// SPDX-License-Identifier: GPL-2.0 /* * NVMe Over Fabrics Target File I/O commands implementation. * Copyright (c) 2017-2018 Western Digital Corporation or its * affiliates. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include "nvmet.h" #define NVMET_MAX_MPOOL_BVEC 16 #define NVMET_MIN_MPOOL_OBJ 16 void nvmet_file_ns_disable(struct nvmet_ns *ns) { if (ns->file) { if (ns->buffered_io) flush_workqueue(buffered_io_wq); mempool_destroy(ns->bvec_pool); ns->bvec_pool = NULL; kmem_cache_destroy(ns->bvec_cache); ns->bvec_cache = NULL; fput(ns->file); ns->file = NULL; } } int nvmet_file_ns_enable(struct nvmet_ns *ns) { int flags = O_RDWR | O_LARGEFILE; struct kstat stat; int ret; if (!ns->buffered_io) flags |= O_DIRECT; ns->file = filp_open(ns->device_path, flags, 0); if (IS_ERR(ns->file)) { pr_err("failed to open file %s: (%ld)\n", ns->device_path, PTR_ERR(ns->file)); return PTR_ERR(ns->file); } ret = vfs_getattr(&ns->file->f_path, &stat, STATX_SIZE, AT_STATX_FORCE_SYNC); if (ret) goto err; ns->size = stat.size; /* * i_blkbits can be greater than the universally accepted upper bound, * so make sure we export a sane namespace lba_shift. */ ns->blksize_shift = min_t(u8, file_inode(ns->file)->i_blkbits, 12); ns->bvec_cache = kmem_cache_create("nvmet-bvec", NVMET_MAX_MPOOL_BVEC * sizeof(struct bio_vec), 0, SLAB_HWCACHE_ALIGN, NULL); if (!ns->bvec_cache) { ret = -ENOMEM; goto err; } ns->bvec_pool = mempool_create(NVMET_MIN_MPOOL_OBJ, mempool_alloc_slab, mempool_free_slab, ns->bvec_cache); if (!ns->bvec_pool) { ret = -ENOMEM; goto err; } return ret; err: ns->size = 0; ns->blksize_shift = 0; nvmet_file_ns_disable(ns); return ret; } static void nvmet_file_init_bvec(struct bio_vec *bv, struct scatterlist *sg) { bv->bv_page = sg_page(sg); bv->bv_offset = sg->offset; bv->bv_len = sg->length; } static ssize_t nvmet_file_submit_bvec(struct nvmet_req *req, loff_t pos, unsigned long nr_segs, size_t count, int ki_flags) { struct kiocb *iocb = &req->f.iocb; ssize_t (*call_iter)(struct kiocb *iocb, struct iov_iter *iter); struct iov_iter iter; int rw; if (req->cmd->rw.opcode == nvme_cmd_write) { if (req->cmd->rw.control & cpu_to_le16(NVME_RW_FUA)) ki_flags |= IOCB_DSYNC; call_iter = req->ns->file->f_op->write_iter; rw = WRITE; } else { call_iter = req->ns->file->f_op->read_iter; rw = READ; } iov_iter_bvec(&iter, rw, req->f.bvec, nr_segs, count); iocb->ki_pos = pos; iocb->ki_filp = req->ns->file; iocb->ki_flags = ki_flags | iocb_flags(req->ns->file); return call_iter(iocb, &iter); } static void nvmet_file_io_done(struct kiocb *iocb, long ret, long ret2) { struct nvmet_req *req = container_of(iocb, struct nvmet_req, f.iocb); u16 status = NVME_SC_SUCCESS; if (req->f.bvec != req->inline_bvec) { if (likely(req->f.mpool_alloc == false)) kfree(req->f.bvec); else mempool_free(req->f.bvec, req->ns->bvec_pool); } if (unlikely(ret != req->transfer_len)) status = errno_to_nvme_status(req, ret); nvmet_req_complete(req, status); } static bool nvmet_file_execute_io(struct nvmet_req *req, int ki_flags) { ssize_t nr_bvec = req->sg_cnt; unsigned