// SPDX-License-Identifier: GPL-2.0 /* * PCI Message Signaled Interrupt (MSI) * * Copyright (C) 2003-2004 Intel * Copyright (C) Tom Long Nguyen (tom.l.nguyen@intel.com) * Copyright (C) 2016 Christoph Hellwig. */ #include #include #include #include #include "../pci.h" #include "msi.h" int pci_msi_enable = 1; int pci_msi_ignore_mask; /** * pci_msi_supported - check whether MSI may be enabled on a device * @dev: pointer to the pci_dev data structure of MSI device function * @nvec: how many MSIs have been requested? * * Look at global flags, the device itself, and its parent buses * to determine if MSI/-X are supported for the device. If MSI/-X is * supported return 1, else return 0. **/ static int pci_msi_supported(struct pci_dev *dev, int nvec) { struct pci_bus *bus; /* MSI must be globally enabled and supported by the device */ if (!pci_msi_enable) return 0; if (!dev || dev->no_msi) return 0; /* * You can't ask to have 0 or less MSIs configured. * a) it's stupid .. * b) the list manipulation code assumes nvec >= 1. */ if (nvec < 1) return 0; /* * Any bridge which does NOT route MSI transactions from its * secondary bus to its primary bus must set NO_MSI flag on * the secondary pci_bus. * * The NO_MSI flag can either be set directly by: * - arch-specific PCI host bus controller drivers (deprecated) * - quirks for specific PCI bridges * * or indirectly by platform-specific PCI host bridge drivers by * advertising the 'msi_domain' property, which results in * the NO_MSI flag when no MSI domain is found for this bridge * at probe time. */ for (bus = dev->bus; bus; bus = bus->parent) if (bus->bus_flags & PCI_BUS_FLAGS_NO_MSI) return 0; return 1; } static void pcim_msi_release(void *pcidev) { struct pci_dev *dev = pcidev; dev->is_msi_managed = false; pci_free_irq_vectors(dev); } /* * Needs to be separate from pcim_release to prevent an ordering problem * vs. msi_device_data_release() in the MSI core code. */ static int pcim_setup_msi_release(struct pci_dev *dev) { int ret; if (!pci_is_managed(dev) || dev->is_msi_managed) return 0; ret = devm_add_action(&dev->dev, pcim_msi_release, dev); if (!ret) dev->is_msi_managed = true; return ret; } /* * Ordering vs. devres: msi device data has to be installed first so that * pcim_msi_release() is invoked before it on device release. */ static int pci_setup_msi_context(struct pci_dev *dev) { int ret = msi_setup_device_data(&dev->dev); if (!ret) ret = pcim_setup_msi_release(dev); return ret; } /* * Helper functions for mask/unmask and MSI message handling */ void pci_msi_update_mask(struct msi_desc *desc, u32 clear, u32 set) { raw_spinlock_t *lock = &to_pci_dev(desc->dev)->msi_lock; unsigned long flags; if (!desc->pci.msi_attrib.can_mask) return; raw_spin_lock_irqsave(lock, flags); desc->pci.msi_mask &= ~clear; desc->pci.msi_mask |= set; pci_write_config_dword(msi_desc_to_pci_dev(desc), desc->pci.mask_pos, desc->pci.msi_mask); raw_spin_unlock_irqrestore(lock, flags); } /** * pci_msi_mask_irq - Generic IRQ chip callback to mask PCI/MSI interrupts * @data: pointer to irqdata associated to that interrupt */ void pci_msi_mask_irq(struct irq_data *data) { struct msi_desc *desc = irq_data_get_msi_desc(data); __pci_msi_mask_desc(desc, BIT(data->irq - desc->irq)); } EXPORT_SYMBOL_GPL(pci_msi_mask_irq); /** * pci_msi_unmask_irq - Generic IRQ chip callback to unmask PCI/MSI interrupts * @data: pointer to irqdata associated to that interrupt */ void pci_msi_unmask_irq(struct irq_data *data) { struct msi_desc *desc = irq_data_get_msi_desc(data); __pci_msi_unmask_desc(desc, BIT(data->irq - desc->irq)); } EXPORT_SYMBOL_GPL(pci_msi_unmask_irq); void __pci_read_msi_msg(struct msi_desc *entry, struct msi_msg *msg) { struct pci_dev *dev = msi_desc_to_pci_dev(entry); BUG_ON(dev->current_state != PCI_D0); if (entry->pci.msi_attrib.is_msix) { void __iomem *base = pci_msix_desc_addr(entry); if (WARN_ON_ONCE(entry->pci.msi_attrib.is_virtual)) return; msg->address_lo = readl(base + PCI_MSIX_ENTRY_LOWER_ADDR); msg->address_hi = readl(base + PCI_MSIX_ENTRY_UPPER_ADDR); msg->data = readl(base + PCI_MSIX_ENTRY_DATA); } else { int pos = dev->msi_cap; u16 data; pci_read_config_dword(dev, pos + PCI_MSI_ADDRESS_LO, &msg->address_lo); if (entry->pci.msi_attrib.is_64) { pci_read_config_dword(dev, pos + PCI_MSI_ADDRESS_HI, &msg->address_hi); pci_read_config_word(dev, pos + PCI_MSI_DATA_64, &data); } else { msg->address_hi = 0; pci_read_config_word(dev, pos + PCI_MSI_DATA_32, &data); } msg->data = data; } } static inline void pci_write_msg_msi(struct pci_dev *dev, struct msi_desc *desc, struct msi_msg *msg) { int pos = dev->msi_cap; u16 msgctl; pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &msgctl); msgctl &= ~PCI_MSI_FLAGS_QSIZE; msgctl |= FIELD_PREP(PCI_MSI_FLAGS_QSIZE, desc->pci.msi_attrib.multiple); pci_write_config_word(dev, pos + PCI_MSI_FLAGS, msgctl); pci_write_config_dword(dev, pos + PCI_MSI_ADDRESS_LO, msg->address_lo); if (desc->pci.msi_attrib.is_64) { pci_write_config_dword(dev, pos + PCI_MSI_ADDRESS_HI, msg->address_hi); pci_write_config_word(dev, pos + PCI_MSI_DATA_64, msg->data); } else { pci_write_config_word(dev, pos + PCI_MSI_DATA_32, msg->data); } /* Ensure that the writes are visible in the device */ pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &msgctl); } static inline void pci_write_msg_msix(struct msi_desc *desc, struct msi_msg *msg) { void __iomem *base = pci_msix_desc_addr(desc); u32 ctrl = desc->pci.msix_ctrl; bool unmasked = !(ctrl & PCI_MSIX_ENTRY_CTRL_MASKBIT); if (desc->pci.msi_attrib.is_virtual) return; /* * The specification mandates that the entry is masked * when the message is modified: * * "If software changes the Address or Data value of an * entry while the entry is unmasked, the result is * undefined." */ if (unmasked) pci_msix_write_vector_ctrl(desc, ctrl | PCI_MSIX_ENTRY_CTRL_MASKBIT); writel(msg->address_lo, base + PCI_MSIX_ENTRY_LOWER_ADDR); writel(msg->address_hi, base + PCI_MSIX_ENTRY_UPPER_ADDR); writel(msg->data, base + PCI_MSIX_ENTRY_DATA); if (unmasked) pci_msix_write_vector_ctrl(desc, ctrl); /* Ensure that the writes are visible in the device */ readl(base + PCI_MSIX_ENTRY_DATA); } void __pci_write_msi_msg(struct msi_desc *entry, struct msi_msg *msg) { struct pci_dev *dev = msi_desc_to_pci_dev(entry); if (dev->current_state != PCI_D0 || pci_dev_is_disconnected(dev)) { /* Don't touch the hardware now */ } else if (entry->pci.msi_attrib.is_msix) { pci_write_msg_msix(entry, msg); } else { pci_write_msg_msi(dev, entry, msg); } entry->msg = *msg; if (entry->write_msi_msg) entry->write_msi_msg(entry, entry->write_msi_msg_data); } void pci_write_msi_msg(unsigned int irq, struct msi_msg *msg) { struct msi_desc *entry = irq_get_msi_desc(irq); __pci_write_msi_msg(entry, msg); } EXPORT_SYMBOL_GPL(pci_write_msi_msg); /* PCI/MSI specific functionality */ static void pci_intx_for_msi(struct pci_dev *dev, int enable) { if (!(dev->dev_flags & PCI_DEV_FLAGS_MSI_INTX_DISABLE_BUG)) pci_intx(dev, enable); } static void pci_msi_set_enable(struct pci_dev *dev, int enable) { u16 control; pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &control); control &= ~PCI_MSI_FLAGS_ENABLE; if (enable) control |= PCI_MSI_FLAGS_ENABLE; pci_write_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, control); } static int msi_setup_msi_desc(struct pci_dev *dev, int nvec, struct irq_affinity_desc *masks) { struct msi_desc desc; u16 control; /* MSI Entry Initialization */ memset(&desc, 0, sizeof(desc)); pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &control); /* Lies, damned lies, and MSIs */ if (dev->dev_flags & PCI_DEV_FLAGS_HAS_MSI_MASKING) control |= PCI_MSI_FLAGS_MASKBIT; /* Respect XEN's mask disabling */ if (pci_msi_ignore_mask) control &= ~PCI_MSI_FLAGS_MASKBIT; desc.nvec_used = nvec; desc.pci.msi_attrib.is_64 = !!(control & PCI_MSI_FLAGS_64BIT); desc.pci.msi_attrib.can_mask = !!(control & PCI_MSI_FLAGS_MASKBIT); desc.pci.msi_attrib.default_irq = dev->irq; desc.pci.msi_attrib.multi_cap = FIELD_GET(PCI_MSI_FLAGS_QMASK, control); desc.pci.msi_attrib.multiple = ilog2(__roundup_pow_of_two(nvec)); desc.affinity = masks; if (control & PCI_MSI_FLAGS_64BIT) desc.pci.mask_pos = dev->msi_cap + PCI_MSI_MASK_64; else desc.pci.mask_pos = dev->msi_cap + PCI_MSI_MASK_32; /* Save the initial mask status */ if (desc.pci.msi_attrib.can_mask) pci_read_config_dword(dev, desc.pci.mask_pos, &desc.pci.msi_mask); return msi_insert_msi_desc(&dev->dev, &desc); } static int msi_verify_entries(struct pci_dev *dev) { struct msi_desc *entry; if (!dev->no_64bit_msi) return 0; msi_for_each_desc(entry, &dev->dev, MSI_DESC_ALL) { if (entry->msg.address_hi) { pci_err(dev, "arch assigned 64-bit MSI address %#x%08x but device only supports 32 bits\n", entry->msg.address_hi, entry->msg.address_lo); break; } } return !entry ? 0 : -EIO; } /** * msi_capability_init - configure device's MSI capability structure * @dev: pointer to the pci_dev data structure of MSI device function * @nvec: number of interrupts to allocate * @affd: description of automatic IRQ affinity assignments (may be %NULL) * * Setup the MSI capability structure of the device with the requested * number of interrupts. A return value of zero indicates the successful * setup of an entry with the new MSI IRQ. A negative return value indicates * an error, and a positive return value indicates the number of interrupts * which could have been allocated. */ static int msi_capability_init(struct pci_dev *dev, int nvec, struct irq_affinity *affd) { struct irq_affinity_desc *masks = NULL; struct msi_desc *entry; int ret; /* Reject multi-MSI early on irq domain enabled