// SPDX-License-Identifier: BSD-3-Clause-Clear /* * Copyright (c) 2018-2021 The Linux Foundation. All rights reserved. * Copyright (c) 2021-2025 Qualcomm Innovation Center, Inc. All rights reserved. */ #include #include "core.h" #include "debug.h" #include "mac.h" /* World regdom to be used in case default regd from fw is unavailable */ #define ATH12K_2GHZ_CH01_11 REG_RULE(2412 - 10, 2462 + 10, 40, 0, 20, 0) #define ATH12K_5GHZ_5150_5350 REG_RULE(5150 - 10, 5350 + 10, 80, 0, 30,\ NL80211_RRF_NO_IR) #define ATH12K_5GHZ_5725_5850 REG_RULE(5725 - 10, 5850 + 10, 80, 0, 30,\ NL80211_RRF_NO_IR) #define ETSI_WEATHER_RADAR_BAND_LOW 5590 #define ETSI_WEATHER_RADAR_BAND_HIGH 5650 #define ETSI_WEATHER_RADAR_BAND_CAC_TIMEOUT 600000 static const struct ieee80211_regdomain ath12k_world_regd = { .n_reg_rules = 3, .alpha2 = "00", .reg_rules = { ATH12K_2GHZ_CH01_11, ATH12K_5GHZ_5150_5350, ATH12K_5GHZ_5725_5850, } }; static bool ath12k_regdom_changes(struct ieee80211_hw *hw, char *alpha2) { const struct ieee80211_regdomain *regd; regd = rcu_dereference_rtnl(hw->wiphy->regd); /* This can happen during wiphy registration where the previous * user request is received before we update the regd received * from firmware. */ if (!regd) return true; return memcmp(regd->alpha2, alpha2, 2) != 0; } static void ath12k_reg_notifier(struct wiphy *wiphy, struct regulatory_request *request) { struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy); struct ath12k_wmi_init_country_arg arg; struct wmi_set_current_country_arg current_arg = {}; struct ath12k_hw *ah = ath12k_hw_to_ah(hw); struct ath12k *ar = ath12k_ah_to_ar(ah, 0); int ret, i; ath12k_dbg(ar->ab, ATH12K_DBG_REG, "Regulatory Notification received for %s\n", wiphy_name(wiphy)); if (request->initiator == NL80211_REGDOM_SET_BY_DRIVER) { ath12k_dbg(ar->ab, ATH12K_DBG_REG, "driver initiated regd update\n"); if (ah->state != ATH12K_HW_STATE_ON) return; for_each_ar(ah, ar, i) { ret = ath12k_reg_update_chan_list(ar, true); if (ret) { ath12k_warn(ar->ab, "failed to update chan list for pdev %u, ret %d\n", i, ret); break; } } return; } /* Currently supporting only General User Hints. Cell base user * hints to be handled later. * Hints from other sources like Core, Beacons are not expected for * self managed wiphy's */ if (!(request->initiator == NL80211_REGDOM_SET_BY_USER && request->user_reg_hint_type == NL80211_USER_REG_HINT_USER)) { ath12k_warn(ar->ab, "Unexpected Regulatory event for this wiphy\n"); return; } if (!IS_ENABLED(CONFIG_ATH_REG_DYNAMIC_USER_REG_HINTS)) { ath12k_dbg(ar->ab, ATH12K_DBG_REG, "Country Setting is not allowed\n"); return; } if (!ath12k_regdom_changes(hw, request->alpha2)) { ath12k_dbg(ar->ab, ATH12K_DBG_REG, "Country is already set\n"); return; } /* Allow fresh updates to wiphy regd */ ah->regd_updated = false; /* Send the reg change request to all the radios */ for_each_ar(ah, ar, i) { if (ar->ab->hw_params->current_cc_support) { memcpy(¤t_arg.alpha2, request->alpha2, 