (sfp->id.base.phys_id != SFP_PHYS_ID_SFP || sfp->id.base.phys_ext_id != SFP_PHYS_EXT_ID_SFP) { dev_err(sfp->dev, "module is not SFP - phys id 0x%02x 0x%02x\n", sfp->id.base.phys_id, sfp->id.base.phys_ext_id); return -EINVAL; } return sfp_module_insert(sfp->sfp_bus, &sfp->id); } static void sfp_sm_mod_remove(struct sfp *sfp) { sfp_module_remove(sfp->sfp_bus); if (sfp->mod_phy) sfp_sm_phy_detach(sfp); sfp_module_tx_disable(sfp); memset(&sfp->id, 0, sizeof(sfp->id)); dev_info(sfp->dev, "module removed\n"); } static void sfp_sm_event(struct sfp *sfp, unsigned int event) { mutex_lock(&sfp->sm_mutex); dev_dbg(sfp->dev, "SM: enter %u:%u:%u event %u\n", sfp->sm_mod_state, sfp->sm_dev_state, sfp->sm_state, event); /* This state machine tracks the insert/remove state of * the module, and handles probing the on-board EEPROM. */ switch (sfp->sm_mod_state) { default: if (event == SFP_E_INSERT) { sfp_module_tx_disable(sfp); sfp_sm_ins_next(sfp, SFP_MOD_PROBE, T_PROBE_INIT); } break; case SFP_MOD_PROBE: if (event == SFP_E_REMOVE) { sfp_sm_ins_next(sfp, SFP_MOD_EMPTY, 0); } else if (event == SFP_E_TIMEOUT) { int err = sfp_sm_mod_probe(sfp); if (err == 0) sfp_sm_ins_next(sfp, SFP_MOD_PRESENT, 0); else if (err == -EAGAIN) sfp_sm_set_timer(sfp, T_PROBE_RETRY); else sfp_sm_ins_next(sfp, SFP_MOD_ERROR, 0); } break; case SFP_MOD_PRESENT: case SFP_MOD_ERROR: if (event == SFP_E_REMOVE) { sfp_sm_mod_remove(sfp); sfp_sm_ins_next(sfp, SFP_MOD_EMPTY, 0); } break; } /* This state machine tracks the netdev up/down state */ switch (sfp->sm_dev_state) { default: if (event == SFP_E_DEV_UP) sfp->sm_dev_state = SFP_DEV_UP; break; case SFP_DEV_UP: if (event == SFP_E_DEV_DOWN) { /* If the module has a PHY, avoid raising TX disable * as this resets the PHY. Otherwise, raise it to * turn the laser off. */ if (!sfp->mod_phy) sfp_module_tx_disable(sfp); sfp->sm_dev_state = SFP_DEV_DOWN; } break; } /* Some events are global */ if (sfp->sm_state != SFP_S_DOWN && (sfp->sm_mod_state != SFP_MOD_PRESENT || sfp->sm_dev_state != SFP_DEV_UP)) { if (sfp->sm_state == SFP_S_LINK_UP && sfp->sm_dev_state == SFP_DEV_UP) sfp_sm_link_down(sfp); if (sfp->mod_phy) sfp_sm_phy_detach(sfp); sfp_sm_next(sfp, SFP_S_DOWN, 0); mutex_unlock(&sfp->sm_mutex); return; } /* The main state machine */ switch (sfp->sm_state) { case SFP_S_DOWN: if (sfp->sm_mod_state == SFP_MOD_PRESENT && sfp->sm_dev_state == SFP_DEV_UP) sfp_sm_mod_init(sfp); break; case SFP_S_INIT: if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) sfp_sm_fault(sfp, true); else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) sfp_sm_link_check_los(sfp); break; case SFP_S_WAIT_LOS: if (event == SFP_E_TX_FAULT) sfp_sm_fault(sfp, true); else if (event == (sfp->id.ext.options & SFP_OPTIONS_LOS_INVERTED ? SFP_E_LOS_HIGH : SFP_E_LOS_LOW)) sfp_sm_link_up(sfp); break; case SFP_S_LINK_UP: if (event == SFP_E_TX_FAULT) { sfp_sm_link_down(sfp); sfp_sm_fault(sfp, true); } else if (event == (sfp->id.ext.options & SFP_OPTIONS_LOS_INVERTED ? SFP_E_LOS_LOW : SFP_E_LOS_HIGH)) { sfp_sm_link_down(sfp); sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); } break; case SFP_S_TX_FAULT: if (event == SFP_E_TIMEOUT) { sfp_module_tx_fault_reset(sfp); sfp_sm_next(sfp, SFP_S_REINIT, T_INIT_JIFFIES); } break; case SFP_S_REINIT: if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { sfp_sm_fault(sfp, false); } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { dev_info(sfp->dev, "module transmit fault recovered\n"); sfp_sm_link_check_los(sfp); } break; case SFP_S_TX_DISABLE: break; } dev_dbg(sfp->dev, "SM: exit %u:%u:%u\n", sfp->sm_mod_state, sfp->sm_dev_state, sfp->sm_state); mutex_unlock(&sfp->sm_mutex); } static void sfp_start(struct sfp *sfp) { sfp_sm_event(sfp, SFP_E_DEV_UP); } static void sfp_stop(struct sfp *sfp) { sfp_sm_event(sfp, SFP_E_DEV_DOWN); } static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo) { /* locking... and check module is present */ if (sfp->id.ext.sff8472_compliance) { modinfo->type = ETH_MODULE_SFF_8472; modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN; } else { modinfo->type = ETH_MODULE_SFF_8079; modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN; } return 0; } static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee, u8 *data) { unsigned int first, last, len; int ret; if (ee->len == 0) return -EINVAL; first = ee->offset; last = ee->offset + ee->len; if (first < ETH_MODULE_SFF_8079_LEN) { len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN); len -= first; ret = sfp->read(sfp, false, first, data, len); if (ret < 0) return ret; first += len; data += len; } if (first >= ETH_MODULE_SFF_8079_LEN && first < ETH_MODULE_SFF_8472_LEN) { len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN); len -= first; first -= ETH_MODULE_SFF_8079_LEN; ret = sfp->read(sfp, true, first, data, len); if (ret < 0) return ret; } return 0; } static const struct sfp_socket_ops sfp_module_ops = { .start = sfp_start, .stop = sfp_stop, .module_info = sfp_module_info, .module_eeprom = sfp_module_eeprom, }; static void sfp_timeout(struct work_struct *work) { struct sfp *sfp = container_of(work, struct sfp, timeout.work); rtnl_lock(); sfp_sm_event(sfp, SFP_E_TIMEOUT); rtnl_unlock(); } static void sfp_check_state(struct sfp *sfp) { unsigned int state, i, changed; state = sfp_get_state(sfp); changed = state ^ sfp->state; changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT; for (i = 0; i < GPIO_MAX; i++) if (changed & BIT(i)) dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i], !!(sfp->state & BIT(i)), !!(state & BIT(i))); state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT); sfp->state = state; rtnl_lock(); if (changed & SFP_F_PRESENT) sfp_sm_event(sfp, state & SFP_F_PRESENT ? SFP_E_INSERT : SFP_E_REMOVE); if (changed & SFP_F_TX_FAULT) sfp_sm_event(sfp, state & SFP_F_TX_FAULT ? SFP_E_TX_FAULT : SFP_E_TX_CLEAR); if (changed & SFP_F_LOS) sfp_sm_event(sfp, state & SFP_F_LOS ? SFP_E_LOS_HIGH : SFP_E_LOS_LOW); rtnl_unlock(); } static irqreturn_t sfp_irq(int irq, void *data) { struct sfp *sfp = data; sfp_check_state(sfp); return IRQ_HANDLED; } static void sfp_poll(struct work_struct *work) { struct sfp *sfp = container_of(work, struct sfp, poll.work); sfp_check_state(sfp); mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); } static struct sfp *sfp_alloc(struct