// SPDX-License-Identifier: GPL-2.0 /* * STMicroelectronics STM32 USB PHY Controller driver * * Copyright (C) 2018 STMicroelectronics * Author(s): Amelie Delaunay . */ #include #include #include #include #include #include #include #include #include #include #include #define STM32_USBPHYC_PLL 0x0 #define STM32_USBPHYC_MISC 0x8 #define STM32_USBPHYC_MONITOR(X) (0x108 + ((X) * 0x100)) #define STM32_USBPHYC_TUNE(X) (0x10C + ((X) * 0x100)) #define STM32_USBPHYC_VERSION 0x3F4 /* STM32_USBPHYC_PLL bit fields */ #define PLLNDIV GENMASK(6, 0) #define PLLFRACIN GENMASK(25, 10) #define PLLEN BIT(26) #define PLLSTRB BIT(27) #define PLLSTRBYP BIT(28) #define PLLFRACCTL BIT(29) #define PLLDITHEN0 BIT(30) #define PLLDITHEN1 BIT(31) /* STM32_USBPHYC_MISC bit fields */ #define SWITHOST BIT(0) /* STM32_USBPHYC_MONITOR bit fields */ #define STM32_USBPHYC_MON_OUT GENMASK(3, 0) #define STM32_USBPHYC_MON_SEL GENMASK(8, 4) #define STM32_USBPHYC_MON_SEL_LOCKP 0x1F #define STM32_USBPHYC_MON_OUT_LOCKP BIT(3) /* STM32_USBPHYC_TUNE bit fields */ #define INCURREN BIT(0) #define INCURRINT BIT(1) #define LFSCAPEN BIT(2) #define HSDRVSLEW BIT(3) #define HSDRVDCCUR BIT(4) #define HSDRVDCLEV BIT(5) #define HSDRVCURINCR BIT(6) #define FSDRVRFADJ BIT(7) #define HSDRVRFRED BIT(8) #define HSDRVCHKITRM GENMASK(12, 9) #define HSDRVCHKZTRM GENMASK(14, 13) #define OTPCOMP GENMASK(19, 15) #define SQLCHCTL GENMASK(21, 20) #define HDRXGNEQEN BIT(22) #define HSRXOFF GENMASK(24, 23) #define HSFALLPREEM BIT(25) #define SHTCCTCTLPROT BIT(26) #define STAGSEL BIT(27) enum boosting_vals { BOOST_1000_UA = 1000, BOOST_2000_UA = 2000, }; enum dc_level_vals { DC_NOMINAL, DC_PLUS_5_TO_7_MV, DC_PLUS_10_TO_14_MV, DC_MINUS_5_TO_7_MV, DC_MAX, }; enum current_trim { CUR_NOMINAL, CUR_PLUS_1_56_PCT, CUR_PLUS_3_12_PCT, CUR_PLUS_4_68_PCT, CUR_PLUS_6_24_PCT, CUR_PLUS_7_8_PCT, CUR_PLUS_9_36_PCT, CUR_PLUS_10_92_PCT, CUR_PLUS_12_48_PCT, CUR_PLUS_14_04_PCT, CUR_PLUS_15_6_PCT, CUR_PLUS_17_16_PCT, CUR_PLUS_19_01_PCT, CUR_PLUS_20_58_PCT, CUR_PLUS_22_16_PCT, CUR_PLUS_23_73_PCT, CUR_MAX, }; enum impedance_trim { IMP_NOMINAL, IMP_MINUS_2_OHMS, IMP_MINUS_4_OMHS, IMP_MINUS_6_OHMS, IMP_MAX, }; enum squelch_level { SQLCH_NOMINAL, SQLCH_PLUS_7_MV, SQLCH_MINUS_5_MV, SQLCH_PLUS_14_MV, SQLCH_MAX, }; enum rx_offset { NO_RX_OFFSET, RX_OFFSET_PLUS_5_MV, RX_OFFSET_PLUS_10_MV, RX_OFFSET_MINUS_5_MV, RX_OFFSET_MAX, }; /* STM32_USBPHYC_VERSION bit fields */ #define MINREV GENMASK(3, 0) #define MAJREV GENMASK(7, 4) #define PLL_FVCO_MHZ 2880 #define PLL_INFF_MIN_RATE_HZ 19200000 #define PLL_INFF_MAX_RATE_HZ 38400000 struct pll_params { u8 ndiv; u16 frac; }; struct stm32_usbphyc_phy { struct phy *phy; struct stm32_usbphyc *usbphyc; struct regulator *vbus; u32 index; bool active; u32 tune; }; struct stm32_usbphyc { struct device *dev; void __iomem *base; struct clk *clk; struct reset_control *rst; struct stm32_usbphyc_phy **phys; int nphys; struct regulator *vdda1v1; struct regulator *vdda1v8; atomic_t n_pll_cons; struct clk_hw clk48_hw; int switch_setup; }; static inline void stm32_usbphyc_set_bits(void __iomem *reg, u32 bits) { writel_relaxed(readl_relaxed(reg) | bits, reg); } static inline void stm32_usbphyc_clr_bits(void __iomem *reg, u32 bits) { writel_relaxed(readl_relaxed(reg) & ~bits, reg); } static int stm32_usbphyc_regulators_enable(struct stm32_usbphyc *usbphyc) { int ret; ret = regulator_enable(usbphyc->vdda1v1); if (ret) return ret; ret = regulator_enable(usbphyc->vdda1v8); if (ret) goto vdda1v1_disable; return 0; vdda1v1_disable: regulator_disable(usbphyc->vdda1v1); return ret; } static int stm32_usbphyc_regulators_disable(struct stm32_usbphyc *usbphyc) { int ret; ret = regulator_disable(usbphyc->vdda1v8); if (ret) return ret; ret = regulator_disable(usbphyc->vdda1v1); if (ret) return ret; return 0; } static void stm32_usbphyc_get_pll_params(u32 clk_rate, struct pll_params *pll_params) { unsigned long long fvco, ndiv, frac; /* _ * | FVCO = INFF*2*(NDIV + FRACT/2^16) when DITHER_DISABLE[1] = 1 * | FVCO = 2880MHz * < * | NDIV = integer part of input bits to set the LDF * |_FRACT = fractional part of input bits to set the LDF * => PLLNDIV = integer part of (FVCO / (INFF*2)) * => PLLFRACIN = fractional part of(FVCO / INFF*2) * 2^16 * <=> PLLFRACIN = ((FVCO / (INFF*2)) - PLLNDIV) * 2^16 */ fvco = (unsigned long long)PLL_FVCO_MHZ * HZ_PER_MHZ; ndiv = fvco; do_div(ndiv, (clk_rate * 2)); pll_params->ndiv = (u8)ndiv; frac = fvco * (1 << 16); do_div(frac, (clk_rate * 2)); frac = frac - (ndiv * (1 << 16)); pll_params->frac = (u16)frac; } static int stm32_usbphyc_pll_init(struct stm32_usbphyc *usbphyc) { struct pll_params pll_params; u32 clk_rate = clk_get_rate(usbphyc->clk); u32 ndiv, frac; u32 usbphyc_pll; if ((clk_rate < PLL_INFF_MIN_RATE_HZ) || (clk_rate > PLL_INFF_MAX_RATE_HZ)) { dev_err(usbphyc->dev, "input clk freq (%dHz) out of range\n", clk_rate); return -EINVAL; } stm32_usbphyc_get_pll_params(clk_rate, &pll_params); ndiv = FIELD_PREP(PLLNDIV, pll_params.ndiv); frac = FIELD_PREP(PLLFRACIN, pll_params.frac); usbphyc_pll = PLLDITHEN1 | PLLDITHEN0 | PLLSTRBYP | ndiv; if (pll_params.frac) usbphyc_pll |= PLLFRACCTL | frac; writel_relaxed(usbphyc_pll, usbphyc->base + STM32_USBPHYC_PLL); dev_dbg(usbphyc->dev, "input clk freq=%dHz, ndiv=%lu, frac=%lu\n", clk_rate, FIELD_GET(PLLNDIV, usbphyc_pll), FIELD_GET(PLLFRACIN, usbphyc_pll)); return 0; } static int __stm32_usbphyc_pll_disable(struct stm32_usbphyc *usbphyc) { void __iomem *pll_reg = usbphyc->base + STM32_USBPHYC_PLL; u32 pllen; stm32_usbphyc_clr_bits(pll_reg, PLLEN); /* Wait for minimum width of powerdown pulse (ENABLE = Low) */ if (readl_relaxed_poll_timeout(pll_reg, pllen, !