2); memcpy(&ar->alpha2, ¤t_arg.alpha2, 2); ret = ath12k_wmi_send_set_current_country_cmd(ar, ¤t_arg); if (ret) ath12k_warn(ar->ab, "failed set current country code: %d\n", ret); } else { arg.flags = ALPHA_IS_SET; memcpy(&arg.cc_info.alpha2, request->alpha2, 2); arg.cc_info.alpha2[2] = 0; ret = ath12k_wmi_send_init_country_cmd(ar, &arg); if (ret) ath12k_warn(ar->ab, "failed set INIT Country code: %d\n", ret); } wiphy_lock(wiphy); ath12k_mac_11d_scan_stop(ar); wiphy_unlock(wiphy); ar->regdom_set_by_user = true; } } int ath12k_reg_update_chan_list(struct ath12k *ar, bool wait) { struct ieee80211_supported_band **bands; struct ath12k_wmi_scan_chan_list_arg *arg; struct ieee80211_channel *channel; struct ieee80211_hw *hw = ath12k_ar_to_hw(ar); struct ath12k_wmi_channel_arg *ch; enum nl80211_band band; int num_channels = 0; int i, ret, left; if (wait && ar->state_11d == ATH12K_11D_RUNNING) { left = wait_for_completion_timeout(&ar->completed_11d_scan, ATH12K_SCAN_TIMEOUT_HZ); if (!left) { ath12k_dbg(ar->ab, ATH12K_DBG_REG, "failed to receive 11d scan complete: timed out\n"); ar->state_11d = ATH12K_11D_IDLE; } ath12k_dbg(ar->ab, ATH12K_DBG_REG, "reg 11d scan wait left time %d\n", left); } if (wait && (ar->scan.state == ATH12K_SCAN_STARTING || ar->scan.state == ATH12K_SCAN_RUNNING)) { left = wait_for_completion_timeout(&ar->scan.completed, ATH12K_SCAN_TIMEOUT_HZ); if (!left) ath12k_dbg(ar->ab, ATH12K_DBG_REG, "failed to receive hw scan complete: timed out\n"); ath12k_dbg(ar->ab, ATH12K_DBG_REG, "reg hw scan wait left time %d\n", left); } if (ar->ah->state == ATH12K_HW_STATE_RESTARTING) return 0; bands = hw->wiphy->bands; for (band = 0; band < NUM_NL80211_BANDS; band++) { if (!(ar->mac.sbands[band].channels && bands[band])) continue; for (i = 0; i < bands[band]->n_channels; i++) { if (bands[band]->channels[i].flags & IEEE80211_CHAN_DISABLED) continue; num_channels++; } } if (WARN_ON(!num_channels)) return -EINVAL; arg = kzalloc(struct_size(arg, channel, num_channels), GFP_KERNEL); if (!arg) return -ENOMEM; arg->pdev_id = ar->pdev->pdev_id; arg->nallchans = num_channels; ch = arg->channel; for (band = 0; band < NUM_NL80211_BANDS; band++) { if (!(ar->mac.sbands[band].channels && bands[band])) continue; for (i = 0; i < bands[band]->n_channels; i++) { channel = &bands[band]->channels[i]; if (channel->flags & IEEE80211_CHAN_DISABLED) continue; /* TODO: Set to true/false based on some condition? */ ch->allow_ht = true; ch->allow_vht = true; ch->allow_he = true; ch->dfs_set = !!(channel->flags & IEEE80211_CHAN_RADAR); ch->is_chan_passive = !!