/* * PCIe driver for Marvell Armada 370 and Armada XP SoCs * * Author: Thomas Petazzoni * * This file is licensed under the terms of the GNU General Public * License version 2. This program is licensed "as is" without any * warranty of any kind, whether express or implied. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * PCIe unit register offsets. */ #define PCIE_DEV_ID_OFF 0x0000 #define PCIE_CMD_OFF 0x0004 #define PCIE_DEV_REV_OFF 0x0008 #define PCIE_BAR_LO_OFF(n) (0x0010 + ((n) << 3)) #define PCIE_BAR_HI_OFF(n) (0x0014 + ((n) << 3)) #define PCIE_CAP_PCIEXP 0x0060 #define PCIE_HEADER_LOG_4_OFF 0x0128 #define PCIE_BAR_CTRL_OFF(n) (0x1804 + (((n) - 1) * 4)) #define PCIE_WIN04_CTRL_OFF(n) (0x1820 + ((n) << 4)) #define PCIE_WIN04_BASE_OFF(n) (0x1824 + ((n) << 4)) #define PCIE_WIN04_REMAP_OFF(n) (0x182c + ((n) << 4)) #define PCIE_WIN5_CTRL_OFF 0x1880 #define PCIE_WIN5_BASE_OFF 0x1884 #define PCIE_WIN5_REMAP_OFF 0x188c #define PCIE_CONF_ADDR_OFF 0x18f8 #define PCIE_CONF_ADDR_EN 0x80000000 #define PCIE_CONF_REG(r) ((((r) & 0xf00) << 16) | ((r) & 0xfc)) #define PCIE_CONF_BUS(b) (((b) & 0xff) << 16) #define PCIE_CONF_DEV(d) (((d) & 0x1f) << 11) #define PCIE_CONF_FUNC(f) (((f) & 0x7) << 8) #define PCIE_CONF_ADDR(bus, devfn, where) \ (PCIE_CONF_BUS(bus) | PCIE_CONF_DEV(PCI_SLOT(devfn)) | \ PCIE_CONF_FUNC(PCI_FUNC(devfn)) | PCIE_CONF_REG(where) | \ PCIE_CONF_ADDR_EN) #define PCIE_CONF_DATA_OFF 0x18fc #define PCIE_MASK_OFF 0x1910 #define PCIE_MASK_PM_PME BIT(28) #define PCIE_MASK_ENABLE_INTS 0x0f000000 #define PCIE_MASK_ERR_COR BIT(18) #define PCIE_MASK_ERR_NONFATAL BIT(17) #define PCIE_MASK_ERR_FATAL BIT(16) #define PCIE_MASK_FERR_DET BIT(10) #define PCIE_MASK_NFERR_DET BIT(9) #define PCIE_MASK_CORERR_DET BIT(8) #define PCIE_CTRL_OFF 0x1a00 #define PCIE_CTRL_X1_MODE 0x0001 #define PCIE_STAT_OFF 0x1a04 #define PCIE_STAT_BUS 0xff00 #define PCIE_STAT_DEV 0x1f0000 #define PCIE_STAT_LINK_DOWN BIT(0) #define PCIE_RC_RTSTA 0x1a14 #define PCIE_DEBUG_CTRL 0x1a60 #define PCIE_DEBUG_SOFT_RESET BIT(20) enum { PCISWCAP = PCI_BRIDGE_CONTROL + 2, PCISWCAP_EXP_LIST_ID = PCISWCAP + PCI_CAP_LIST_ID, PCISWCAP_EXP_DEVCAP = PCISWCAP + PCI_EXP_DEVCAP, PCISWCAP_EXP_DEVCTL = PCISWCAP + PCI_EXP_DEVCTL, PCISWCAP_EXP_LNKCAP = PCISWCAP + PCI_EXP_LNKCAP, PCISWCAP_EXP_LNKCTL = PCISWCAP + PCI_EXP_LNKCTL, PCISWCAP_EXP_SLTCAP = PCISWCAP + PCI_EXP_SLTCAP, PCISWCAP_EXP_SLTCTL = PCISWCAP + PCI_EXP_SLTCTL, PCISWCAP_EXP_RTCTL = PCISWCAP + PCI_EXP_RTCTL, PCISWCAP_EXP_RTSTA = PCISWCAP + PCI_EXP_RTSTA, PCISWCAP_EXP_DEVCAP2 = PCISWCAP + PCI_EXP_DEVCAP2, PCISWCAP_EXP_DEVCTL2 = PCISWCAP + PCI_EXP_DEVCTL2, PCISWCAP_EXP_LNKCAP2 = PCISWCAP + PCI_EXP_LNKCAP2, PCISWCAP_EXP_LNKCTL2 = PCISWCAP + PCI_EXP_LNKCTL2, PCISWCAP_EXP_SLTCAP2 = PCISWCAP + PCI_EXP_SLTCAP2, PCISWCAP_EXP_SLTCTL2 = PCISWCAP + PCI_EXP_SLTCTL2, }; /* PCI configuration space of a PCI-to-PCI bridge */ struct mvebu_sw_pci_bridge { u16 vendor; u16 device; u16 command; u16 status; u16 class; u8 interface; u8 revision; u8 bist; u8 header_type; u8 latency_timer; u8 cache_line_size; u32 bar[2]; u8 primary_bus; u8 secondary_bus; u8 subordinate_bus; u8 secondary_latency_timer; u8 iobase; u8 iolimit; u16 secondary_status; u16 membase; u16 memlimit; u16 iobaseupper; u16 iolimitupper; u32 romaddr; u8 intline; u8 intpin; u16 bridgectrl; /* PCI express capability */ u32 pcie_sltcap; u16 pcie_devctl; u16 pcie_rtctl; }; struct mvebu_pcie_port; /* Structure representing all PCIe interfaces */ struct mvebu_pcie { struct platform_device *pdev; struct mvebu_pcie_port *ports; struct msi_controller *msi; struct resource io; struct resource realio; struct resource mem; struct resource busn; int nports; }; struct mvebu_pcie_window { phys_addr_t base; phys_addr_t remap; size_t size; }; /* Structure representing one PCIe interface */ struct mvebu_pcie_port { char *name; void __iomem *base; u32 port; u32 lane; int devfn; unsigned int mem_target; unsigned int mem_attr; unsigned int io_target; unsigned int io_attr; struct clk *clk; struct gpio_desc *reset_gpio; char *reset_name; struct mvebu_sw_pci_bridge bridge; struct device_node *dn; struct mvebu_pcie *pcie; struct mvebu_pcie_window memwin; struct mvebu_pcie_window iowin; u32 saved_pcie_stat; }; static inline void mvebu_writel(struct mvebu_pcie_port *port, u32 val, u32 reg) { writel(val, port->base + reg); } static inline u32 mvebu_readl(struct mvebu_pcie_port *port, u32 reg) { return readl(port->base + reg); } static inline bool mvebu_has_ioport(struct mvebu_pcie_port *port) { return port->io_target != -1 && port->io_attr != -1; } static bool mvebu_pcie_link_up(struct mvebu_pcie_port *port) { return !