// SPDX-License-Identifier: GPL-2.0 /* * ARM CoreSight Architecture PMU driver. * * This driver adds support for uncore PMU based on ARM CoreSight Performance * Monitoring Unit Architecture. The PMU is accessible via MMIO registers and * like other uncore PMUs, it does not support process specific events and * cannot be used in sampling mode. * * This code is based on other uncore PMUs like ARM DSU PMU. It provides a * generic implementation to operate the PMU according to CoreSight PMU * architecture and ACPI ARM PMU table (APMT) documents below: * - ARM CoreSight PMU architecture document number: ARM IHI 0091 A.a-00bet0. * - APMT document number: ARM DEN0117. * * The user should refer to the vendor technical documentation to get details * about the supported events. * * Copyright (c) 2022-2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. * */ #include #include #include #include #include #include #include #include #include #include "arm_cspmu.h" #define PMUNAME "arm_cspmu" #define DRVNAME "arm-cs-arch-pmu" #define ARM_CSPMU_CPUMASK_ATTR(_name, _config) \ ARM_CSPMU_EXT_ATTR(_name, arm_cspmu_cpumask_show, \ (unsigned long)_config) /* * CoreSight PMU Arch register offsets. */ #define PMEVCNTR_LO 0x0 #define PMEVCNTR_HI 0x4 #define PMEVTYPER 0x400 #define PMCCFILTR 0x47C #define PMEVFILTR 0xA00 #define PMCNTENSET 0xC00 #define PMCNTENCLR 0xC20 #define PMINTENSET 0xC40 #define PMINTENCLR 0xC60 #define PMOVSCLR 0xC80 #define PMOVSSET 0xCC0 #define PMCFGR 0xE00 #define PMCR 0xE04 #define PMIIDR 0xE08 /* PMCFGR register field */ #define PMCFGR_NCG GENMASK(31, 28) #define PMCFGR_HDBG BIT(24) #define PMCFGR_TRO BIT(23) #define PMCFGR_SS BIT(22) #define PMCFGR_FZO BIT(21) #define PMCFGR_MSI BIT(20) #define PMCFGR_UEN BIT(19) #define PMCFGR_NA BIT(17) #define PMCFGR_EX BIT(16) #define PMCFGR_CCD BIT(15) #define PMCFGR_CC BIT(14) #define PMCFGR_SIZE GENMASK(13, 8) #define PMCFGR_N GENMASK(7, 0) /* PMCR register field */ #define PMCR_TRO BIT(11) #define PMCR_HDBG BIT(10) #define PMCR_FZO BIT(9) #define PMCR_NA BIT(8) #define PMCR_DP BIT(5) #define PMCR_X BIT(4) #define PMCR_D BIT(3) #define PMCR_C BIT(2) #define PMCR_P BIT(1) #define PMCR_E BIT(0) /* Each SET/CLR register supports up to 32 counters. */ #define ARM_CSPMU_SET_CLR_COUNTER_SHIFT 5 #define ARM_CSPMU_SET_CLR_COUNTER_NUM \ (1 << ARM_CSPMU_SET_CLR_COUNTER_SHIFT) /* Convert counter idx into SET/CLR register number. */ #define COUNTER_TO_SET_CLR_ID(idx) \ (idx >> ARM_CSPMU_SET_CLR_COUNTER_SHIFT) /* Convert counter idx into SET/CLR register bit. */ #define COUNTER_TO_SET_CLR_BIT(idx) \ (idx & (ARM_CSPMU_SET_CLR_COUNTER_NUM - 1)) #define ARM_CSPMU_ACTIVE_CPU_MASK 0x0 #define ARM_CSPMU_ASSOCIATED_CPU_MASK 0x1 /* Check and use default if implementer doesn't provide attribute callback */ #define CHECK_DEFAULT_IMPL_OPS(ops, callback) \ do { \ if (!ops->callback) \ ops->callback = arm_cspmu_ ## callback; \ } while (0) /* * Maximum poll count for reading counter value using high-low-high sequence. */ #define HILOHI_MAX_POLL 1000 static unsigned long arm_cspmu_cpuhp_state; static DEFINE_MUTEX(arm_cspmu_lock); static void arm_cspmu_set_ev_filter(struct arm_cspmu *cspmu, struct hw_perf_event *hwc, u32 filter); static struct acpi_apmt_node *arm_cspmu_apmt_node(struct device *dev) { return *(struct acpi_apmt_node **)dev_get_platdata(dev); } /* * In CoreSight PMU architecture, all of the MMIO registers are 32-bit except * counter register. The counter register can be implemented as 32-bit or 64-bit * register depending on the value of PMCFGR.SIZE field. For 64-bit access, * single-copy 64-bit atomic support is implementation defined. APMT node flag * is used to identify if the PMU supports 64-bit single copy atomic. If 64-bit * single copy atomic is not supported, the driver treats the register as a pair * of 32-bit register. */ /* * Read 64-bit register as a pair of 32-bit registers using hi-lo-hi sequence. */ static u64 read_reg64_hilohi(const void __iomem *addr, u32 max_poll_count) { u32 val_lo, val_hi; u64 val; /* Use high-low-high sequence to avoid tearing */ do { if (max_poll_count-- == 0) { pr_err("ARM CSPMU: timeout hi-low-high sequence\n"); return 0; } val_hi = readl(addr + 4); val_lo = readl(addr); } while (val_hi != readl(addr + 