(channel->flags & IEEE80211_CHAN_NO_IR); ch->is_chan_passive |= ch->dfs_set; ch->mhz = channel->center_freq; ch->cfreq1 = channel->center_freq; ch->minpower = 0; ch->maxpower = channel->max_power * 2; ch->maxregpower = channel->max_reg_power * 2; ch->antennamax = channel->max_antenna_gain * 2; /* TODO: Use appropriate phymodes */ if (channel->band == NL80211_BAND_2GHZ) ch->phy_mode = MODE_11G; else ch->phy_mode = MODE_11A; if (channel->band == NL80211_BAND_6GHZ && cfg80211_channel_is_psc(channel)) ch->psc_channel = true; ath12k_dbg(ar->ab, ATH12K_DBG_WMI, "mac channel [%d/%d] freq %d maxpower %d regpower %d antenna %d mode %d\n", i, arg->nallchans, ch->mhz, ch->maxpower, ch->maxregpower, ch->antennamax, ch->phy_mode); ch++; /* TODO: use quarrter/half rate, cfreq12, dfs_cfreq2 * set_agile, reg_class_idx */ } } ret = ath12k_wmi_send_scan_chan_list_cmd(ar, arg); kfree(arg); return ret; } static void ath12k_copy_regd(struct ieee80211_regdomain *regd_orig, struct ieee80211_regdomain *regd_copy) { u8 i; /* The caller should have checked error conditions */ memcpy(regd_copy, regd_orig, sizeof(*regd_orig)); for (i = 0; i < regd_orig->n_reg_rules; i++) memcpy(®d_copy->reg_rules[i], ®d_orig->reg_rules[i], sizeof(struct ieee80211_reg_rule)); } int ath12k_regd_update(struct ath12k *ar, bool init) { struct ath12k_wmi_hal_reg_capabilities_ext_arg *reg_cap; u32 phy_id, freq_low, freq_high, supported_bands; struct ath12k_hw *ah = ath12k_ar_to_ah(ar); struct ieee80211_hw *hw = ah->hw; struct ieee80211_regdomain *regd, *regd_copy = NULL; int ret, regd_len, pdev_id; struct ath12k_base *ab; ab = ar->ab; supported_bands = ar->pdev->cap.supported_bands; reg_cap = &ab->hal_reg_cap[ar->pdev_idx]; /* Possible that due to reg change, current limits for supported * frequency changed. Update it. As a first step, reset the * previous values and then compute and set the new values. */ ar->freq_range.start_freq = 0; ar->freq_range.end_freq = 0; if (supported_bands & WMI_HOST_WLAN_2GHZ_CAP) { if (ab->hw_params->single_pdev_only) { phy_id = ar->pdev->cap.band[WMI_HOST_WLAN_2GHZ_CAP].phy_id; reg_cap = &ab->hal_reg_cap[phy_id]; } freq_low = max(reg_cap->low_2ghz_chan, ab->reg_freq_2ghz.start_freq); freq_high = min(reg_cap->high_2ghz_chan, ab->reg_freq_2ghz.end_freq); ath12k_mac_update_freq_range(ar, freq_low, freq_high); } if (supported_bands & WMI_HOST_WLAN_5GHZ_CAP && !ar->supports_6ghz) { if (ab->hw_params->single_pdev_only) { phy_id = ar->pdev->cap.band[WMI_HOST_WLAN_5GHZ_CAP].phy_id; reg_cap = &ab->hal_reg_cap[phy_id]; } freq_low = max(reg_cap->low_5ghz_chan, ab->reg_freq_5ghz.start_freq); freq_high = min(reg_cap->high_5ghz_chan, ab->reg_freq_5ghz.end_freq); ath12k_mac_update_freq_range(ar, freq_low, freq_high); } if (supported_bands & WMI_HOST_WLAN_5GHZ_CAP && ar->supports_6ghz) { freq_low = max(reg_cap->low_5ghz_chan, ab->reg_freq_6ghz.start_freq); freq_high = min(reg_cap->high_5ghz_chan, ab->reg_freq_6ghz.end_freq); ath12k_mac_update_freq_range(ar, freq_low, freq_high); } /* If one of the radios within ah has already updated the regd for * the wiphy, then avoid setting regd again */ if (ah->regd_updated) return 0; /* firmware provides reg rules which are similar for 2 GHz and 5 GHz * pdev but 6 GHz pdev has superset of all rules including rules for * all bands, we prefer 6 GHz pdev's rules to be used for setup of * the