(mvebu_readl(port, PCIE_STAT_OFF) & PCIE_STAT_LINK_DOWN); } static void mvebu_pcie_set_local_bus_nr(struct mvebu_pcie_port *port, int nr) { u32 stat; stat = mvebu_readl(port, PCIE_STAT_OFF); stat &= ~PCIE_STAT_BUS; stat |= nr << 8; mvebu_writel(port, stat, PCIE_STAT_OFF); } static void mvebu_pcie_set_local_dev_nr(struct mvebu_pcie_port *port, int nr) { u32 stat; stat = mvebu_readl(port, PCIE_STAT_OFF); stat &= ~PCIE_STAT_DEV; stat |= nr << 16; mvebu_writel(port, stat, PCIE_STAT_OFF); } /* * Setup PCIE BARs and Address Decode Wins: * BAR[0,2] -> disabled, BAR[1] -> covers all DRAM banks * WIN[0-3] -> DRAM bank[0-3] */ static void mvebu_pcie_setup_wins(struct mvebu_pcie_port *port) { const struct mbus_dram_target_info *dram; u32 size; int i; dram = mv_mbus_dram_info(); /* First, disable and clear BARs and windows. */ for (i = 1; i < 3; i++) { mvebu_writel(port, 0, PCIE_BAR_CTRL_OFF(i)); mvebu_writel(port, 0, PCIE_BAR_LO_OFF(i)); mvebu_writel(port, 0, PCIE_BAR_HI_OFF(i)); } for (i = 0; i < 5; i++) { mvebu_writel(port, 0, PCIE_WIN04_CTRL_OFF(i)); mvebu_writel(port, 0, PCIE_WIN04_BASE_OFF(i)); mvebu_writel(port, 0, PCIE_WIN04_REMAP_OFF(i)); } mvebu_writel(port, 0, PCIE_WIN5_CTRL_OFF); mvebu_writel(port, 0, PCIE_WIN5_BASE_OFF); mvebu_writel(port, 0, PCIE_WIN5_REMAP_OFF); /* Setup windows for DDR banks. Count total DDR size on the fly. */ size = 0; for (i = 0; i < dram->num_cs; i++) { const struct mbus_dram_window *cs = dram->cs + i; mvebu_writel(port, cs->base & 0xffff0000, PCIE_WIN04_BASE_OFF(i)); mvebu_writel(port, 0, PCIE_WIN04_REMAP_OFF(i)); mvebu_writel(port, ((cs->size - 1) & 0xffff0000) | (cs->mbus_attr << 8) | (dram->mbus_dram_target_id << 4) | 1, PCIE_WIN04_CTRL_OFF(i)); size += cs->size; } /* Round up 'size' to the nearest power of two. */ if ((size & (size - 1)) != 0) size = 1 << fls(size); /* Setup BAR[1] to all DRAM banks. */ mvebu_writel(port, dram->cs[0].base, PCIE_BAR_LO_OFF(1)); mvebu_writel(port, 0, PCIE_BAR_HI_OFF(1)); mvebu_writel(port, ((size - 1) & 0xffff0000) | 1, PCIE_BAR_CTRL_OFF(1)); } static void mvebu_pcie_setup_hw(struct mvebu_pcie_port *port) { u32 cmd, mask; /* Point PCIe unit MBUS decode windows to DRAM space. */ mvebu_pcie_setup_wins(port); /* Master + slave enable. */ cmd = mvebu_readl(port, PCIE_CMD_OFF); cmd |= PCI_COMMAND_IO; cmd |= PCI_COMMAND_MEMORY; cmd |= PCI_COMMAND_MASTER; mvebu_writel(port, cmd, PCIE_CMD_OFF); /* Enable interrupt lines A-D. */ mask = mvebu_readl(port, PCIE_MASK_OFF); mask |= PCIE_MASK_ENABLE_INTS; mvebu_writel(port, mask, PCIE_MASK_OFF); } static int mvebu_pcie_hw_rd_conf(struct mvebu_pcie_port *port, struct pci_bus *bus, u32 devfn, int where, int size, u32 *val) { void __iomem *conf_data = port->base + PCIE_CONF_DATA_OFF; mvebu_writel(port, PCIE_CONF_ADDR(bus->number, devfn, where), PCIE_CONF_ADDR_OFF); switch (size) { case 1: *val = readb_relaxed(conf_data + (where & 3)); break; case 2: *val = readw_relaxed(conf_data + (where & 2)); break; case 4: *val = readl_relaxed(conf_data); break; } return PCIBIOS_SUCCESSFUL; } static int mvebu_pcie_hw_wr_conf(struct mvebu_pcie_port *port, struct pci_bus *bus, u32 devfn, int where, int size, u32 val) { void __iomem *conf_data = port->base + PCIE_CONF_DATA_OFF; mvebu_writel(port, PCIE_CONF_ADDR(bus->number, devfn, where), PCIE_CONF_ADDR_OFF); switch (size) { case 1: writeb(val, conf_data + (where & 3)); break; case 2: writew(val, conf_data + (where & 2)); break; case 4: writel(val, conf_data); break; default: return PCIBIOS_BAD_REGISTER_NUMBER; } return PCIBIOS_SUCCESSFUL; } /* * Remove windows, starting from the largest ones to the smallest * ones. */ static void mvebu_pcie_del_windows(struct mvebu_pcie_port *port, phys_addr_t base, size_t size) { while (size) { size_t sz = 1 << (fls(size) - 1); mvebu_mbus_del_window(base, sz); base += sz; size -= sz; } } /* * MBus windows can only have a power of two size, but PCI BARs do not * have this constraint. Therefore, we have to split the PCI BAR into * areas each having a power of two size. We start from the largest * one (i.e highest order bit set in the size). */ static void mvebu_pcie_add_windows(struct mvebu_pcie_port *port, unsigned int target, unsigned int attribute, phys_addr_t base, size_t size, phys_addr_t remap) { size_t size_mapped = 0; while (size) { size_t sz = 1 << (fls(size) - 1); int ret; ret = mvebu_mbus_add_window_remap_by_id(target, attribute, base, sz, remap); if (ret) { phys_addr_t end = base + sz - 1; dev_err(&port->pcie->pdev->dev, "Could not create MBus window at [mem %pa-%pa]: %d\n", &base, &end, ret); mvebu_pcie_del_windows(port, base - size_mapped, size_mapped); return; } size -= sz; size_mapped += sz; base += sz; if (remap != MVEBU_MBUS_NO_REMAP) remap += sz; } } static void mvebu_pcie_set_window(struct mvebu_pcie_port *port, unsigned int target, unsigned int attribute, const struct mvebu_pcie_window *desired, struct mvebu_pcie_window *cur) { if (desired->base == cur->base && desired->remap == cur->remap && desired->size == cur->size) return; if (cur->size != 0) { mvebu_pcie_del_windows(port, cur->base, cur->size); cur->size = 0; cur->base = 0; /* * If something tries to change the window while it is enabled * the change will not be done atomically. That would be * difficult to do in the general case. */ } if (desired->size == 0) return; mvebu_pcie_add_windows(port, target, attribute, desired->base, desired->size, desired->remap); *cur = *desired; } static void mvebu_pcie_handle_iobase_change(struct mvebu_pcie_port *port) { struct mvebu_pcie_window desired = {}; /* Are the new iobase/iolimit values invalid? */ if (port->bridge.iolimit < port->bridge.iobase || port->bridge.iolimitupper < port->bridge.iobaseupper || !(port->bridge.command & PCI_COMMAND_IO)) { mvebu_pcie_set_window(port, port->io_target, port->io_attr, &desired, &port->iowin); return; } if (!mvebu_has_ioport(port)) { dev_WARN(&port->pcie->pdev->dev, "Attempt to set IO when IO is disabled\n"); return; } /* * We read the PCI-to-PCI bridge emulated registers, and * calculate the base address and size of the address decoding * window to setup, according to the PCI-to-PCI bridge * specifications. iobase is the bus address, port->iowin_base * is the CPU address. */ desired.remap = ((port->bridge.iobase & 0xF0) << 8) | (port->bridge.iobaseupper << 16); desired.base = port->pcie->io.start + desired.remap; desired.size = ((0xFFF | ((port->bridge.iolimit & 0xF0) << 8) | (port->bridge.iolimitupper << 16)) - desired.remap) + 1; mvebu_pcie_set_window(port, port->io_target, port->io_attr, &desired, &port->iowin); } static void mvebu_pcie_handle_membase_change(struct mvebu_pcie_port *port) { struct mvebu_pcie_window desired = {.remap = MVEBU_MBUS_NO_REMAP}; /* Are the new membase/memlimit values invalid? */ if (port->bridge.memlimit < port->bridge.membase || !(port->bridge.command & PCI_COMMAND_MEMORY)) { mvebu_pcie_set_window(port, port->mem_target, port->mem_attr, &desired, &port->memwin); return; } /* * We read the PCI-to-PCI bridge emulated registers, and * calculate the base address and size of the address decoding * window to setup, according to the PCI-to-PCI bridge * specifications. */ desired.base = ((port->bridge.membase & 0xFFF0) << 16); desired.size = (((port->bridge.memlimit & 0xFFF0) << 16) | 0xFFFFF) - desired.base + 1; mvebu_pcie_set_window(port, port->mem_target, port->mem_attr, &desired, &port->memwin); } static void mvebu_pcie_handle_irq_change(struct mvebu_pcie_port *port) { u32 reg, old; u16 devctl, rtctl; /* * Errors from downstream devices: * bridge control register SERR: enables reception of errors * Errors from this device, or received errors: * command SERR: enables ERR_NONFATAL and ERR_FATAL messages * => when enabled, these conditions also flag SERR in status register * devctl CERE: enables ERR_CORR messages * devctl NFERE: enables ERR_NONFATAL messages * devctl FERE: enables ERR_FATAL messages * Enabled messages then have three paths: * 1. rtctl: enables system error indication * 2. root error status register updated * 3. root error command register: forwarding via MSI */ old = mvebu_readl(port, PCIE_MASK_OFF); reg = old & ~(PCIE_MASK_PM_PME | PCIE_MASK_FERR_DET | PCIE_MASK_NFERR_DET | PCIE_MASK_CORERR_DET | PCIE_MASK_ERR_COR | PCIE_MASK_ERR_NONFATAL | PCIE_MASK_ERR_FATAL); devctl = port->bridge.pcie_devctl; if (devctl & PCI_EXP_DEVCTL_FERE) reg |= PCIE_MASK_FERR_DET | PCIE_MASK_ERR_FATAL; if (devctl & PCI_EXP_DEVCTL_NFERE) reg |= PCIE_MASK_NFERR_DET | PCIE_MASK_ERR_NONFATAL; if (devctl & PCI_EXP_DEVCTL_CERE) reg |= PCIE_MASK_CORERR_DET | PCIE_MASK_ERR_COR; if (port->bridge.command & PCI_COMMAND_SERR) reg |= PCIE_MASK_FERR_DET | PCIE_MASK_NFERR_DET | PCIE_MASK_ERR_FATAL | PCIE_MASK_ERR_NONFATAL; if (!