device *dev) { struct sfp *sfp; sfp = kzalloc(sizeof(*sfp), GFP_KERNEL); if (!sfp) return ERR_PTR(-ENOMEM); sfp->dev = dev; mutex_init(&sfp->sm_mutex); INIT_DELAYED_WORK(&sfp->poll, sfp_poll); INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout); return sfp; } static void sfp_cleanup(void *data) { struct sfp *sfp = data; cancel_delayed_work_sync(&sfp->poll); cancel_delayed_work_sync(&sfp->timeout); if (sfp->i2c_mii) { mdiobus_unregister(sfp->i2c_mii); mdiobus_free(sfp->i2c_mii); } if (sfp->i2c) i2c_put_adapter(sfp->i2c); kfree(sfp); } static int sfp_probe(struct platform_device *pdev) { struct sfp *sfp; bool poll = false; int irq, err, i; sfp = sfp_alloc(&pdev->dev); if (IS_ERR(sfp)) return PTR_ERR(sfp); platform_set_drvdata(pdev, sfp); err = devm_add_action(sfp->dev, sfp_cleanup, sfp); if (err < 0) return err; if (pdev->dev.of_node) { struct device_node *node = pdev->dev.of_node; struct device_node *np; np = of_parse_phandle(node, "i2c-bus", 0); if (np) { struct i2c_adapter *i2c; i2c = of_find_i2c_adapter_by_node(np); of_node_put(np); if (!i2c) return -EPROBE_DEFER; err = sfp_i2c_configure(sfp, i2c); if (err < 0) { i2c_put_adapter(i2c); return err; } } for (i = 0; i < GPIO_MAX; i++) { sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev, gpio_of_names[i], gpio_flags[i]); if (IS_ERR(sfp->gpio[i])) return PTR_ERR(sfp->gpio[i]); } sfp->get_state = sfp_gpio_get_state; sfp->set_state = sfp_gpio_set_state; } sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops); if (!sfp->sfp_bus) return -ENOMEM; /* Get the initial state, and always signal TX disable, * since the network interface will not be up. */ sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE; if (sfp->gpio[GPIO_RATE_SELECT] && gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT])) sfp->state |= SFP_F_RATE_SELECT; sfp_set_state(sfp, sfp->state); sfp_module_tx_disable(sfp); rtnl_lock(); if (sfp->state & SFP_F_PRESENT) sfp_sm_event(sfp, SFP_E_INSERT); rtnl_unlock(); for (i = 0; i < GPIO_MAX; i++) { if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) continue; irq = gpiod_to_irq(sfp->gpio[i]); if (!irq) { poll = true; continue; } err = devm_request_threaded_irq(sfp->dev, irq, NULL, sfp_irq, IRQF_ONESHOT | IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, dev_name(sfp->dev), sfp); if (err) poll = true; } if (poll) mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); return 0; } static int sfp_remove(struct platform_device *pdev) { struct sfp *sfp = platform_get_drvdata(pdev); sfp_unregister_socket(sfp->sfp_bus); return 0; } static const struct of_device_id sfp_of_match[] = { { .compatible = "sff,sfp", }, { }, }; MODULE_DEVICE_TABLE(of, sfp_of_match); static struct platform_driver sfp_driver = { .probe = sfp_probe, .remove = sfp_remove, .driver = { .name = "sfp", .of_match_table = sfp_of_match, }, }; static int sfp_init(void) { poll_jiffies = msecs_to_jiffies(100); return platform_driver_register(&sfp_driver); } module_init(sfp_init); static void sfp_exit(void) { platform_driver_unregister(&sfp_driver); } module_exit(sfp_exit); MODULE_ALIAS("platform:sfp"); MODULE_AUTHOR("Russell King"); MODULE_LICENSE("GPL v2");