wiphy regd. * If 6 GHz pdev was part of the ath12k_hw, wait for the 6 GHz pdev, * else pick the first pdev which calls this function and use its * regd to update global hw regd. * The regd_updated flag set at the end will not allow any further * updates. */ if (ah->use_6ghz_regd && !ar->supports_6ghz) return 0; pdev_id = ar->pdev_idx; spin_lock_bh(&ab->base_lock); if (init) { /* Apply the regd received during init through * WMI_REG_CHAN_LIST_CC event. In case of failure to * receive the regd, initialize with a default world * regulatory. */ if (ab->default_regd[pdev_id]) { regd = ab->default_regd[pdev_id]; } else { ath12k_warn(ab, "failed to receive default regd during init\n"); regd = (struct ieee80211_regdomain *)&ath12k_world_regd; } } else { regd = ab->new_regd[pdev_id]; } if (!regd) { ret = -EINVAL; spin_unlock_bh(&ab->base_lock); goto err; } regd_len = sizeof(*regd) + (regd->n_reg_rules * sizeof(struct ieee80211_reg_rule)); regd_copy = kzalloc(regd_len, GFP_ATOMIC); if (regd_copy) ath12k_copy_regd(regd, regd_copy); spin_unlock_bh(&ab->base_lock); if (!regd_copy) { ret = -ENOMEM; goto err; } ret = regulatory_set_wiphy_regd(hw->wiphy, regd_copy); kfree(regd_copy); if (ret) goto err; if (ah->state != ATH12K_HW_STATE_ON) goto skip; ah->regd_updated = true; skip: return 0; err: ath12k_warn(ab, "failed to perform regd update : %d\n", ret); return ret; } static enum nl80211_dfs_regions ath12k_map_fw_dfs_region(enum ath12k_dfs_region dfs_region) { switch (dfs_region) { case ATH12K_DFS_REG_FCC: case ATH12K_DFS_REG_CN: return NL80211_DFS_FCC; case ATH12K_DFS_REG_ETSI: case ATH12K_DFS_REG_KR: return NL80211_DFS_ETSI; case ATH12K_DFS_REG_MKK: case ATH12K_DFS_REG_MKK_N: return NL80211_DFS_JP; default: return NL80211_DFS_UNSET; } } static u32 ath12k_map_fw_reg_flags(u16 reg_flags) { u32 flags = 0; if (reg_flags & REGULATORY_CHAN_NO_IR) flags = NL80211_RRF_NO_IR; if (reg_flags & REGULATORY_CHAN_RADAR) flags |= NL80211_RRF_DFS; if (reg_flags & REGULATORY_CHAN_NO_OFDM) flags |= NL80211_RRF_NO_OFDM; if (reg_flags & REGULATORY_CHAN_INDOOR_ONLY) flags |= NL80211_RRF_NO_OUTDOOR; if (reg_flags & REGULATORY_CHAN_NO_HT40) flags |= NL80211_RRF_NO_HT40; if (reg_flags & REGULATORY_CHAN_NO_80MHZ) flags |= NL80211_RRF_NO_80MHZ; if (reg_flags & REGULATORY_CHAN_NO_160MHZ) flags |= NL80211_RRF_NO_160MHZ; return flags; } static u32 ath12k_map_fw_phy_flags(u32 phy_flags) { u32 flags = 0; if (phy_flags & ATH12K_REG_PHY_BITMAP_NO11AX) flags |= NL80211_RRF_NO_HE; if (phy_flags & ATH12K_REG_PHY_BITMAP_NO11BE) flags |= NL80211_RRF_NO_EHT; return flags; } static const char * ath12k_reg_get_regdom_str(enum nl80211_dfs_regions dfs_region) { switch (dfs_region) { case NL80211_DFS_FCC: return "FCC"; case NL80211_DFS_ETSI: return "ETSI"; case NL80211_DFS_JP: return "JP"; default: return "UNSET"; } } static u16 ath12k_reg_adjust_bw(u16 start_freq, u16 end_freq, u16 max_bw) { u16 bw; bw = end_freq - start_freq; bw = min_t(u16, bw, max_bw); if (bw >= 80 && bw < 160) bw = 80; else if (bw >= 40 && bw < 80) bw = 40; else if (bw < 40) bw = 20; return bw; } static void ath12k_reg_update_rule(struct ieee80211_reg_rule *reg_rule, u32 start_freq, u32 end_freq, u32 bw, u32 ant_gain, u32 reg_pwr, s8 psd, u32 reg_flags) { reg_rule->freq_range.start_freq_khz = MHZ_TO_KHZ(start_freq); reg_rule->freq_range.end_freq_khz = MHZ_TO_KHZ(end_freq); reg_rule->freq_range.max_bandwidth_khz = MHZ_TO_KHZ(bw); reg_rule->power_rule.max_antenna_gain = DBI_TO_MBI(ant_gain); reg_rule->power_rule.max_eirp = DBM_TO_MBM(reg_pwr); reg_rule->psd = psd; reg_rule->flags = reg_flags; } static void ath12k_reg_update_weather_radar_band(struct ath12k_base *ab, struct ieee80211_regdomain *regd, struct ath12k_reg_rule *reg_rule, u8 *rule_idx, u32 flags, u16 max_bw) { u32 end_freq; u16 bw; u8 i; i = *rule_idx; bw = ath12k_reg_adjust_bw(reg_rule->start_freq, ETSI_WEATHER_RADAR_BAND_LOW, max_bw); ath12k_reg_update_rule(regd->reg_rules + i, reg_rule->start_freq, ETSI_WEATHER_RADAR_BAND_LOW, bw, reg_rule->ant_gain, reg_rule->reg_power, reg_rule->psd_eirp, flags); ath12k_dbg(ab, ATH12K_DBG_REG, "\t%d. (%d - %d @ %d) (%d, %d) (%d ms) (FLAGS %d)\n", i + 1, reg_rule->start_freq, ETSI_WEATHER_RADAR_BAND_LOW, bw, reg_rule->ant_gain, reg_rule->reg_power, regd->reg_rules[i].dfs_cac_ms, flags); if (reg_rule->end_freq > ETSI_WEATHER_RADAR_BAND_HIGH) end_freq = ETSI_WEATHER_RADAR_BAND_HIGH; else end_freq = reg_rule->end_freq; bw = ath12k_reg_adjust_bw(ETSI_WEATHER_RADAR_BAND_LOW, end_freq, max_bw); i++; ath12k_reg_update_rule(regd->reg_rules + i, ETSI_WEATHER_RADAR_BAND_LOW, end_freq, bw, reg_rule->ant_gain, reg_rule->reg_power, reg_rule->psd_eirp, flags); regd->reg_rules[i].dfs_cac_ms = ETSI_WEATHER_RADAR_BAND_CAC_TIMEOUT; ath12k_dbg(ab, ATH12K_DBG_REG, "\t%d. (%d - %d @ %d) (%d, %d) (%d ms) (FLAGS %d)\n", i + 1, ETSI_WEATHER_RADAR_BAND_LOW, end_freq, bw, reg_rule->ant_gain, reg_rule->reg_power, regd->reg_rules[i].dfs_cac_ms, flags); if (end_freq == reg_rule->end_freq) { regd->n_reg_rules--; *rule_idx = i; return; } bw = ath12k_reg_adjust_bw(ETSI_WEATHER_RADAR_BAND_HIGH, reg_rule->end_freq, max_bw); i++; ath12k_reg_update_rule(regd->reg_rules + i, ETSI_WEATHER_RADAR_BAND_HIGH, reg_rule->end_freq, bw, reg_rule->ant_gain, reg_rule->reg_power, reg_rule->psd_eirp, flags); ath12k_dbg(ab, ATH12K_DBG_REG, "\t%d. (%d - %d @ %d) (%d, %d) (%d ms) (FLAGS %d)\n", i + 1, ETSI_WEATHER_RADAR_BAND_HIGH, reg_rule->end_freq, bw, reg_rule->ant_gain, reg_rule->reg_power, regd->reg_rules[i].dfs_cac_ms, flags); *rule_idx = i; } static void ath12k_reg_update_freq_range(struct ath12k_reg_freq *reg_freq, struct ath12k_reg_rule *reg_rule) { if (reg_freq->start_freq > reg_rule->start_freq) reg_freq->start_freq = reg_rule->start_freq; if (reg_freq->end_freq < reg_rule->end_freq) reg_freq->end_freq = reg_rule->end_freq; } enum wmi_reg_6g_ap_type ath12k_reg_ap_pwr_convert(enum ieee80211_ap_reg_power power_type) { switch (power_type) { case