(port->bridge.bridgectrl & PCI_BRIDGE_CTL_SERR)) reg &= ~(PCIE_MASK_ERR_COR | PCIE_MASK_ERR_NONFATAL | PCIE_MASK_ERR_FATAL); rtctl = port->bridge.pcie_rtctl; if (rtctl & PCI_EXP_RTCTL_PMEIE) reg |= PCIE_MASK_PM_PME; if (old != reg) mvebu_writel(port, reg, PCIE_MASK_OFF); } /* * Initialize the configuration space of the PCI-to-PCI bridge * associated with the given PCIe interface. */ static void mvebu_sw_pci_bridge_init(struct mvebu_pcie_port *port) { struct mvebu_sw_pci_bridge *bridge = &port->bridge; memset(bridge, 0, sizeof(struct mvebu_sw_pci_bridge)); bridge->class = PCI_CLASS_BRIDGE_PCI; bridge->vendor = PCI_VENDOR_ID_MARVELL; bridge->device = mvebu_readl(port, PCIE_DEV_ID_OFF) >> 16; bridge->revision = mvebu_readl(port, PCIE_DEV_REV_OFF) & 0xff; bridge->header_type = PCI_HEADER_TYPE_BRIDGE; bridge->cache_line_size = 0x10; /* We support 32 bits I/O addressing */ bridge->iobase = PCI_IO_RANGE_TYPE_32; bridge->iolimit = PCI_IO_RANGE_TYPE_32; /* Add capabilities */ bridge->status = PCI_STATUS_CAP_LIST; bridge->bridgectrl = PCI_BRIDGE_CTL_SERR; } /* * Read the configuration space of the PCI-to-PCI bridge associated to * the given PCIe interface. */ static int mvebu_sw_pci_bridge_read(struct mvebu_pcie_port *port, unsigned int where, int size, u32 *value) { struct mvebu_sw_pci_bridge *bridge = &port->bridge; switch (where & ~3) { case PCI_VENDOR_ID: *value = bridge->device << 16 | bridge->vendor; break; case PCI_COMMAND: *value = bridge->command | bridge->status << 16; break; case PCI_CLASS_REVISION: *value = bridge->class << 16 | bridge->interface << 8 | bridge->revision; break; case PCI_CACHE_LINE_SIZE: *value = bridge->bist << 24 | bridge->header_type << 16 | bridge->latency_timer << 8 | bridge->cache_line_size; break; case PCI_BASE_ADDRESS_0 ... PCI_BASE_ADDRESS_1: *value = bridge->bar[((where & ~3) - PCI_BASE_ADDRESS_0) / 4]; break; case PCI_PRIMARY_BUS: *value = (bridge->secondary_latency_timer << 24 | bridge->subordinate_bus << 16 | bridge->secondary_bus << 8 | bridge->primary_bus); break; case PCI_IO_BASE: if (!mvebu_has_ioport(port)) *value = bridge->secondary_status << 16; else *value = (bridge->secondary_status << 16 | bridge->iolimit << 8 | bridge->iobase); break; case PCI_MEMORY_BASE: *value = (bridge->memlimit << 16 | bridge->membase); break; case PCI_PREF_MEMORY_BASE: *value = 0; break; case PCI_IO_BASE_UPPER16: *value = (bridge->iolimitupper << 16 | bridge->iobaseupper); break; case PCI_CAPABILITY_LIST: *value = PCISWCAP; break; case PCI_ROM_ADDRESS1: *value = 0; break; case PCI_INTERRUPT_LINE: /* LINE PIN MIN_GNT MAX_LAT */ *value = bridge->bridgectrl << 16; break; case PCISWCAP_EXP_LIST_ID: /* Set PCIe v2, root port, slot support */ *value = (PCI_EXP_TYPE_ROOT_PORT << 4 | 2 | PCI_EXP_FLAGS_SLOT) << 16 | PCI_CAP_ID_EXP; break; case PCISWCAP_EXP_DEVCAP: *value = mvebu_readl(port, PCIE_CAP_PCIEXP + PCI_EXP_DEVCAP); break; case PCISWCAP_EXP_DEVCTL: *value = mvebu_readl(port, PCIE_CAP_PCIEXP + PCI_EXP_DEVCTL) & ~(PCI_EXP_DEVCTL_URRE | PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_NFERE | PCI_EXP_DEVCTL_CERE); *value |= bridge->pcie_devctl; break; case PCISWCAP_EXP_LNKCAP: /* * PCIe requires the clock power management capability to be * hard-wired to zero for downstream ports */ *value = mvebu_readl(port, PCIE_CAP_PCIEXP + PCI_EXP_LNKCAP) & ~PCI_EXP_LNKCAP_CLKPM; break; case PCISWCAP_EXP_LNKCTL: *value = mvebu_readl(port, PCIE_CAP_PCIEXP + PCI_EXP_LNKCTL); break; case PCISWCAP_EXP_SLTCAP: *value = bridge->pcie_sltcap; break; case PCISWCAP_EXP_SLTCTL: *value = PCI_EXP_SLTSTA_PDS << 16; break; case PCISWCAP_EXP_RTCTL: *value = bridge->pcie_rtctl; break; case PCISWCAP_EXP_RTSTA: *value = mvebu_readl(port, PCIE_RC_RTSTA); break; case 0x100 ... 