architectures */ if (nvec > 1 && !pci_msi_domain_supports(dev, MSI_FLAG_MULTI_PCI_MSI, ALLOW_LEGACY)) return 1; /* * Disable MSI during setup in the hardware, but mark it enabled * so that setup code can evaluate it. */ pci_msi_set_enable(dev, 0); dev->msi_enabled = 1; if (affd) masks = irq_create_affinity_masks(nvec, affd); msi_lock_descs(&dev->dev); ret = msi_setup_msi_desc(dev, nvec, masks); if (ret) goto fail; /* All MSIs are unmasked by default; mask them all */ entry = msi_first_desc(&dev->dev, MSI_DESC_ALL); pci_msi_mask(entry, msi_multi_mask(entry)); /* Configure MSI capability structure */ ret = pci_msi_setup_msi_irqs(dev, nvec, PCI_CAP_ID_MSI); if (ret) goto err; ret = msi_verify_entries(dev); if (ret) goto err; /* Set MSI enabled bits */ pci_intx_for_msi(dev, 0); pci_msi_set_enable(dev, 1); pcibios_free_irq(dev); dev->irq = entry->irq; goto unlock; err: pci_msi_unmask(entry, msi_multi_mask(entry)); pci_free_msi_irqs(dev); fail: dev->msi_enabled = 0; unlock: msi_unlock_descs(&dev->dev); kfree(masks); return ret; } int __pci_enable_msi_range(struct pci_dev *dev, int minvec, int maxvec, struct irq_affinity *affd) { int nvec; int rc; if (!pci_msi_supported(dev, minvec) || dev->current_state != PCI_D0) return -EINVAL; /* Check whether driver already requested MSI-X IRQs */ if (dev->msix_enabled) { pci_info(dev, "can't enable MSI (MSI-X already enabled)\n"); return -EINVAL; } if (maxvec < minvec) return -ERANGE; if (WARN_ON_ONCE(dev->msi_enabled)) return -EINVAL; nvec = pci_msi_vec_count(dev); if (nvec < 0) return nvec; if (nvec < minvec) return -ENOSPC; if (nvec > maxvec) nvec = maxvec; rc = pci_setup_msi_context(dev); if (rc) return rc; if (!pci_setup_msi_device_domain(dev)) return -ENODEV; for (;;) { if (affd) { nvec = irq_calc_affinity_vectors(minvec, nvec, affd); if (nvec < minvec) return -ENOSPC; } rc = msi_capability_init(dev, nvec, affd); if (rc == 0) return nvec; if (rc < 0) return rc; if (rc < minvec) return -ENOSPC; nvec = rc; } } /** * pci_msi_vec_count - Return the number of MSI vectors a device can send * @dev: device to report about * * This function returns the number of MSI vectors a device requested via * Multiple Message Capable register. It returns a negative errno if the * device is not capable sending MSI interrupts. Otherwise, the call succeeds * and returns a power of two, up to a maximum of 2^5 (32), according to the * MSI specification. **/ int pci_msi_vec_count(struct pci_dev *dev) { int ret; u16 msgctl; if (!dev->msi_cap) return -EINVAL; pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &msgctl); ret = 1 << FIELD_GET(PCI_MSI_FLAGS_QMASK, msgctl); return ret; } EXPORT_SYMBOL(pci_msi_vec_count); /* * Architecture override returns true when the PCI MSI message should be * written by the generic restore function. */ bool __weak arch_restore_msi_irqs(struct pci_dev *dev) { return true; } void __pci_restore_msi_state(struct pci_dev *dev) { struct msi_desc *entry; u16 control; if (!dev->msi_enabled) return; entry = irq_get_msi_desc(dev->irq); pci_intx_for_msi(dev, 0); pci_msi_set_enable(dev, 0); if (arch_restore_msi_irqs(dev)) __pci_write_msi_msg(entry, &entry->msg); pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &control); pci_msi_update_mask(entry, 