IEEE80211_REG_LPI_AP: return WMI_REG_INDOOR_AP; case IEEE80211_REG_SP_AP: return WMI_REG_STD_POWER_AP; case IEEE80211_REG_VLP_AP: return WMI_REG_VLP_AP; default: return WMI_REG_MAX_AP_TYPE; } } struct ieee80211_regdomain * ath12k_reg_build_regd(struct ath12k_base *ab, struct ath12k_reg_info *reg_info, enum wmi_vdev_type vdev_type, enum ieee80211_ap_reg_power power_type) { struct ieee80211_regdomain *new_regd = NULL; struct ath12k_reg_rule *reg_rule, *reg_rule_6ghz; u32 flags, reg_6ghz_number, max_bw_6ghz; u8 i = 0, j = 0, k = 0; u8 num_rules; u16 max_bw; char alpha2[3]; num_rules = reg_info->num_5g_reg_rules + reg_info->num_2g_reg_rules; if (reg_info->is_ext_reg_event) { if (vdev_type == WMI_VDEV_TYPE_STA) { enum wmi_reg_6g_ap_type ap_type; ap_type = ath12k_reg_ap_pwr_convert(power_type); if (ap_type == WMI_REG_MAX_AP_TYPE) ap_type = WMI_REG_INDOOR_AP; reg_6ghz_number = reg_info->num_6g_reg_rules_cl [ap_type][WMI_REG_DEFAULT_CLIENT]; if (reg_6ghz_number == 0) { ap_type = WMI_REG_INDOOR_AP; reg_6ghz_number = reg_info->num_6g_reg_rules_cl [ap_type][WMI_REG_DEFAULT_CLIENT]; } reg_rule_6ghz = reg_info->reg_rules_6g_client_ptr [ap_type][WMI_REG_DEFAULT_CLIENT]; max_bw_6ghz = reg_info->max_bw_6g_client [ap_type][WMI_REG_DEFAULT_CLIENT]; } else { reg_6ghz_number = reg_info->num_6g_reg_rules_ap [WMI_REG_INDOOR_AP]; reg_rule_6ghz = reg_info->reg_rules_6g_ap_ptr[WMI_REG_INDOOR_AP]; max_bw_6ghz = reg_info->max_bw_6g_ap[WMI_REG_INDOOR_AP]; } num_rules += reg_6ghz_number; } if (!num_rules) goto ret; /* Add max additional rules to accommodate weather radar band */ if (reg_info->dfs_region == ATH12K_DFS_REG_ETSI) num_rules += 2; new_regd = kzalloc(sizeof(*new_regd) + (num_rules * sizeof(struct ieee80211_reg_rule)), GFP_ATOMIC); if (!new_regd) goto ret; memcpy(new_regd->alpha2, reg_info->alpha2, REG_ALPHA2_LEN + 1); memcpy(alpha2, reg_info->alpha2, REG_ALPHA2_LEN + 1); alpha2[2] = '\0'; new_regd->dfs_region = ath12k_map_fw_dfs_region(reg_info->dfs_region); ath12k_dbg(ab, ATH12K_DBG_REG, "\r\nCountry %s, CFG Regdomain %s FW Regdomain %d, num_reg_rules %d\n", alpha2, ath12k_reg_get_regdom_str(new_regd->dfs_region), reg_info->dfs_region, num_rules); /* Reset start and end frequency for each band */ ab->reg_freq_5ghz.start_freq = INT_MAX; ab->reg_freq_5ghz.end_freq = 0; ab->reg_freq_2ghz.start_freq = INT_MAX; ab->reg_freq_2ghz.end_freq = 0; ab->reg_freq_6ghz.start_freq = INT_MAX; ab->reg_freq_6ghz.end_freq = 0; /* Update reg_rules[] below. Firmware is expected to * send these rules in order(2G rules first and then 5G) */ for (; i < num_rules; i++) { if (reg_info->num_2g_reg_rules && (i < reg_info->num_2g_reg_rules)) { reg_rule = reg_info->reg_rules_2g_ptr + i; max_bw = min_t(u16, reg_rule->max_bw, reg_info->max_bw_2g); flags = 0; ath12k_reg_update_freq_range(&ab->reg_freq_2ghz, reg_rule); } else if (reg_info->num_5g_reg_rules && (j < reg_info->num_5g_reg_rules)) { reg_rule = reg_info->reg_rules_5g_ptr + j++; max_bw = min_t(u16, reg_rule->max_bw, reg_info->max_bw_5g); /* FW doesn't pass NL80211_RRF_AUTO_BW flag for * BW Auto correction, we can enable this by default * for all 5G rules here. The regulatory core performs * BW correction if required and applies flags as * per other BW rule flags we pass from here */ flags = NL80211_RRF_AUTO_BW; ath12k_reg_update_freq_range(&ab->reg_freq_5ghz, reg_rule); } else if (reg_info->is_ext_reg_event && reg_6ghz_number && (k < reg_6ghz_number)) { reg_rule = reg_rule_6ghz + k++; max_bw = min_t(u16, reg_rule->max_bw, max_bw_6ghz); flags = NL80211_RRF_AUTO_BW; if (reg_rule->psd_flag) flags |= NL80211_RRF_PSD; ath12k_reg_update_freq_range(&ab->reg_freq_6ghz, reg_rule); } else { break; } flags |= ath12k_map_fw_reg_flags(reg_rule->flags); flags |= ath12k_map_fw_phy_flags(reg_info->phybitmap); ath12k_reg_update_rule(new_regd->reg_rules + i, reg_rule->start_freq, reg_rule->end_freq, max_bw, reg_rule->ant_gain, reg_rule->reg_power, reg_rule->psd_eirp, flags); /* Update dfs cac timeout if the dfs domain is ETSI and the * new rule covers weather radar band. * Default value of '0' corresponds to 60s timeout, so no * need to update that for other rules. */ if (flags & NL80211_RRF_DFS && reg_info->dfs_region == ATH12K_DFS_REG_ETSI && (reg_rule->end_freq > ETSI_WEATHER_RADAR_BAND_LOW && reg_rule->start_freq < ETSI_WEATHER_RADAR_BAND_HIGH)){ ath12k_reg_update_weather_radar_band(ab, new_regd, reg_rule, &i, flags, max_bw); continue; } if (reg_info->is_ext_reg_event) { ath12k_dbg(ab, ATH12K_DBG_REG, "\t%d. (%d - %d @ %d) (%d, %d) (%d ms) (FLAGS %d) (%d, %d)\n", i + 1, reg_rule->start_freq, reg_rule->end_freq, max_bw, reg_rule->ant_gain, reg_rule->reg_power, new_regd->reg_rules[i].dfs_cac_ms, flags, reg_rule->psd_flag, reg_rule->psd_eirp); } else { ath12k_dbg(ab, ATH12K_DBG_REG, "\t%d. (%d - %d @ %d) (%d, %d) (%d ms) (FLAGS %d)\n", i + 1, reg_rule->start_freq, reg_rule->end_freq, max_bw, reg_rule->ant_gain, reg_rule->reg_power, new_regd->reg_rules[i].dfs_cac_ms, flags); } } new_regd->n_reg_rules = i; ret: return new_regd; } void ath12k_regd_update_work(struct work_struct *work) { struct ath12k *ar = container_of(work, struct ath12k, regd_update_work); int ret; ret = ath12k_regd_update(ar, false); if (ret) { /* Firmware has already moved to the new regd. We need * to maintain channel consistency across FW, Host driver * and userspace. Hence as a fallback mechanism we can set * the prev or default country code to the firmware. */ /* TODO: Implement Fallback Mechanism */ } } void ath12k_reg_reset_reg_info(struct ath12k_reg_info *reg_info) { u8 i, j; if (!reg_info) return; kfree(reg_info->reg_rules_2g_ptr); kfree(reg_info->reg_rules_5g_ptr); if (reg_info->is_ext_reg_event) { for (i = 0; i < WMI_REG_CURRENT_MAX_AP_TYPE; i++) { kfree(reg_info->reg_rules_6g_ap_ptr[i]); for (j = 0; j < WMI_REG_MAX_CLIENT_TYPE; j++) kfree(reg_info->reg_rules_6g_client_ptr[i][j]); } } } enum ath12k_reg_status ath12k_reg_validate_reg_info(struct ath12k_base *ab, struct ath12k_reg_info *reg_info) { int pdev_idx = reg_info->phy_id; if (reg_info->status_code != REG_SET_CC_STATUS_PASS) { /* In case of failure to set the requested country, * firmware retains the current regd. We print a failure info * and return from here. */ ath12k_warn(ab, "Failed to set the requested Country regulatory setting\n"); return ATH12K_REG_STATUS_DROP; } if (pdev_idx >= ab->num_radios) { /* Process the event for phy0 only if single_pdev_only * is true. If pdev_idx is valid but not 0, discard the * event. Otherwise, it goes to fallback. */ if (ab->hw_params->single_pdev_only && pdev_idx < ab->hw_params->num_rxdma_per_pdev) return ATH12K_REG_STATUS_DROP; else return ATH12K_REG_STATUS_FALLBACK; } /* Avoid multiple overwrites to default regd, during core * stop-start after mac registration. */ if (ab->default_regd[pdev_idx] && !ab->new_regd[pdev_idx] && !memcmp(ab->default_regd[pdev_idx]->alpha2, reg_info->alpha2, 2)) return ATH12K_REG_STATUS_DROP; return ATH12K_REG_STATUS_VALID; } int ath12k_reg_handle_chan_list(struct ath12k_base *ab, struct ath12k_reg_info *reg_info, enum wmi_vdev_type vdev_type, enum ieee80211_ap_reg_power power_type) { struct ieee80211_regdomain *regd = NULL; int pdev_idx = reg_info->phy_id; struct ath12k *ar; regd = ath12k_reg_build_regd(ab, reg_info, vdev_type, power_type); if (!regd) return -EINVAL; spin_lock_bh(&ab->base_lock); if (test_bit(ATH12K_FLAG_REGISTERED, &ab->dev_flags)) { /* Once mac is registered, ar is valid and all CC events from * firmware is considered to be received due to user requests * currently. * Free previously built regd before assigning the newly * generated regd to ar. NULL pointer handling will be * taken care by kfree itself. */ ar = ab->pdevs[pdev_idx].ar; kfree(ab->new_regd[pdev_idx]); ab->new_regd[pdev_idx] = regd; queue_work(ab->workqueue, &ar->regd_update_work); } else { /* Multiple events for the same *ar is not expected. But we * can still clear any previously stored default_regd if we * are receiving this event for the same radio by mistake. * NULL pointer handling will be taken care by kfree itself. */ kfree(ab->default_regd[pdev_idx]); /* This regd would be applied during mac registration */ ab->default_regd[pdev_idx] = regd; } ab->dfs_region = reg_info->dfs_region; spin_unlock_bh(&ab->base_lock); return 0; } void ath12k_reg_init(struct ieee80211_hw *hw) { hw->wiphy->regulatory_flags = REGULATORY_WIPHY_SELF_MANAGED; hw->wiphy->flags |= WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER; hw->wiphy->reg_notifier = ath12k_reg_notifier; } void ath12k_reg_free(struct ath12k_base *ab) { int i; mutex_lock(&ab->core_lock); for (i = 0; i < MAX_RADIOS; i++) { ath12k_reg_reset_reg_info(ab->reg_info[i]); kfree(ab->reg_info[i]); ab->reg_info[i] = NULL; } for (i = 0; i < ab->hw_params->max_radios; i++) { kfree(ab->default_regd[i]); kfree(ab->new_regd[i]); ab->default_regd[i] = NULL; ab->new_regd[i] = NULL; } mutex_unlock(&ab->core_lock); }