0x128: *value = mvebu_readl(port, where & ~3); break; case 0x100 + PCI_ERR_ROOT_COMMAND: case 0x100 + PCI_ERR_ROOT_STATUS: case 0x100 + PCI_ERR_ROOT_ERR_SRC: *value = 0; break; /* PCIe requires the v2 fields to be hard-wired to zero */ case PCISWCAP_EXP_DEVCAP2: case PCISWCAP_EXP_DEVCTL2: case PCISWCAP_EXP_LNKCAP2: case PCISWCAP_EXP_LNKCTL2: case PCISWCAP_EXP_SLTCAP2: case PCISWCAP_EXP_SLTCTL2: default: /* * PCI defines configuration read accesses to reserved or * unimplemented registers to read as zero and complete * normally. */ *value = 0; return PCIBIOS_SUCCESSFUL; } if (size == 2) *value = (*value >> (8 * (where & 3))) & 0xffff; else if (size == 1) *value = (*value >> (8 * (where & 3))) & 0xff; return PCIBIOS_SUCCESSFUL; } /* Write to the PCI-to-PCI bridge configuration space */ static int mvebu_sw_pci_bridge_write(struct mvebu_pcie_port *port, unsigned int where, int size, u32 value) { struct mvebu_sw_pci_bridge *bridge = &port->bridge; u32 mask, reg, old; int err; if (size == 4) mask = 0x0; else if (size == 2) mask = ~(0xffff << ((where & 3) * 8)); else if (size == 1) mask = ~(0xff << ((where & 3) * 8)); else return PCIBIOS_BAD_REGISTER_NUMBER; err = mvebu_sw_pci_bridge_read(port, where & ~3, 4, ®); if (err) return err; value = (reg & mask) | value << ((where & 3) * 8); switch (where & ~3) { case PCI_COMMAND: old = bridge->command; if (!mvebu_has_ioport(port)) value &= ~PCI_COMMAND_IO; bridge->command = value & 0xffff; if ((old ^ bridge->command) & PCI_COMMAND_IO) mvebu_pcie_handle_iobase_change(port); if ((old ^ bridge->command) & PCI_COMMAND_MEMORY) mvebu_pcie_handle_membase_change(port); if ((old ^ bridge->command) & PCI_COMMAND_SERR) mvebu_pcie_handle_irq_change(port); break; case PCI_BASE_ADDRESS_0 ... PCI_BASE_ADDRESS_1: bridge->bar[((where & ~3) - PCI_BASE_ADDRESS_0) / 4] = value; break; case PCI_IO_BASE: /* * We also keep bit 1 set, it is a read-only bit that * indicates we support 32 bits addressing for the * I/O */ bridge->iobase = (value & 0xff) | PCI_IO_RANGE_TYPE_32; bridge->iolimit = ((value >> 8) & 0xff) | PCI_IO_RANGE_TYPE_32; mvebu_pcie_handle_iobase_change(port); break; case PCI_MEMORY_BASE: bridge->membase = value & 0xffff; bridge->memlimit = value >> 16; mvebu_pcie_handle_membase_change(port); break; case PCI_IO_BASE_UPPER16: bridge->iobaseupper = value & 0xffff; bridge->iolimitupper = value >> 16; mvebu_pcie_handle_iobase_change(port); break; case PCI_INTERRUPT_LINE: value >>= 16; old = bridge->bridgectrl; /* PCIe only has three bits here */ bridge->bridgectrl = value & (PCI_BRIDGE_CTL_BUS_RESET | PCI_BRIDGE_CTL_SERR | PCI_BRIDGE_CTL_PARITY); if ((old ^ bridge->bridgectrl) & PCI_BRIDGE_CTL_SERR) mvebu_pcie_handle_irq_change(port); break; case PCI_PRIMARY_BUS: bridge->primary_bus = value & 0xff; bridge->secondary_bus = (value >> 8) & 0xff; bridge->subordinate_bus = (value >> 16) & 0xff; bridge->secondary_latency_timer = (value >> 24) & 0xff; mvebu_pcie_set_local_bus_nr(port, bridge->secondary_bus); break; case PCISWCAP_EXP_DEVCTL: old = bridge->pcie_devctl; bridge->pcie_devctl = value & (PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_NFERE | PCI_EXP_DEVCTL_CERE | PCI_EXP_DEVCTL_URRE); if (bridge->pcie_devctl ^ old) mvebu_pcie_handle_irq_change(port); /* * Armada370 data says these bits must always * be zero when in root complex mode. */ value &= ~(PCI_EXP_DEVCTL_URRE | PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_NFERE | PCI_EXP_DEVCTL_CERE); /* * If the mask is 0xffff0000, then we only want to write * the device control register, rather than clearing the * RW1C bits in the device status register. Mask out the * status register bits. */ if (mask == 0xffff0000) value &= 0xffff; mvebu_writel(port, value, PCIE_CAP_PCIEXP + PCI_EXP_DEVCTL); break; case PCISWCAP_EXP_LNKCTL: /* * If we don't support CLKREQ, we must ensure that the * CLKREQ enable bit always reads zero. Since we haven't * had this capability, and it's dependent on board wiring, * disable it for the time being. */ value &= ~PCI_EXP_LNKCTL_CLKREQ_EN; /* * If the mask is 0xffff0000, then we only want to write * the link control register, rather than clearing the * RW1C bits in the link status register. Mask out the * RW1C status register bits. */ if (mask == 0xffff0000) value &= ~((PCI_EXP_LNKSTA_LABS | PCI_EXP_LNKSTA_LBMS) << 16); mvebu_writel(port, value, PCIE_CAP_PCIEXP + PCI_EXP_LNKCTL); break; case PCISWCAP_EXP_RTCTL: old = bridge->pcie_rtctl; bridge->pcie_rtctl = value & (PCI_EXP_RTCTL_SECEE | PCI_EXP_RTCTL_SENFEE | PCI_EXP_RTCTL_SEFEE | PCI_EXP_RTCTL_PMEIE); if (bridge->pcie_rtctl ^ old) mvebu_pcie_handle_irq_change(port); break; case PCISWCAP_EXP_RTSTA: mvebu_writel(port, value, PCIE_RC_RTSTA); break; case 0x100 ... 