4)); val = (((u64)val_hi << 32) | val_lo); return val; } /* Check if cycle counter is supported. */ static inline bool supports_cycle_counter(const struct arm_cspmu *cspmu) { return (cspmu->pmcfgr & PMCFGR_CC); } /* Get counter size, which is (PMCFGR_SIZE + 1). */ static inline u32 counter_size(const struct arm_cspmu *cspmu) { return FIELD_GET(PMCFGR_SIZE, cspmu->pmcfgr) + 1; } /* Get counter mask. */ static inline u64 counter_mask(const struct arm_cspmu *cspmu) { return GENMASK_ULL(counter_size(cspmu) - 1, 0); } /* Check if counter is implemented as 64-bit register. */ static inline bool use_64b_counter_reg(const struct arm_cspmu *cspmu) { return (counter_size(cspmu) > 32); } ssize_t arm_cspmu_sysfs_event_show(struct device *dev, struct device_attribute *attr, char *buf) { struct perf_pmu_events_attr *pmu_attr; pmu_attr = container_of(attr, typeof(*pmu_attr), attr); return sysfs_emit(buf, "event=0x%llx\n", pmu_attr->id); } EXPORT_SYMBOL_GPL(arm_cspmu_sysfs_event_show); /* Default event list. */ static struct attribute *arm_cspmu_event_attrs[] = { ARM_CSPMU_EVENT_ATTR(cycles, ARM_CSPMU_EVT_CYCLES_DEFAULT), NULL, }; static struct attribute ** arm_cspmu_get_event_attrs(const struct arm_cspmu *cspmu) { struct attribute **attrs; attrs = devm_kmemdup(cspmu->dev, arm_cspmu_event_attrs, sizeof(arm_cspmu_event_attrs), GFP_KERNEL); return attrs; } static umode_t arm_cspmu_event_attr_is_visible(struct kobject *kobj, struct attribute *attr, int unused) { struct device *dev = kobj_to_dev(kobj); struct arm_cspmu *cspmu = to_arm_cspmu(dev_get_drvdata(dev)); struct perf_pmu_events_attr *eattr; eattr = container_of(attr, typeof(*eattr), attr.attr); /* Hide cycle event if not supported */ if (!supports_cycle_counter(cspmu) && eattr->id == ARM_CSPMU_EVT_CYCLES_DEFAULT) return 0; return attr->mode; } ssize_t arm_cspmu_sysfs_format_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dev_ext_attribute *eattr = container_of(attr, struct dev_ext_attribute, attr); return sysfs_emit(buf, "%s\n", (char *)eattr->var); } EXPORT_SYMBOL_GPL(arm_cspmu_sysfs_format_show); static struct attribute *arm_cspmu_format_attrs[] = { ARM_CSPMU_FORMAT_EVENT_ATTR, ARM_CSPMU_FORMAT_FILTER_ATTR, NULL, }; static struct attribute ** arm_cspmu_get_format_attrs(const struct arm_cspmu *cspmu) { struct attribute **attrs; attrs = devm_kmemdup(cspmu->dev, arm_cspmu_format_attrs, sizeof(arm_cspmu_format_attrs), GFP_KERNEL); return attrs; } static u32 arm_cspmu_event_type(const struct perf_event *event) { return event->attr.config & ARM_CSPMU_EVENT_MASK; } static bool arm_cspmu_is_cycle_counter_event(const struct perf_event *event) { return (event->attr.config == ARM_CSPMU_EVT_CYCLES_DEFAULT); } static u32 arm_cspmu_event_filter(const struct perf_event *event) { return event->attr.config1 & ARM_CSPMU_FILTER_MASK; } static ssize_t arm_cspmu_identifier_show(struct device *dev, struct device_attribute *attr, char *page) { struct arm_cspmu *cspmu = to_arm_cspmu(dev_get_drvdata(dev)); return sysfs_emit(page, "%s\n", cspmu->identifier); } static struct device_attribute arm_cspmu_identifier_attr = __ATTR(identifier, 0444, arm_cspmu_identifier_show, NULL); static struct attribute *arm_cspmu_identifier_attrs[] = { &arm_cspmu_identifier_attr.attr, NULL, }; static struct attribute_group arm_cspmu_identifier_attr_group = { .attrs = arm_cspmu_identifier_attrs, }; static const char *arm_cspmu_get_identifier(const struct arm_cspmu *cspmu) { const char *identifier = devm_kasprintf(cspmu->dev, GFP_KERNEL, "%x", cspmu->impl.pmiidr); return identifier; } static const char *arm_cspmu_type_str[ACPI_APMT_NODE_TYPE_COUNT] = { "mc", "smmu", "pcie", "acpi", "cache", }; static const char *arm_cspmu_get_name(const struct arm_cspmu *cspmu) { struct device *dev; struct acpi_apmt_node *apmt_node; u8 pmu_type; char *name; char acpi_hid_string[ACPI_ID_LEN] = { 0 }; static atomic_t pmu_idx[ACPI_APMT_NODE_TYPE_COUNT] = { 0 }; dev = cspmu->dev; apmt_node = arm_cspmu_apmt_node(dev); pmu_type = apmt_node->type; if (pmu_type >= ACPI_APMT_NODE_TYPE_COUNT) { dev_err(dev, "unsupported PMU type-%u\n", pmu_type); return NULL; } if (pmu_type == ACPI_APMT_NODE_TYPE_ACPI) { memcpy(acpi_hid_string, &apmt_node->inst_primary, sizeof(apmt_node->inst_primary)); name = devm_kasprintf(dev, GFP_KERNEL, "%s_%s_%s_%u", PMUNAME, arm_cspmu_type_str[pmu_type], acpi_hid_string, apmt_node->inst_secondary); } else { name = devm_kasprintf(dev, GFP_KERNEL, "%s_%s_%d", PMUNAME, arm_cspmu_type_str[pmu_type], atomic_fetch_inc(&pmu_idx[pmu_type])); } return name; } static ssize_t arm_cspmu_cpumask_show(struct device *dev, struct device_attribute *attr, char *buf) { struct pmu *pmu = dev_get_drvdata(dev); struct arm_cspmu *cspmu = to_arm_cspmu(pmu); struct dev_ext_attribute *eattr = container_of(attr, struct dev_ext_attribute, attr); unsigned long mask_id = (unsigned long)eattr->var; const cpumask_t *cpumask; switch (mask_id) { case ARM_CSPMU_ACTIVE_CPU_MASK: cpumask = &cspmu->active_cpu; break; case ARM_CSPMU_ASSOCIATED_CPU_MASK: cpumask = &cspmu->associated_cpus; break; default: return 0; } return cpumap_print_to_pagebuf(true, buf, cpumask); } static struct attribute *arm_cspmu_cpumask_attrs[] = { ARM_CSPMU_CPUMASK_ATTR(cpumask, ARM_CSPMU_ACTIVE_CPU_MASK), ARM_CSPMU_CPUMASK_ATTR(associated_cpus, ARM_CSPMU_ASSOCIATED_CPU_MASK), NULL, }; static struct attribute_group arm_cspmu_cpumask_attr_group = { .attrs = arm_cspmu_cpumask_attrs, }; static struct arm_cspmu_impl_match impl_match[] = { { .module_name = "nvidia_cspmu", .pmiidr_val = ARM_CSPMU_IMPL_ID_NVIDIA, .pmiidr_mask = ARM_CSPMU_PMIIDR_IMPLEMENTER, .module = NULL, .impl_init_ops = NULL, }, { .module_name = "ampere_cspmu", .pmiidr_val = ARM_CSPMU_IMPL_ID_AMPERE, .pmiidr_mask = ARM_CSPMU_PMIIDR_IMPLEMENTER, .module = NULL, .impl_init_ops = NULL, }, {0} }; static struct arm_cspmu_impl_match *arm_cspmu_impl_match_get(u32 pmiidr) { struct arm_cspmu_impl_match *match = impl_match; for (; match->pmiidr_val; match++) { u32 mask = match->pmiidr_mask; if ((match->pmiidr_val & mask) == (pmiidr & mask)) return match; } return NULL; } static int arm_cspmu_init_impl_ops(struct arm_cspmu *cspmu) { int ret = 0; struct arm_cspmu_impl_ops *impl_ops = &cspmu->impl.ops; struct acpi_apmt_node *apmt_node = arm_cspmu_apmt_node(cspmu->dev); struct arm_cspmu_impl_match *match; /* * Get PMU implementer and product id from APMT node. * If APMT node doesn't have implementer/product id, try get it * from PMIIDR. */ cspmu->impl.pmiidr = (apmt_node->impl_id) ? apmt_node->impl_id : readl(cspmu->base0 + PMIIDR); /* Find implementer specific attribute ops. */ match = arm_cspmu_impl_match_get(cspmu->impl.pmiidr); /* Load implementer module and initialize the callbacks. */ if (match) { mutex_lock(&arm_cspmu_lock); if (match->impl_init_ops) { /* Prevent unload until PMU registration is done. */ if (try_module_get(match->module)) { cspmu->impl.module = match->module; cspmu->impl.match = match; ret = match->impl_init_ops(cspmu); if (ret) module_put(match->module); } else { WARN(1, "arm_cspmu failed to get module: %s\n", match->module_name); ret = -EINVAL; } } else { request_module_nowait(match->module_name); ret = -EPROBE_DEFER; } mutex_unlock(&arm_cspmu_lock); if (ret) return ret; } else cspmu->impl.module = THIS_MODULE; /* Use default callbacks if implementer doesn't provide one. */ CHECK_DEFAULT_IMPL_OPS(impl_ops, get_event_attrs); CHECK_DEFAULT_IMPL_OPS(impl_ops, get_format_attrs); CHECK_DEFAULT_IMPL_OPS(impl_ops, get_identifier); CHECK_DEFAULT_IMPL_OPS(impl_ops, get_name); CHECK_DEFAULT_IMPL_OPS(impl_ops, is_cycle_counter_event); CHECK_DEFAULT_IMPL_OPS(impl_ops, event_type); CHECK_DEFAULT_IMPL_OPS(impl_ops, event_filter); CHECK_DEFAULT_IMPL_OPS(impl_ops, event_attr_is_visible); CHECK_DEFAULT_IMPL_OPS(impl_ops, set_ev_filter); return 0; } static struct attribute_group * arm_cspmu_alloc_event_attr_group(struct arm_cspmu *cspmu) { struct attribute_group *event_group; struct device *dev = cspmu->dev; const struct arm_cspmu_impl_ops *impl_ops = &cspmu->impl.ops; event_group = devm_kzalloc(dev, sizeof(struct attribute_group), GFP_KERNEL); if (!event_group) return NULL; event_group->name = "events"; event_group->is_visible = impl_ops->event_attr_is_visible; event_group->attrs = impl_ops->get_event_attrs(cspmu); if (!event_group->attrs) return NULL; return event_group; } static struct attribute_group * arm_cspmu_alloc_format_attr_group(struct arm_cspmu *cspmu) { struct attribute_group *format_group; struct device *dev = cspmu->dev; format_group = devm_kzalloc(dev, sizeof(struct attribute_group), GFP_KERNEL); if (!format_group) return NULL; format_group->name = "format"; format_group->attrs = cspmu->impl.ops.get_format_attrs(cspmu); if (!format_group->attrs) return NULL; return format_group; } static struct attribute_group ** arm_cspmu_alloc_attr_group(struct arm_cspmu *cspmu) { struct attribute_group **attr_groups = NULL; struct device *dev = cspmu->dev; const struct arm_cspmu_impl_ops *impl_ops = &cspmu->impl.ops; cspmu->identifier = impl_ops->get_identifier(cspmu); cspmu->name = impl_ops->get_name(cspmu); if (!cspmu->identifier || !cspmu->name) return NULL; attr_groups = devm_kcalloc(dev, 5, sizeof(struct attribute_group *), GFP_KERNEL); if (!attr_groups) return NULL; attr_groups[0] = arm_cspmu_alloc_event_attr_group(cspmu); attr_groups[1] = arm_cspmu_alloc_format_attr_group(cspmu); attr_groups[2] = &arm_cspmu_identifier_attr_group; attr_groups[3] = &arm_cspmu_cpumask_attr_group; if (!attr_groups[0] || !attr_groups[1]) return NULL; return attr_groups; } static inline void arm_cspmu_reset_counters(struct arm_cspmu *cspmu) { u32 pmcr = 0; pmcr |= PMCR_P; pmcr |= PMCR_C; writel(pmcr, cspmu->base0 + PMCR); } static inline void arm_cspmu_start_counters(struct arm_cspmu *cspmu) { writel(PMCR_E, cspmu->base0 + PMCR); } static inline void arm_cspmu_stop_counters(struct arm_cspmu *cspmu) { writel(0, cspmu->base0 + PMCR); } static void arm_cspmu_enable(struct pmu *pmu) { bool disabled; struct arm_cspmu *cspmu = to_arm_cspmu(pmu); disabled = bitmap_empty(cspmu->hw_events.used_ctrs, cspmu->num_logical_ctrs); if (disabled) return; arm_cspmu_start_counters(cspmu); } static void arm_cspmu_disable(struct pmu *pmu) { struct arm_cspmu *cspmu = to_arm_cspmu(pmu); arm_cspmu_stop_counters(cspmu); } static int arm_cspmu_get_event_idx(struct arm_cspmu_hw_events *hw_events, struct perf_event *event) { int idx, ret; struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu); if (supports_cycle_counter(cspmu)) { if (cspmu->impl.ops.is_cycle_counter_event(event)) { /* Search for available cycle counter. */ if (test_and_set_bit(cspmu->cycle_counter_logical_idx, hw_events->used_ctrs)) return -EAGAIN; return cspmu->cycle_counter_logical_idx; } /* * Search a regular counter from the used counter bitmap. * The cycle counter divides the bitmap into two parts. Search * the first then second half to exclude the cycle counter bit. */ idx = find_first_zero_bit(hw_events->used_ctrs, cspmu->cycle_counter_logical_idx); if (idx >= cspmu->cycle_counter_logical_idx) { idx = find_next_zero_bit( hw_events->used_ctrs, cspmu->num_logical_ctrs, cspmu->cycle_counter_logical_idx + 1); } } else { idx = find_first_zero_bit(hw_events->used_ctrs, cspmu->num_logical_ctrs); } if (idx >= cspmu->num_logical_ctrs) return -EAGAIN; if (cspmu->impl.ops.validate_event) { ret = cspmu->impl.ops.validate_event(cspmu, event); if (ret) return ret; } set_bit(idx, hw_events->used_ctrs); return idx; } static bool arm_cspmu_validate_event(struct pmu *pmu, struct arm_cspmu_hw_events *hw_events, struct perf_event *event) { if (is_software_event(event)) return true; /* Reject groups spanning multiple HW PMUs. */ if (event->pmu != pmu) return false; return (arm_cspmu_get_event_idx(hw_events, event) >= 0); } /* * Make sure the group of events can be scheduled at once * on the PMU. */ static bool arm_cspmu_validate_group(struct perf_event *event) { struct perf_event *sibling, *leader = event->group_leader; struct arm_cspmu_hw_events fake_hw_events; if (event->group_leader == event) return true; memset(&fake_hw_events, 0, sizeof(fake_hw_events)); if (!arm_cspmu_validate_event(event->pmu, &fake_hw_events, leader)) return false; for_each_sibling_event(sibling, leader) { if (!arm_cspmu_validate_event(event->pmu, &fake_hw_events, sibling)) return false; } return arm_cspmu_validate_event(event->pmu, &fake_hw_events, event); } static int arm_cspmu_event_init(struct perf_event *event) { struct arm_cspmu *cspmu; struct hw_perf_event *hwc = &event->hw; cspmu = to_arm_cspmu(event->pmu); if (event->attr.type != event->pmu->type) return -ENOENT; /* * Following other "uncore" PMUs, we do not support sampling mode or * attach to a task (per-process mode). */ if (is_sampling_event(event)) { dev_dbg(cspmu->pmu.dev, "Can't