(pllen & PLLEN), 5, 50)) dev_err(usbphyc->dev, "PLL not reset\n"); return stm32_usbphyc_regulators_disable(usbphyc); } static int stm32_usbphyc_pll_disable(struct stm32_usbphyc *usbphyc) { /* Check if a phy port is still active or clk48 in use */ if (atomic_dec_return(&usbphyc->n_pll_cons) > 0) return 0; return __stm32_usbphyc_pll_disable(usbphyc); } static int stm32_usbphyc_pll_enable(struct stm32_usbphyc *usbphyc) { void __iomem *pll_reg = usbphyc->base + STM32_USBPHYC_PLL; bool pllen = readl_relaxed(pll_reg) & PLLEN; int ret; /* * Check if a phy port or clk48 prepare has configured the pll * and ensure the PLL is enabled */ if (atomic_inc_return(&usbphyc->n_pll_cons) > 1 && pllen) return 0; if (pllen) { /* * PLL shouldn't be enabled without known consumer, * disable it and reinit n_pll_cons */ dev_warn(usbphyc->dev, "PLL enabled without known consumers\n"); ret = __stm32_usbphyc_pll_disable(usbphyc); if (ret) return ret; } ret = stm32_usbphyc_regulators_enable(usbphyc); if (ret) goto dec_n_pll_cons; ret = stm32_usbphyc_pll_init(usbphyc); if (ret) goto reg_disable; stm32_usbphyc_set_bits(pll_reg, PLLEN); return 0; reg_disable: stm32_usbphyc_regulators_disable(usbphyc); dec_n_pll_cons: atomic_dec(&usbphyc->n_pll_cons); return ret; } static int stm32_usbphyc_phy_init(struct phy *phy) { struct stm32_usbphyc_phy *usbphyc_phy = phy_get_drvdata(phy); struct stm32_usbphyc *usbphyc = usbphyc_phy->usbphyc; u32 reg_mon = STM32_USBPHYC_MONITOR(usbphyc_phy->index); u32 monsel = FIELD_PREP(STM32_USBPHYC_MON_SEL, STM32_USBPHYC_MON_SEL_LOCKP); u32 monout; int ret; ret = stm32_usbphyc_pll_enable(usbphyc); if (ret) return ret; /* Check that PLL Lock input to PHY is High */ writel_relaxed(monsel, usbphyc->base + reg_mon); ret = readl_relaxed_poll_timeout(usbphyc->base + reg_mon, monout, (monout & STM32_USBPHYC_MON_OUT_LOCKP), 100, 1000); if (ret) { dev_err(usbphyc->dev, "PLL Lock input to PHY is Low (val=%x)\n", (u32)(monout & STM32_USBPHYC_MON_OUT)); goto pll_disable; } usbphyc_phy->active = true; return 0; pll_disable: return stm32_usbphyc_pll_disable(usbphyc); } static int stm32_usbphyc_phy_exit(struct phy *phy) { struct stm32_usbphyc_phy *usbphyc_phy = phy_get_drvdata(phy); struct stm32_usbphyc *usbphyc = usbphyc_phy->usbphyc; usbphyc_phy->active = false; return stm32_usbphyc_pll_disable(usbphyc); } static int stm32_usbphyc_phy_power_on(struct phy *phy) { struct stm32_usbphyc_phy *usbphyc_phy = phy_get_drvdata(phy); if (usbphyc_phy->vbus) return regulator_enable(usbphyc_phy->vbus); return 0; } static int stm32_usbphyc_phy_power_off(struct phy *phy) { struct stm32_usbphyc_phy *usbphyc_phy = phy_get_drvdata(phy); if (usbphyc_phy->vbus) return regulator_disable(usbphyc_phy->vbus); return 0; } static const struct phy_ops stm32_usbphyc_phy_ops = { .init = stm32_usbphyc_phy_init, .exit = stm32_usbphyc_phy_exit, .power_on = stm32_usbphyc_phy_power_on, .power_off = stm32_usbphyc_phy_power_off, .owner = THIS_MODULE, }; static int stm32_usbphyc_clk48_prepare(struct clk_hw *hw) { struct stm32_usbphyc *usbphyc = container_of(hw, struct stm32_usbphyc, clk48_hw); return stm32_usbphyc_pll_enable(usbphyc); } static void stm32_usbphyc_clk48_unprepare(struct