0x128: mvebu_writel(port, value, where & ~3); break; default: break; } return PCIBIOS_SUCCESSFUL; } static inline struct mvebu_pcie *sys_to_pcie(struct pci_sys_data *sys) { return sys->private_data; } static struct mvebu_pcie_port *mvebu_pcie_find_port(struct mvebu_pcie *pcie, struct pci_bus *bus, int devfn) { int i; for (i = 0; i < pcie->nports; i++) { struct mvebu_pcie_port *port = &pcie->ports[i]; if (bus->number == 0 && port->devfn == devfn) return port; if (bus->number != 0 && bus->number >= port->bridge.secondary_bus && bus->number <= port->bridge.subordinate_bus) return port; } return NULL; } /* PCI configuration space write function */ static int mvebu_pcie_wr_conf(struct pci_bus *bus, u32 devfn, int where, int size, u32 val) { struct mvebu_pcie *pcie = sys_to_pcie(bus->sysdata); struct mvebu_pcie_port *port; int ret; port = mvebu_pcie_find_port(pcie, bus, devfn); if (!port) return PCIBIOS_DEVICE_NOT_FOUND; /* Access the emulated PCI-to-PCI bridge */ if (bus->number == 0) return mvebu_sw_pci_bridge_write(port, where, size, val); if (!mvebu_pcie_link_up(port)) return PCIBIOS_DEVICE_NOT_FOUND; /* Access the real PCIe interface */ ret = mvebu_pcie_hw_wr_conf(port, bus, devfn, where, size, val); return ret; } /* PCI configuration space read function */ static int mvebu_pcie_rd_conf(struct pci_bus *bus, u32 devfn, int where, int size, u32 *val) { struct mvebu_pcie *pcie = sys_to_pcie(bus->sysdata); struct mvebu_pcie_port *port; int ret; port = mvebu_pcie_find_port(pcie, bus, devfn); if (!port) { *val = 0xffffffff; return PCIBIOS_DEVICE_NOT_FOUND; } /* Access the emulated PCI-to-PCI bridge */ if (bus->number == 0) return mvebu_sw_pci_bridge_read(port, where, size, val); if (!mvebu_pcie_link_up(port)) { *val = 0xffffffff; return PCIBIOS_DEVICE_NOT_FOUND; } /* Access the real PCIe interface */ ret = mvebu_pcie_hw_rd_conf(port, bus, devfn, where, size, val); return ret; } static struct pci_ops mvebu_pcie_ops = { .read = mvebu_pcie_rd_conf, .write = mvebu_pcie_wr_conf, }; static int mvebu_pcie_setup(int nr, struct pci_sys_data *sys) { struct mvebu_pcie *pcie = sys_to_pcie(sys); int err, i; pcie->mem.name = "PCI MEM"; pcie->realio.name = "PCI I/O"; if (resource_size(&pcie->realio) != 0) pci_add_resource_offset(&sys->resources, &pcie->realio, sys->io_offset); pci_add_resource_offset(&sys->resources, &pcie->mem, sys->mem_offset); pci_add_resource(&sys->resources, &pcie->busn); err = devm_request_pci_bus_resources(&pcie->pdev->dev, &sys->resources); if (err) return 0; for (i = 0; i < pcie->nports; i++) { struct mvebu_pcie_port *port = &pcie->ports[i]; if (!port->base) continue; mvebu_pcie_setup_hw(port); } return 1; } static resource_size_t mvebu_pcie_align_resource(struct pci_dev *dev, const struct resource *res, resource_size_t start, resource_size_t size, resource_size_t align) { if (dev->bus->number != 0) return start; /* * On the PCI-to-PCI bridge side, the I/O windows must have at * least a 64 KB size and the memory windows must have at * least a 1 MB size. Moreover, MBus windows need to have a * base address aligned on their size, and their size must be * a power of two. This means that if the BAR doesn't have a * power of two size, several MBus windows will actually be * created. We need to ensure that the biggest MBus window * (which will be the first one) is aligned on its size, which * explains the rounddown_pow_of_two() being done here. */ if (res->flags & IORESOURCE_IO) return round_up(start, max_t(resource_size_t, SZ_64K, rounddown_pow_of_two(size))); else if (res->flags & IORESOURCE_MEM) return round_up(start, max_t(resource_size_t, SZ_1M, rounddown_pow_of_two(size))); else return start; } static void mvebu_pcie_enable(struct mvebu_pcie *pcie) { struct hw_pci hw; memset(&hw, 0, sizeof(hw)); #ifdef CONFIG_PCI_MSI hw.msi_ctrl = pcie->msi; #endif hw.nr_controllers = 1; hw.private_data = (void **)&pcie; hw.setup = mvebu_pcie_setup; hw.map_irq = of_irq_parse_and_map_pci; hw.ops = &mvebu_pcie_ops; hw.align_resource = mvebu_pcie_align_resource; pci_common_init_dev(&pcie->pdev->dev, &hw); } /* * Looks up the list of register addresses encoded into the reg = * <...