support sampling events\n"); return -EOPNOTSUPP; } if (event->cpu < 0 || event->attach_state & PERF_ATTACH_TASK) { dev_dbg(cspmu->pmu.dev, "Can't support per-task counters\n"); return -EINVAL; } /* * Make sure the CPU assignment is on one of the CPUs associated with * this PMU. */ if (!cpumask_test_cpu(event->cpu, &cspmu->associated_cpus)) { dev_dbg(cspmu->pmu.dev, "Requested cpu is not associated with the PMU\n"); return -EINVAL; } /* Enforce the current active CPU to handle the events in this PMU. */ event->cpu = cpumask_first(&cspmu->active_cpu); if (event->cpu >= nr_cpu_ids) return -EINVAL; if (!arm_cspmu_validate_group(event)) return -EINVAL; /* * The logical counter id is tracked with hw_perf_event.extra_reg.idx. * The physical counter id is tracked with hw_perf_event.idx. * We don't assign an index until we actually place the event onto * hardware. Use -1 to signify that we haven't decided where to put it * yet. */ hwc->idx = -1; hwc->extra_reg.idx = -1; hwc->config = cspmu->impl.ops.event_type(event); return 0; } static inline u32 counter_offset(u32 reg_sz, u32 ctr_idx) { return (PMEVCNTR_LO + (reg_sz * ctr_idx)); } static void arm_cspmu_write_counter(struct perf_event *event, u64 val) { u32 offset; struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu); if (use_64b_counter_reg(cspmu)) { offset = counter_offset(sizeof(u64), event->hw.idx); if (cspmu->has_atomic_dword) writeq(val, cspmu->base1 + offset); else lo_hi_writeq(val, cspmu->base1 + offset); } else { offset = counter_offset(sizeof(u32), event->hw.idx); writel(lower_32_bits(val), cspmu->base1 + offset); } } static u64 arm_cspmu_read_counter(struct perf_event *event) { u32 offset; const void __iomem *counter_addr; struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu); if (use_64b_counter_reg(cspmu)) { offset = counter_offset(sizeof(u64), event->hw.idx); counter_addr = cspmu->base1 + offset; return cspmu->has_atomic_dword ? readq(counter_addr) : read_reg64_hilohi(counter_addr, HILOHI_MAX_POLL); } offset = counter_offset(sizeof(u32), event->hw.idx); return readl(cspmu->base1 + offset); } /* * arm_cspmu_set_event_period: Set the period for the counter. * * To handle cases of extreme interrupt latency, we program * the counter with half of the max count for the counters. */ static void arm_cspmu_set_event_period(struct perf_event *event) { struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu); u64 val = counter_mask(cspmu) >> 1ULL; local64_set(&event->hw.prev_count, val); arm_cspmu_write_counter(event, val); } static void arm_cspmu_enable_counter(struct arm_cspmu *cspmu, int idx) { u32 reg_id, reg_bit, inten_off, cnten_off; reg_id = COUNTER_TO_SET_CLR_ID(idx); reg_bit = COUNTER_TO_SET_CLR_BIT(idx); inten_off = PMINTENSET + (4 * reg_id); cnten_off = PMCNTENSET + (4 * reg_id); writel(BIT(reg_bit), cspmu->base0 + inten_off); writel(BIT(reg_bit), cspmu->base0 + cnten_off); } static void arm_cspmu_disable_counter(struct arm_cspmu *cspmu, int idx) { u32 reg_id, reg_bit, inten_off, cnten_off; reg_id = COUNTER_TO_SET_CLR_ID(idx); reg_bit = COUNTER_TO_SET_CLR_BIT(idx); inten_off = PMINTENCLR + (4 * reg_id); cnten_off = PMCNTENCLR + (4 * reg_id); writel(BIT(reg_bit), cspmu->base0 + cnten_off); writel(BIT(reg_bit), cspmu->base0 + inten_off); } static void arm_cspmu_event_update(struct perf_event *event) { struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu); struct hw_perf_event *hwc = &event->hw; u64 delta, prev, now; do { prev = local64_read(&hwc->prev_count); now = arm_cspmu_read_counter(event); } while (local64_cmpxchg(&hwc->prev_count, prev, now) != prev); delta = (now - prev) & counter_mask(cspmu); local64_add(delta, &event->count); } static inline void arm_cspmu_set_event(struct arm_cspmu *cspmu, struct hw_perf_event *hwc) { u32 offset = PMEVTYPER + (4 * hwc->idx); writel(hwc->config, cspmu->base0 + offset); } static void arm_cspmu_set_ev_filter(struct arm_cspmu *cspmu, struct hw_perf_event *hwc, u32 filter) { u32 offset = PMEVFILTR + (4 * hwc->idx); writel(filter, cspmu->base0 + offset); } static inline void arm_cspmu_set_cc_filter(struct arm_cspmu *cspmu, u32 filter) { u32 offset = PMCCFILTR; writel(filter, cspmu->base0 + offset); } static void arm_cspmu_start(struct perf_event *event, int pmu_flags) { struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu); struct hw_perf_event *hwc = &event->hw; u32 filter; /* We always reprogram the counter */ if (pmu_flags & PERF_EF_RELOAD) WARN_ON(!