0, 0); control &= ~PCI_MSI_FLAGS_QSIZE; control |= PCI_MSI_FLAGS_ENABLE | FIELD_PREP(PCI_MSI_FLAGS_QSIZE, entry->pci.msi_attrib.multiple); pci_write_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, control); } void pci_msi_shutdown(struct pci_dev *dev) { struct msi_desc *desc; if (!pci_msi_enable || !dev || !dev->msi_enabled) return; pci_msi_set_enable(dev, 0); pci_intx_for_msi(dev, 1); dev->msi_enabled = 0; /* Return the device with MSI unmasked as initial states */ desc = msi_first_desc(&dev->dev, MSI_DESC_ALL); if (!WARN_ON_ONCE(!desc)) pci_msi_unmask(desc, msi_multi_mask(desc)); /* Restore dev->irq to its default pin-assertion IRQ */ dev->irq = desc->pci.msi_attrib.default_irq; pcibios_alloc_irq(dev); } /* PCI/MSI-X specific functionality */ static void pci_msix_clear_and_set_ctrl(struct pci_dev *dev, u16 clear, u16 set) { u16 ctrl; pci_read_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, &ctrl); ctrl &= ~clear; ctrl |= set; pci_write_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, ctrl); } static void __iomem *msix_map_region(struct pci_dev *dev, unsigned int nr_entries) { resource_size_t phys_addr; u32 table_offset; unsigned long flags; u8 bir; pci_read_config_dword(dev, dev->msix_cap + PCI_MSIX_TABLE, &table_offset); bir = (u8)(table_offset & PCI_MSIX_TABLE_BIR); flags = pci_resource_flags(dev, bir); if (!flags || (flags & IORESOURCE_UNSET)) return NULL; table_offset &= PCI_MSIX_TABLE_OFFSET; phys_addr = pci_resource_start(dev, bir) + table_offset; return ioremap(phys_addr, nr_entries * PCI_MSIX_ENTRY_SIZE); } /** * msix_prepare_msi_desc - Prepare a half initialized MSI descriptor for operation * @dev: The PCI device for which the descriptor is prepared * @desc: The MSI descriptor for preparation * * This is separate from msix_setup_msi_descs() below to handle dynamic * allocations for MSI-X after initial enablement. * * Ideally the whole MSI-X setup would work that way, but there is no way to * support this for the legacy arch_setup_msi_irqs() mechanism and for the * fake irq domains like the x86 XEN one. Sigh... * * The descriptor is zeroed and only @desc::msi_index and @desc::affinity * are set. When called from msix_setup_msi_descs() then the is_virtual * attribute is initialized as well. * * Fill in the rest. */ void msix_prepare_msi_desc(struct pci_dev *dev, struct msi_desc *desc) { desc->nvec_used = 1; desc->pci.msi_attrib.is_msix = 1; desc->pci.msi_attrib.is_64 = 1; desc->pci.msi_attrib.default_irq = dev->irq; desc->pci.mask_base = dev->msix_base; desc->pci.msi_attrib.can_mask = !pci_msi_ignore_mask && !desc->pci.msi_attrib.is_virtual; if (desc->pci.msi_attrib.can_mask) { void __iomem *addr = pci_msix_desc_addr(desc); desc->pci.msix_ctrl = readl(addr + PCI_MSIX_ENTRY_VECTOR_CTRL); } } static int msix_setup_msi_descs(struct pci_dev *dev, struct msix_entry *entries, int nvec, struct irq_affinity_desc *masks) { int ret = 0, i, vec_count = pci_msix_vec_count(dev); struct irq_affinity_desc *curmsk; struct msi_desc desc; memset(&desc, 0, sizeof(desc)); for (i = 0, curmsk = masks; i < nvec; i++, curmsk++) { desc.msi_index = entries ? entries[i].entry : i; desc.affinity = masks ? curmsk : NULL; desc.pci.msi_attrib.is_virtual = desc.msi_index >= vec_count; msix_prepare_msi_desc(dev, &desc); ret = msi_insert_msi_desc(&dev->dev, &desc); if (ret) break; } return ret; } static void msix_update_entries(struct pci_dev *dev, struct msix_entry *entries) { struct msi_desc *desc; if (entries) { msi_for_each_desc(desc, &dev->dev, MSI_DESC_ALL) { entries->vector = desc->irq; entries++; } } } static void msix_mask_all(void __iomem *base, int tsize) { u32 ctrl = PCI_MSIX_ENTRY_CTRL_MASKBIT; int i; if (pci_msi_ignore_mask) return; for (i = 0; i < tsize; i++, base += PCI_MSIX_ENTRY_SIZE) writel(ctrl, base + PCI_MSIX_ENTRY_VECTOR_CTRL); } static int msix_setup_interrupts(struct pci_dev *dev, struct msix_entry *entries, int nvec, struct irq_affinity *affd) { struct irq_affinity_desc *masks = NULL; int ret; if (affd) masks = irq_create_affinity_masks(nvec, affd); msi_lock_descs(&dev->dev); ret = msix_setup_msi_descs(dev, entries, nvec, masks); if (ret) goto out_free; ret = pci_msi_setup_msi_irqs(dev, nvec, PCI_CAP_ID_MSIX); if (ret) goto out_free; /* Check if all MSI entries honor device restrictions */ ret = msi_verify_entries(dev); if (ret) goto out_free; msix_update_entries(dev, entries); goto out_unlock; out_free: pci_free_msi_irqs(dev); out_unlock: msi_unlock_descs(&dev->dev); kfree(masks); return ret; } /** * msix_capability_init - configure device's MSI-X capability * @dev: pointer to the pci_dev data structure of MSI-X device function * @entries: pointer to an array of struct msix_entry entries * @nvec: number of @entries * @affd: Optional pointer to enable automatic affinity assignment * * Setup the MSI-X capability structure of device function with a * single MSI-X IRQ. A return of zero indicates the successful setup of * requested MSI-X entries with allocated IRQs or non-zero for otherwise. **/ static int msix_capability_init(struct pci_dev *dev, struct msix_entry *entries, int nvec, struct irq_affinity *affd) { int ret, tsize; u16 control; /* * Some devices require MSI-X to be enabled before the MSI-X * registers can be accessed. Mask all the vectors to prevent * interrupts coming in before they're fully set up. */ pci_msix_clear_and_set_ctrl(dev, 0, PCI_MSIX_FLAGS_MASKALL | PCI_MSIX_FLAGS_ENABLE); /* Mark it enabled so setup functions can query it */ dev->msix_enabled = 1; pci_read_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, &control); /* Request & Map MSI-X table region */ tsize = msix_table_size(control); dev->msix_base = msix_map_region(dev, tsize); if (!dev->msix_base) { ret = -ENOMEM; goto out_disable; } ret = msix_setup_interrupts(dev, entries, nvec, affd); if (ret) goto out_disable; /* Disable INTX */ pci_intx_for_msi(dev, 0); /* * Ensure that all table entries are masked to prevent * stale entries from firing in a crash kernel. * * Done late to deal with a broken Marvell NVME device * which takes the MSI-X mask bits into account even * when MSI-X is disabled, which prevents MSI delivery. */ msix_mask_all(dev->msix_base, tsize); pci_msix_clear_and_set_ctrl(dev, PCI_MSIX_FLAGS_MASKALL, 0); pcibios_free_irq(dev); return 0; out_disable: dev->msix_enabled = 0; pci_msix_clear_and_set_ctrl(dev, PCI_MSIX_FLAGS_MASKALL | PCI_MSIX_FLAGS_ENABLE, 0); return ret; } static bool pci_msix_validate_entries(struct pci_dev *dev, struct msix_entry *entries, int nvec) { bool nogap; int i, j; if (!entries) return true; nogap = pci_msi_domain_supports(dev, MSI_FLAG_MSIX_CONTIGUOUS, DENY_LEGACY); for (i = 0; i < nvec; i++) { /* Check for duplicate entries */ for (j = i + 1; j < nvec; j++) { if (entries[i].entry == entries[j].entry) return false; } /* Check for unsupported gaps */ if (nogap && entries[i].entry != i) return false; } return true; } int __pci_enable_msix_range(struct pci_dev *dev, struct msix_entry *entries, int minvec, int maxvec, struct irq_affinity *affd, int flags) { int hwsize, rc, nvec = maxvec; if (maxvec < minvec) return -ERANGE; if (dev->msi_enabled) { pci_info(dev, "can't enable MSI-X (MSI already enabled)\n"); return -EINVAL; } if (WARN_ON_ONCE(dev->msix_enabled)) return -EINVAL; /* Check MSI-X early on irq domain enabled architectures */ if (!pci_msi_domain_supports(dev, MSI_FLAG_PCI_MSIX, ALLOW_LEGACY)) return -ENOTSUPP; if (!pci_msi_supported(dev, nvec) || dev->current_state != PCI_D0) return -EINVAL; hwsize = pci_msix_vec_count(dev); if (hwsize < 0) return hwsize; if (!pci_msix_validate_entries(dev, entries, nvec)) return -EINVAL; if (hwsize < nvec) { /* Keep the IRQ virtual hackery working */ if (flags & PCI_IRQ_VIRTUAL) hwsize = nvec; else nvec = hwsize; } if (nvec < minvec) return -ENOSPC; rc = pci_setup_msi_context(dev); if (rc) return rc; if (!pci_setup_msix_device_domain(dev, hwsize)) return -ENODEV; for (;;) { if (affd) { nvec = irq_calc_affinity_vectors(minvec, nvec, affd); if (nvec < minvec) return -ENOSPC; } rc = msix_capability_init(dev, entries, nvec, affd); if (rc == 0) return nvec; if (rc < 0) return rc; if (rc < minvec) return -ENOSPC; nvec = rc; } } void __pci_restore_msix_state(struct pci_dev *dev) { struct msi_desc *entry; bool write_msg; if (!dev->msix_enabled) return; /* route the table */ pci_intx_for_msi(dev, 0); pci_msix_clear_and_set_ctrl(dev, 0, PCI_MSIX_FLAGS_ENABLE | PCI_MSIX_FLAGS_MASKALL); write_msg = arch_restore_msi_irqs(dev); msi_lock_descs(&dev->dev); msi_for_each_desc(entry, &dev->dev, MSI_DESC_ALL) { if (write_msg) __pci_write_msi_msg(entry, &entry->msg); pci_msix_write_vector_ctrl(entry, entry->pci.msix_ctrl); } msi_unlock_descs(&dev->dev); pci_msix_clear_and_set_ctrl(dev, PCI_MSIX_FLAGS_MASKALL, 0); } void pci_msix_shutdown(struct pci_dev *dev) { struct msi_desc *desc; if (!pci_msi_enable || !dev || !dev->msix_enabled) return; if (pci_dev_is_disconnected(dev)) { dev->msix_enabled = 0; return; } /* Return the device with MSI-X masked as initial states */ msi_for_each_desc(desc, &dev->dev, MSI_DESC_ALL) pci_msix_mask(desc); pci_msix_clear_and_set_ctrl(dev, PCI_MSIX_FLAGS_ENABLE, 0); pci_intx_for_msi(dev, 1); dev->msix_enabled = 0; pcibios_alloc_irq(dev); } /* Common interfaces */ void pci_free_msi_irqs(struct pci_dev *dev) { pci_msi_teardown_msi_irqs(dev); if (dev->msix_base) { iounmap(dev->msix_base); dev->msix_base = NULL; } } /* Misc. infrastructure */ struct pci_dev *msi_desc_to_pci_dev(struct msi_desc *desc) { return to_pci_dev(desc->dev); } EXPORT_SYMBOL(msi_desc_to_pci_dev); void pci_no_msi(void) { pci_msi_enable = 0; }