> property for one that matches the given port/lane. Once * found, maps it. */ static void __iomem *mvebu_pcie_map_registers(struct platform_device *pdev, struct device_node *np, struct mvebu_pcie_port *port) { struct resource regs; int ret = 0; ret = of_address_to_resource(np, 0, ®s); if (ret) return ERR_PTR(ret); return devm_ioremap_resource(&pdev->dev, ®s); } #define DT_FLAGS_TO_TYPE(flags) (((flags) >> 24) & 0x03) #define DT_TYPE_IO 0x1 #define DT_TYPE_MEM32 0x2 #define DT_CPUADDR_TO_TARGET(cpuaddr) (((cpuaddr) >> 56) & 0xFF) #define DT_CPUADDR_TO_ATTR(cpuaddr) (((cpuaddr) >> 48) & 0xFF) static int mvebu_get_tgt_attr(struct device_node *np, int devfn, unsigned long type, unsigned int *tgt, unsigned int *attr) { const int na = 3, ns = 2; const __be32 *range; int rlen, nranges, rangesz, pna, i; *tgt = -1; *attr = -1; range = of_get_property(np, "ranges", &rlen); if (!range) return -EINVAL; pna = of_n_addr_cells(np); rangesz = pna + na + ns; nranges = rlen / sizeof(__be32) / rangesz; for (i = 0; i < nranges; i++, range += rangesz) { u32 flags = of_read_number(range, 1); u32 slot = of_read_number(range + 1, 1); u64 cpuaddr = of_read_number(range + na, pna); unsigned long rtype; if (DT_FLAGS_TO_TYPE(flags) == DT_TYPE_IO) rtype = IORESOURCE_IO; else if (DT_FLAGS_TO_TYPE(flags) == DT_TYPE_MEM32) rtype = IORESOURCE_MEM; else continue; if (slot == PCI_SLOT(devfn) && type == rtype) { *tgt = DT_CPUADDR_TO_TARGET(cpuaddr); *attr = DT_CPUADDR_TO_ATTR(cpuaddr); return 0; } } return -ENOENT; } #ifdef CONFIG_PM_SLEEP static int mvebu_pcie_suspend(struct device *dev) { struct mvebu_pcie *pcie; int i; pcie = dev_get_drvdata(dev); for (i = 0; i < pcie->nports; i++) { struct mvebu_pcie_port *port = pcie->ports + i; port->saved_pcie_stat = mvebu_readl(port, PCIE_STAT_OFF); } return 0; } static int mvebu_pcie_resume(struct device *dev) { struct mvebu_pcie *pcie; int i; pcie = dev_get_drvdata(dev); for (i = 0; i < pcie->nports; i++) { struct mvebu_pcie_port *port = pcie->ports + i; mvebu_writel(port, port->saved_pcie_stat, PCIE_STAT_OFF); mvebu_pcie_setup_hw(port); } return 0; } #endif static void mvebu_pcie_port_clk_put(void *data) { struct mvebu_pcie_port *port = data; clk_put(port->clk); } static int mvebu_pcie_parse_port(struct mvebu_pcie *pcie, struct mvebu_pcie_port *port, struct device_node *child) { struct device *dev = &pcie->pdev->dev; enum of_gpio_flags flags; int reset_gpio, ret; port->pcie = pcie; if (of_property_read_u32(child, "marvell,pcie-port", &port->port)) { dev_warn(dev, "ignoring %s, missing pcie-port property\n", of_node_full_name(child)); goto skip; } if (of_property_read_u32(child, "marvell,pcie-lane", &port->lane)) port->lane = 0; port->name = devm_kasprintf(dev, GFP_KERNEL, "pcie%d.%d", port->port, port->lane); if (!port->name) { ret = -ENOMEM; goto err; } port->devfn = of_pci_get_devfn(child); if (port->devfn < 0) goto skip; ret = mvebu_get_tgt_attr(dev->of_node, port->devfn, IORESOURCE_MEM, &port->mem_target, &port->mem_attr); if (ret < 0) { dev_err(dev, "%s: cannot get tgt/attr for mem window\n", port->name); goto skip; } if (resource_size(&pcie->io) != 0) { mvebu_get_tgt_attr(dev->of_node, port->devfn, IORESOURCE_IO, &port->io_target, &port->io_attr); } else { port->io_target = -1; port->io_attr = -1; } reset_gpio = of_get_named_gpio_flags(child, "reset-gpios", 0, &flags); if (reset_gpio == -EPROBE_DEFER) { ret = reset_gpio; goto err; } if (gpio_is_valid(reset_gpio)) { unsigned long gpio_flags; port->reset_name = devm_kasprintf(dev, GFP_KERNEL, "%s-reset", port->name); if (!port->reset_name) { ret = -ENOMEM; goto err; } if (flags & OF_GPIO_ACTIVE_LOW) { dev_info(dev, "%s: reset gpio is active low\n", of_node_full_name(child)); gpio_flags = GPIOF_ACTIVE_LOW | GPIOF_OUT_INIT_LOW; } else { gpio_flags = GPIOF_OUT_INIT_HIGH; } ret = devm_gpio_request_one(dev, reset_gpio, gpio_flags, port->reset_name); if (ret) { if (ret == -EPROBE_DEFER) goto err; goto skip; } port->reset_gpio = gpio_to_desc(reset_gpio); } port->clk = of_clk_get_by_name(child, NULL); if (IS_ERR(port->clk)) { dev_err(dev, "%s: cannot get clock\n", port->name); goto skip; } ret = devm_add_action(dev, mvebu_pcie_port_clk_put, port); if (ret < 0) { clk_put(port->clk); goto err; } return 1; skip: ret = 0; /* In the case of skipping, we need to free these */ devm_kfree(dev, port->reset_name); port->reset_name = NULL; devm_kfree(dev, port->name); port->name = NULL; err: return ret; } /* * Power up a PCIe port. PCIe requires the refclk to be stable for 100µs * prior to releasing PERST. See table 2-4 in section 2.6.2 AC Specifications * of the PCI Express Card Electromechanical Specification, 1.1. */ static int mvebu_pcie_powerup(struct mvebu_pcie_port *port) { int ret; ret = clk_prepare_enable(port->clk); if (ret < 0) return ret; if (port->reset_gpio) { u32 reset_udelay = PCI_PM_D3COLD_WAIT * 1000; unsigned int i; of_property_read_u32(port->dn, "reset-delay-us", &reset_udelay); udelay(100); gpiod_set_value_cansleep(port->reset_gpio, 0); for (i = 0; i < reset_udelay; i += 1000) { if (mvebu_pcie_link_up(port)) break; msleep(1); } printk("%s: reset completed in %dus\n", port->name, i); } return 0; } /* * Power down a PCIe port. Strictly, PCIe requires us to place the card * in D3hot state before asserting PERST#. */ static void mvebu_pcie_powerdown(struct mvebu_pcie_port *port) { if (port->reset_gpio) gpiod_set_value_cansleep(port->reset_gpio, 1); clk_disable_unprepare(port->clk); } static int mvebu_pcie_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct mvebu_pcie *pcie; struct device_node *np = dev->of_node; struct device_node *child; int num, i, ret; pcie = devm_kzalloc(dev, sizeof(*pcie), GFP_KERNEL); if (!pcie) return -ENOMEM; pcie->pdev = pdev; platform_set_drvdata(pdev, pcie); /* Get the PCIe memory and I/O aperture */ mvebu_mbus_get_pcie_mem_aperture(&pcie->mem); if (resource_size(&pcie->mem) == 0) { dev_err(dev, "invalid memory aperture size\n"); return -EINVAL; } mvebu_mbus_get_pcie_io_aperture(&pcie->io); if (resource_size(&pcie->io) != 0) { pcie->realio.flags = pcie->io.flags; pcie->realio.start = PCIBIOS_MIN_IO; pcie->realio.end = min_t(resource_size_t, IO_SPACE_LIMIT, resource_size(&pcie->io)); } else pcie->realio = pcie->io; /* Get the bus range */ ret = of_pci_parse_bus_range(np, &pcie->busn); if (ret) { dev_err(dev, "failed to parse bus-range property: %d\n", ret); return ret; } num = of_get_available_child_count(np); pcie->ports = devm_kcalloc(dev, num, sizeof(*pcie->ports), GFP_KERNEL); if (!pcie->ports) return -ENOMEM; i = 0; for_each_available_child_of_node(np, child) { struct mvebu_pcie_port *port = &pcie->ports[i]; ret = mvebu_pcie_parse_port(pcie, port, child); if (ret < 0) { of_node_put(child); return ret; } else if (ret == 0) { continue; } port->dn = child; i++; } pcie->nports = i; for (i = 0; i < pcie->nports; i++) { struct mvebu_pcie_port *port = &pcie->ports[i]; child = port->dn; if (!child) continue; port->base = mvebu_pcie_map_registers(pdev, child, port); if (IS_ERR(port->base)) { dev_err(dev, "%s: cannot map registers\n", port->name); port->base = NULL; continue; } ret = mvebu_pcie_powerup(port); if (ret < 0) { port->base = NULL; continue; } mvebu_pcie_set_local_dev_nr(port, 1); mvebu_sw_pci_bridge_init(port); } pcie->nports = i; for (i = 0; i < (IO_SPACE_LIMIT - SZ_64K); i += SZ_64K) pci_ioremap_io(i, pcie->io.start + i); mvebu_pcie_enable(pcie); platform_set_drvdata(pdev, pcie); return 0; } static const struct of_device_id mvebu_pcie_of_match_table[] = { { .compatible = "marvell,armada-xp-pcie", }, { .compatible = "marvell,armada-370-pcie", }, { .compatible = "marvell,dove-pcie", }, { .compatible = "marvell,kirkwood-pcie", }, {}, }; static const struct dev_pm_ops mvebu_pcie_pm_ops = { SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(mvebu_pcie_suspend, mvebu_pcie_resume) }; static struct platform_driver mvebu_pcie_driver = { .driver = { .name = "mvebu-pcie", .of_match_table = mvebu_pcie_of_match_table, /* driver unloading/unbinding currently not supported */ .suppress_bind_attrs = true, .pm = &mvebu_pcie_pm_ops, }, .probe = mvebu_pcie_probe, }; builtin_platform_driver(mvebu_pcie_driver);