long bv_cnt = 0; bool is_sync = false; size_t len = 0, total_len = 0; ssize_t ret = 0; loff_t pos; int i; struct scatterlist *sg; if (req->f.mpool_alloc && nr_bvec > NVMET_MAX_MPOOL_BVEC) is_sync = true; pos = le64_to_cpu(req->cmd->rw.slba) << req->ns->blksize_shift; if (unlikely(pos + req->transfer_len > req->ns->size)) { nvmet_req_complete(req, errno_to_nvme_status(req, -ENOSPC)); return true; } memset(&req->f.iocb, 0, sizeof(struct kiocb)); for_each_sg(req->sg, sg, req->sg_cnt, i) { nvmet_file_init_bvec(&req->f.bvec[bv_cnt], sg); len += req->f.bvec[bv_cnt].bv_len; total_len += req->f.bvec[bv_cnt].bv_len; bv_cnt++; WARN_ON_ONCE((nr_bvec - 1) < 0); if (unlikely(is_sync) && (nr_bvec - 1 == 0 || bv_cnt == NVMET_MAX_MPOOL_BVEC)) { ret = nvmet_file_submit_bvec(req, pos, bv_cnt, len, 0); if (ret < 0) goto complete; pos += len; bv_cnt = 0; len = 0; } nr_bvec--; } if (WARN_ON_ONCE(total_len != req->transfer_len)) { ret = -EIO; goto complete; } if (unlikely(is_sync)) { ret = total_len; goto complete; } /* * A NULL ki_complete ask for synchronous execution, which we want * for the IOCB_NOWAIT case. */ if (!(ki_flags & IOCB_NOWAIT)) req->f.iocb.ki_complete = nvmet_file_io_done; ret = nvmet_file_submit_bvec(req, pos, bv_cnt, total_len, ki_flags); switch (ret) { case -EIOCBQUEUED: return true; case -EAGAIN: if (WARN_ON_ONCE(!(ki_flags & IOCB_NOWAIT))) goto complete; return false; case -EOPNOTSUPP: /* * For file systems returning error -EOPNOTSUPP, handle * IOCB_NOWAIT error case separately and retry without * IOCB_NOWAIT. */ if ((ki_flags & IOCB_NOWAIT)) return false; break; } complete: nvmet_file_io_done(&req->f.iocb, ret, 0); return true; } static void nvmet_file_buffered_io_work(struct work_struct *w) { struct nvmet_req *req = container_of(w, struct nvmet_req, f.work); nvmet_file_execute_io(req, 0); } static void nvmet_file_submit_buffered_io(struct nvmet_req *req) { INIT_WORK(&req->f.work, nvmet_file_buffered_io_work); queue_work(buffered_io_wq, &req->f.work); } static void nvmet_file_execute_rw(struct nvmet_req *req) { ssize_t nr_bvec = req->sg_cnt; if (!nvmet_check_data_len(req, nvmet_rw_len(req))) return; if (!req->sg_cnt || !nr_bvec) { nvmet_req_complete(req, 0); return; } if (nr_bvec > NVMET_MAX_INLINE_BIOVEC) req->f.bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec), GFP_KERNEL); else req->f.bvec = req->inline_bvec; if (unlikely(!req->f.bvec)) { /* fallback under memory pressure */ req->f.bvec = mempool_alloc(req->ns->bvec_pool, GFP_KERNEL); req->f.mpool_alloc = true; } else req->f.mpool_alloc = false; if (req->ns->buffered_io) { if (likely(!req->f.mpool_alloc) && nvmet_file_execute_io(req, IOCB_NOWAIT)) return; nvmet_file_submit_buffered_io(req); } else nvmet_file_execute_io(req, 0); } u16 nvmet_file_flush(struct nvmet_req *req) { return errno_to_nvme_status(req, vfs_fsync(req->ns->file, 1)); } static void nvmet_file_flush_work(struct work_struct *w) { struct nvmet_req *req = container_of(w, struct nvmet_req, f.work); nvmet_req_complete(req, nvmet_file_flush(req)); } static void nvmet_file_execute_flush(struct