(hwc->state & PERF_HES_UPTODATE)); arm_cspmu_set_event_period(event); filter = cspmu->impl.ops.event_filter(event); if (event->hw.extra_reg.idx == cspmu->cycle_counter_logical_idx) { arm_cspmu_set_cc_filter(cspmu, filter); } else { arm_cspmu_set_event(cspmu, hwc); cspmu->impl.ops.set_ev_filter(cspmu, hwc, filter); } hwc->state = 0; arm_cspmu_enable_counter(cspmu, hwc->idx); } static void arm_cspmu_stop(struct perf_event *event, int pmu_flags) { struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu); struct hw_perf_event *hwc = &event->hw; if (hwc->state & PERF_HES_STOPPED) return; arm_cspmu_disable_counter(cspmu, hwc->idx); arm_cspmu_event_update(event); hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; } static inline u32 to_phys_idx(struct arm_cspmu *cspmu, u32 idx) { return (idx == cspmu->cycle_counter_logical_idx) ? ARM_CSPMU_CYCLE_CNTR_IDX : idx; } static int arm_cspmu_add(struct perf_event *event, int flags) { struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu); struct arm_cspmu_hw_events *hw_events = &cspmu->hw_events; struct hw_perf_event *hwc = &event->hw; int idx; if (WARN_ON_ONCE(!cpumask_test_cpu(smp_processor_id(), &cspmu->associated_cpus))) return -ENOENT; idx = arm_cspmu_get_event_idx(hw_events, event); if (idx < 0) return idx; hw_events->events[idx] = event; hwc->idx = to_phys_idx(cspmu, idx); hwc->extra_reg.idx = idx; hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE; if (flags & PERF_EF_START) arm_cspmu_start(event, PERF_EF_RELOAD); /* Propagate changes to the userspace mapping. */ perf_event_update_userpage(event); return 0; } static void arm_cspmu_del(struct perf_event *event, int flags) { struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu); struct arm_cspmu_hw_events *hw_events = &cspmu->hw_events; struct hw_perf_event *hwc = &event->hw; int idx = hwc->extra_reg.idx; arm_cspmu_stop(event, PERF_EF_UPDATE); hw_events->events[idx] = NULL; clear_bit(idx, hw_events->used_ctrs); perf_event_update_userpage(event); } static void arm_cspmu_read(struct perf_event *event) { arm_cspmu_event_update(event); } static struct arm_cspmu *arm_cspmu_alloc(struct platform_device *pdev) { struct acpi_apmt_node *apmt_node; struct arm_cspmu *cspmu; struct device *dev = &pdev->dev; cspmu = devm_kzalloc(dev, sizeof(*cspmu), GFP_KERNEL); if (!cspmu) return NULL; cspmu->dev = dev; platform_set_drvdata(pdev, cspmu); apmt_node = arm_cspmu_apmt_node(dev); cspmu->has_atomic_dword = apmt_node->flags & ACPI_APMT_FLAGS_ATOMIC; return cspmu; } static int arm_cspmu_init_mmio(struct arm_cspmu *cspmu) { struct device *dev; struct platform_device *pdev; dev = cspmu->dev; pdev = to_platform_device(dev); /* Base address for page 0. */ cspmu->base0 = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(cspmu->base0)) { dev_err(dev, "ioremap failed for page-0 resource\n"); return PTR_ERR(cspmu->base0); } /* Base address for page 1 if supported. Otherwise point to page 0. */ cspmu->base1 = cspmu->base0; if (platform_get_resource(pdev, IORESOURCE_MEM, 1)) { cspmu->base1 = devm_platform_ioremap_resource(pdev, 1); if (IS_ERR(cspmu->base1)) { dev_err(dev, "ioremap failed for page-1 resource\n"); return PTR_ERR(cspmu->base1); } } cspmu->pmcfgr = readl(cspmu->base0 + PMCFGR); cspmu->num_logical_ctrs = FIELD_GET(PMCFGR_N, cspmu->pmcfgr) + 1; cspmu->cycle_counter_logical_idx = ARM_CSPMU_MAX_HW_CNTRS; if (supports_cycle_counter(cspmu)) { /* * The last logical counter is mapped to cycle counter if * there is a gap between regular and cycle counter. Otherwise, * logical and physical have 1-to-1 mapping. */ cspmu->cycle_counter_logical_idx = (cspmu->num_logical_ctrs <= ARM_CSPMU_CYCLE_CNTR_IDX) ? cspmu->num_logical_ctrs - 1 : ARM_CSPMU_CYCLE_CNTR_IDX; } cspmu->num_set_clr_reg = DIV_ROUND_UP(cspmu->num_logical_ctrs, ARM_CSPMU_SET_CLR_COUNTER_NUM); cspmu->hw_events.events = devm_kcalloc(dev, cspmu->num_logical_ctrs, sizeof(*cspmu->hw_events.events), GFP_KERNEL); if (!cspmu->hw_events.events) return -ENOMEM; return 0; } static inline int arm_cspmu_get_reset_overflow(struct arm_cspmu *cspmu, u32 *pmovs) { int i; u32 pmovclr_offset = PMOVSCLR; u32 has_overflowed = 0; for (i = 0; i < cspmu->num_set_clr_reg; ++i) { pmovs[i] = readl(cspmu->base1 + pmovclr_offset); has_overflowed |= pmovs[i]; writel(pmovs[i], cspmu->base1 + pmovclr_offset); pmovclr_offset += sizeof(u32); } return has_overflowed != 0; } static irqreturn_t arm_cspmu_handle_irq(int irq_num, void *dev) { int idx, has_overflowed; struct perf_event *event; struct arm_cspmu *cspmu = dev; DECLARE_BITMAP(pmovs, ARM_CSPMU_MAX_HW_CNTRS); bool handled = false; arm_cspmu_stop_counters(cspmu); has_overflowed = arm_cspmu_get_reset_overflow(cspmu, (u32 *)pmovs); if (!has_overflowed) goto done; for_each_set_bit(idx, cspmu->hw_events.used_ctrs, cspmu->num_logical_ctrs) { event = cspmu->hw_events.events[idx]; if (!event) continue; if (!test_bit(event->hw.idx, pmovs)) continue; arm_cspmu_event_update(event); arm_cspmu_set_event_period(event); handled = true; } done: arm_cspmu_start_counters(cspmu); return IRQ_RETVAL(handled); } static int arm_cspmu_request_irq(struct arm_cspmu *cspmu) { int irq, ret; struct device *dev; struct platform_device *pdev; dev = cspmu->dev; pdev = to_platform_device(dev); /* Skip IRQ request if the PMU does not support overflow interrupt. */ irq = platform_get_irq_optional(pdev, 0); if (irq < 0) return irq == -ENXIO ? 0 : irq; ret = devm_request_irq(dev, irq, arm_cspmu_handle_irq, IRQF_NOBALANCING | IRQF_NO_THREAD, dev_name(dev), cspmu); if (ret) { dev_err(dev, "Could not request IRQ %d\n", irq); return ret; } cspmu->irq = irq; return 0; } #if defined(CONFIG_ACPI) && defined(CONFIG_ARM64) #include static inline int arm_cspmu_find_cpu_container(int cpu, u32 container_uid) { struct device *cpu_dev; struct acpi_device *acpi_dev; cpu_dev = get_cpu_device(cpu); if (!cpu_dev) return -ENODEV; acpi_dev = ACPI_COMPANION(cpu_dev); while (acpi_dev) { if (acpi_dev_hid_uid_match(acpi_dev, ACPI_PROCESSOR_CONTAINER_HID, container_uid)) return 0; acpi_dev = acpi_dev_parent(acpi_dev); } return -ENODEV; } static int arm_cspmu_acpi_get_cpus(struct arm_cspmu *cspmu) { struct acpi_apmt_node *apmt_node; int affinity_flag; int cpu; apmt_node = arm_cspmu_apmt_node(cspmu->dev); affinity_flag = apmt_node->flags & ACPI_APMT_FLAGS_AFFINITY; if (affinity_flag == ACPI_APMT_FLAGS_AFFINITY_PROC) { for_each_possible_cpu(cpu) { if (apmt_node->proc_affinity == get_acpi_id_for_cpu(cpu)) { cpumask_set_cpu(cpu, &cspmu->associated_cpus); break; } } } else { for_each_possible_cpu(cpu) { if (arm_cspmu_find_cpu_container( cpu, apmt_node->proc_affinity)) continue; cpumask_set_cpu(cpu, &cspmu->associated_cpus); } } if (cpumask_empty(&cspmu->associated_cpus)) { dev_dbg(cspmu->dev, "No cpu associated with the PMU\n"); return -ENODEV; } return 0; } #else static int arm_cspmu_acpi_get_cpus(struct arm_cspmu *cspmu) { return -ENODEV; } #endif static int arm_cspmu_get_cpus(struct arm_cspmu *cspmu) { return arm_cspmu_acpi_get_cpus(cspmu); } static int arm_cspmu_register_pmu(struct arm_cspmu *cspmu) { int ret, capabilities; struct attribute_group **attr_groups; attr_groups = arm_cspmu_alloc_attr_group(cspmu); if (!attr_groups) return -ENOMEM; ret = cpuhp_state_add_instance(arm_cspmu_cpuhp_state, &cspmu->cpuhp_node); if (ret) return ret; capabilities = PERF_PMU_CAP_NO_EXCLUDE; if (cspmu->irq == 0) capabilities |= PERF_PMU_CAP_NO_INTERRUPT; cspmu->pmu = (struct pmu){ .task_ctx_nr = perf_invalid_context, .module = cspmu->impl.module, .pmu_enable = arm_cspmu_enable, .pmu_disable = arm_cspmu_disable, .event_init = arm_cspmu_event_init, .add = arm_cspmu_add, .del = arm_cspmu_del, .start = arm_cspmu_start, .stop = arm_cspmu_stop, .read = arm_cspmu_read, .attr_groups = (const struct attribute_group **)attr_groups, .capabilities = capabilities, }; /* Hardware counter init */ arm_cspmu_stop_counters(cspmu); arm_cspmu_reset_counters(cspmu); ret = perf_pmu_register(&cspmu->pmu, cspmu->name, -1); if (ret) { cpuhp_state_remove_instance(arm_cspmu_cpuhp_state, &cspmu->cpuhp_node); } return ret; } static int arm_cspmu_device_probe(struct platform_device *pdev) { int ret; struct arm_cspmu *cspmu; cspmu = arm_cspmu_alloc(pdev); if (!cspmu) return -ENOMEM; ret = arm_cspmu_init_mmio(cspmu); if (ret) return ret; ret = arm_cspmu_request_irq(cspmu); if (ret) return ret; ret = arm_cspmu_get_cpus(cspmu); if (ret) return ret; ret = arm_cspmu_init_impl_ops(cspmu); if (ret) return ret; ret = arm_cspmu_register_pmu(cspmu); /* Matches arm_cspmu_init_impl_ops() above. */ if (cspmu->impl.module != THIS_MODULE) module_put(cspmu->impl.module); return ret; } static int arm_cspmu_device_remove(struct platform_device *pdev) { struct arm_cspmu *cspmu = platform_get_drvdata(pdev); perf_pmu_unregister(&cspmu->pmu); cpuhp_state_remove_instance(arm_cspmu_cpuhp_state, &cspmu->cpuhp_node); return 0; } static const struct platform_device_id arm_cspmu_id[] = { {DRVNAME, 0}, { }, }; MODULE_DEVICE_TABLE(platform, arm_cspmu_id); static struct platform_driver arm_cspmu_driver = { .driver = { .name = DRVNAME, .suppress_bind_attrs = true, }, .probe = arm_cspmu_device_probe, .remove = arm_cspmu_device_remove, .id_table = arm_cspmu_id, }; static void arm_cspmu_set_active_cpu(int cpu, struct arm_cspmu *cspmu) { cpumask_set_cpu(cpu, &cspmu->active_cpu); if (cspmu->irq) WARN_ON(irq_set_affinity(cspmu->irq, &cspmu->active_cpu)); } static int arm_cspmu_cpu_online(unsigned int cpu, struct hlist_node *node) { struct arm_cspmu *cspmu = hlist_entry_safe(node, struct arm_cspmu, cpuhp_node); if (!cpumask_test_cpu(cpu, &cspmu->associated_cpus)) return 0; /* If the PMU is already managed, there is nothing to do */ if (!cpumask_empty(&cspmu->active_cpu)) return 0; /* Use this CPU for event counting */ arm_cspmu_set_active_cpu(cpu, cspmu); return 0; } static int arm_cspmu_cpu_teardown(unsigned int cpu, struct hlist_node *node) { int dst; struct cpumask online_supported; struct arm_cspmu *cspmu = hlist_entry_safe(node, struct arm_cspmu, cpuhp_node); /* Nothing to do if this CPU doesn't own the PMU */ if (!cpumask_test_and_clear_cpu(cpu, &cspmu->active_cpu)) return 0; /* Choose a new CPU to migrate ownership of the PMU to */ cpumask_and(&online_supported, &cspmu->associated_cpus, cpu_online_mask); dst = cpumask_any_but(&online_supported, cpu); if (dst >= nr_cpu_ids) return 0; /* Use this CPU for event counting */ perf_pmu_migrate_context(&cspmu->pmu, cpu, dst); arm_cspmu_set_active_cpu(dst, cspmu); return 0; } static int __init arm_cspmu_init(void) { int ret; ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "perf/arm/cspmu:online", arm_cspmu_cpu_online, arm_cspmu_cpu_teardown); if (ret < 0) return ret; arm_cspmu_cpuhp_state = ret; return platform_driver_register(&arm_cspmu_driver); } static void __exit arm_cspmu_exit(void) { platform_driver_unregister(&arm_cspmu_driver); cpuhp_remove_multi_state(arm_cspmu_cpuhp_state); } int arm_cspmu_impl_register(const struct arm_cspmu_impl_match *impl_match) { struct arm_cspmu_impl_match *match; int ret = 0; match = arm_cspmu_impl_match_get(impl_match->pmiidr_val); if (match) { mutex_lock(&arm_cspmu_lock); if (!match->impl_init_ops) { match->module = impl_match->module; match->impl_init_ops = impl_match->impl_init_ops; } else { /* Broken match table may contain non-unique entries */ WARN(1, "arm_cspmu backend already registered for module: %s, pmiidr: 0x%x, mask: 0x%x\n", match->module_name, match->pmiidr_val, match->pmiidr_mask); ret = -EINVAL; } mutex_unlock(&arm_cspmu_lock); if (!ret) ret = driver_attach(&arm_cspmu_driver.driver); } else { pr_err("arm_cspmu reg failed, unable to find a match for pmiidr: 0x%x\n", impl_match->pmiidr_val); ret = -EINVAL; } return ret; } EXPORT_SYMBOL_GPL(arm_cspmu_impl_register); static int arm_cspmu_match_device(struct device *dev, const void *match) { struct arm_cspmu *cspmu = platform_get_drvdata(to_platform_device(dev)); return (cspmu && cspmu->impl.match == match) ? 1 : 0; } void arm_cspmu_impl_unregister(const struct arm_cspmu_impl_match *impl_match) { struct device *dev; struct arm_cspmu_impl_match *match; match = arm_cspmu_impl_match_get(impl_match->pmiidr_val); if (WARN_ON(!match)) return; /* Unbind the driver from all matching backend devices. */ while ((dev = driver_find_device(&arm_cspmu_driver.driver, NULL, match, arm_cspmu_match_device))) device_release_driver(dev); mutex_lock(&arm_cspmu_lock); match->module = NULL; match->impl_init_ops = NULL; mutex_unlock(&arm_cspmu_lock); } EXPORT_SYMBOL_GPL(arm_cspmu_impl_unregister); module_init(arm_cspmu_init); module_exit(arm_cspmu_exit); MODULE_LICENSE("GPL v2");