nvmet_req *req) { if (!nvmet_check_data_len(req, 0)) return; INIT_WORK(&req->f.work, nvmet_file_flush_work); schedule_work(&req->f.work); } static void nvmet_file_execute_discard(struct nvmet_req *req) { int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE; struct nvme_dsm_range range; loff_t offset, len; u16 status = 0; int ret; int i; for (i = 0; i <= le32_to_cpu(req->cmd->dsm.nr); i++) { status = nvmet_copy_from_sgl(req, i * sizeof(range), &range, sizeof(range)); if (status) break; offset = le64_to_cpu(range.slba) << req->ns->blksize_shift; len = le32_to_cpu(range.nlb); len <<= req->ns->blksize_shift; if (offset + len > req->ns->size) { req->error_slba = le64_to_cpu(range.slba); status = errno_to_nvme_status(req, -ENOSPC); break; } ret = vfs_fallocate(req->ns->file, mode, offset, len); if (ret && ret != -EOPNOTSUPP) { req->error_slba = le64_to_cpu(range.slba); status = errno_to_nvme_status(req, ret); break; } } nvmet_req_complete(req, status); } static void nvmet_file_dsm_work(struct work_struct *w) { struct nvmet_req *req = container_of(w, struct nvmet_req, f.work); switch (le32_to_cpu(req->cmd->dsm.attributes)) { case NVME_DSMGMT_AD: nvmet_file_execute_discard(req); return; case NVME_DSMGMT_IDR: case NVME_DSMGMT_IDW: default: /* Not supported yet */ nvmet_req_complete(req, 0); return; } } static void nvmet_file_execute_dsm(struct nvmet_req *req) { if (!nvmet_check_data_len_lte(req, nvmet_dsm_len(req))) return; INIT_WORK(&req->f.work, nvmet_file_dsm_work); schedule_work(&req->f.work); } static void nvmet_file_write_zeroes_work(struct work_struct *w) { struct nvmet_req *req = container_of(w, struct nvmet_req, f.work); struct nvme_write_zeroes_cmd *write_zeroes = &req->cmd->write_zeroes; int mode = FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE; loff_t offset; loff_t len; int ret; offset = le64_to_cpu(write_zeroes->slba) << req->ns->blksize_shift; len = (((sector_t)le16_to_cpu(write_zeroes->length) + 1) << req->ns->blksize_shift); if (unlikely(offset + len > req->ns->size)) { nvmet_req_complete(req, errno_to_nvme_status(req, -ENOSPC)); return; } ret = vfs_fallocate(req->ns->file, mode, offset, len); nvmet_req_complete(req, ret < 0 ? errno_to_nvme_status(req, ret) : 0); } static void nvmet_file_execute_write_zeroes(struct nvmet_req *req) { if (!nvmet_check_data_len(req, 0)) return; INIT_WORK(&req->f.work, nvmet_file_write_zeroes_work); schedule_work(&req->f.work); } u16 nvmet_file_parse_io_cmd(struct nvmet_req *req) { struct nvme_command *cmd = req->cmd; switch (cmd->common.opcode) { case nvme_cmd_read: case nvme_cmd_write: req->execute = nvmet_file_execute_rw; return 0; case nvme_cmd_flush: req->execute = nvmet_file_execute_flush; return 0; case nvme_cmd_dsm: req->execute = nvmet_file_execute_dsm; return 0; case nvme_cmd_write_zeroes: req->execute = nvmet_file_execute_write_zeroes; return 0; default: pr_err("unhandled cmd for file ns %d on qid %d\n", cmd->common.opcode, req->sq->qid); req->error_loc = offsetof(struct nvme_common_command, opcode); return NVME_SC_INVALID_OPCODE | NVME_SC_DNR; } }