clk_hw *hw) { struct stm32_usbphyc *usbphyc = container_of(hw, struct stm32_usbphyc, clk48_hw); stm32_usbphyc_pll_disable(usbphyc); } static unsigned long stm32_usbphyc_clk48_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { return 48000000; } static const struct clk_ops usbphyc_clk48_ops = { .prepare = stm32_usbphyc_clk48_prepare, .unprepare = stm32_usbphyc_clk48_unprepare, .recalc_rate = stm32_usbphyc_clk48_recalc_rate, }; static void stm32_usbphyc_clk48_unregister(void *data) { struct stm32_usbphyc *usbphyc = data; of_clk_del_provider(usbphyc->dev->of_node); clk_hw_unregister(&usbphyc->clk48_hw); } static int stm32_usbphyc_clk48_register(struct stm32_usbphyc *usbphyc) { struct device_node *node = usbphyc->dev->of_node; struct clk_init_data init = { }; int ret = 0; init.name = "ck_usbo_48m"; init.ops = &usbphyc_clk48_ops; usbphyc->clk48_hw.init = &init; ret = clk_hw_register(usbphyc->dev, &usbphyc->clk48_hw); if (ret) return ret; ret = of_clk_add_hw_provider(node, of_clk_hw_simple_get, &usbphyc->clk48_hw); if (ret) clk_hw_unregister(&usbphyc->clk48_hw); return ret; } static void stm32_usbphyc_phy_tuning(struct stm32_usbphyc *usbphyc, struct device_node *np, u32 index) { struct stm32_usbphyc_phy *usbphyc_phy = usbphyc->phys[index]; u32 reg = STM32_USBPHYC_TUNE(index); u32 otpcomp, val; int ret; /* Backup OTP compensation code */ otpcomp = FIELD_GET(OTPCOMP, readl_relaxed(usbphyc->base + reg)); ret = of_property_read_u32(np, "st,current-boost-microamp", &val); if (ret != -EINVAL) { if (!ret && (val == BOOST_1000_UA || val == BOOST_2000_UA)) { val = (val == BOOST_2000_UA) ? 1 : 0; usbphyc_phy->tune |= INCURREN | FIELD_PREP(INCURRINT, val); } else { dev_warn(usbphyc->dev, "phy%d: invalid st,current-boost-microamp\n", index); } } if (!of_property_read_bool(np, "st,no-lsfs-fb-cap")) usbphyc_phy->tune |= LFSCAPEN; if (of_property_read_bool(np, "st,decrease-hs-slew-rate")) usbphyc_phy->tune |= HSDRVSLEW; ret = of_property_read_u32(np, "st,tune-hs-dc-level", &val); if (ret != -EINVAL) { if (!ret && val < DC_MAX) { if (val == DC_MINUS_5_TO_7_MV) {/* Decreases HS driver DC level */ usbphyc_phy->tune |= HSDRVDCCUR; } else if (val > 0) { /* Increases HS driver DC level */ val = (val == DC_PLUS_10_TO_14_MV) ? 1 : 0; usbphyc_phy->tune |= HSDRVCURINCR | FIELD_PREP(HSDRVDCLEV, val); } } else { dev_warn(usbphyc->dev, "phy%d: invalid st,tune-hs-dc-level\n", index); } } if (of_property_read_bool(np, "st,enable-fs-rftime-tuning")) usbphyc_phy->tune |= FSDRVRFADJ; if (of_property_read_bool(np, "st,enable-hs-rftime-reduction")) usbphyc_phy->tune |= HSDRVRFRED; ret = of_property_read_u32(np, "st,trim-hs-current", &val); if (ret != -EINVAL) { if (!ret && val < CUR_MAX) usbphyc_phy->tune |= FIELD_PREP(HSDRVCHKITRM, val); else dev_warn(usbphyc->dev, "phy%d: invalid st,trim-hs-current\n", index); } ret = of_property_read_u32(np, "st,trim-hs-impedance", &val); if (ret != -EINVAL) { if (!ret && val < IMP_MAX) usbphyc_phy->tune |= FIELD_PREP(HSDRVCHKZTRM, val); else dev_warn(usbphyc->dev, "phy%d: invalid st,trim-hs-impedance\n", index); } ret = of_property_read_u32(np, "st,tune-squelch-level", &val); if (ret != -EINVAL) { if (!ret && val < SQLCH_MAX) usbphyc_phy->tune |= FIELD_PREP(SQLCHCTL, val); else dev_warn(usbphyc->dev, "phy%d: invalid st,tune-squelch\n", index); } if (of_property_read_bool(np, "st,enable-hs-rx-gain-eq")) usbphyc_phy->tune |= HDRXGNEQEN; ret = of_property_read_u32(np, "st,tune-hs-rx-offset", &val); if (ret != -EINVAL) { if (!ret && val < RX_OFFSET_MAX) usbphyc_phy->tune |= FIELD_PREP(HSRXOFF, val); else dev_warn(usbphyc->dev, "phy%d: invalid st,tune-hs-rx-offset\n", index); } if (of_property_read_bool(np, "st,no-hs-ftime-ctrl")) usbphyc_phy->tune |= HSFALLPREEM; if (!of_property_read_bool(np, "st,no-lsfs-sc")) usbphyc_phy->tune |= SHTCCTCTLPROT; if (of_property_read_bool(np, "st,enable-hs-tx-staggering")) usbphyc_phy->tune |= STAGSEL; /* Restore OTP compensation code */ usbphyc_phy->tune |= FIELD_PREP(OTPCOMP, otpcomp); /* * By default, if no st,xxx tuning property is used, usbphyc_phy->tune is equal to * STM32_USBPHYC_TUNE reset value (LFSCAPEN | SHTCCTCTLPROT | OTPCOMP). */ writel_relaxed(usbphyc_phy->tune, usbphyc->base + reg); } static void stm32_usbphyc_switch_setup(struct stm32_usbphyc *usbphyc, u32 utmi_switch) { if (!utmi_switch) stm32_usbphyc_clr_bits(usbphyc->base + STM32_USBPHYC_MISC, SWITHOST); else stm32_usbphyc_set_bits(usbphyc->base + STM32_USBPHYC_MISC, SWITHOST); usbphyc->switch_setup = utmi_switch; } static struct phy *stm32_usbphyc_of_xlate(struct device *dev, struct of_phandle_args *args) { struct stm32_usbphyc *usbphyc = dev_get_drvdata(dev); struct stm32_usbphyc_phy *usbphyc_phy = NULL; struct device_node *phynode = args->np; int port = 0; for (port = 0; port < usbphyc->nphys; port++) { if (phynode == usbphyc->phys[port]->phy->dev.of_node) { usbphyc_phy = usbphyc->phys[port]; break; } } if (!usbphyc_phy) { dev_err(dev, "failed to find phy\n"); return ERR_PTR(-EINVAL); } if (((usbphyc_phy->index == 0) && (args->args_count != 0)) || ((usbphyc_phy->index == 1) && (args->args_count != 1))) { dev_err(dev, "invalid number of cells for phy port%d\n", usbphyc_phy->index); return ERR_PTR(-EINVAL); } /* Configure the UTMI switch for PHY port#2 */ if (usbphyc_phy->index == 1) { if (usbphyc->switch_setup < 0) { stm32_usbphyc_switch_setup(usbphyc, args->args[0]); } else { if (args->args[0] != usbphyc->switch_setup) { dev_err(dev, "phy port1 already used\n"); return ERR_PTR(-EBUSY); } } } return usbphyc_phy->phy; } static int stm32_usbphyc_probe(struct platform_device *pdev) { struct stm32_usbphyc *usbphyc; struct device *dev = &pdev->dev; struct device_node *child, *np = dev->of_node; struct phy_provider *phy_provider; u32 pllen, version; int ret, port = 0; usbphyc = devm_kzalloc(dev, sizeof(*usbphyc), GFP_KERNEL); if (!usbphyc) return -ENOMEM; usbphyc->dev = dev; dev_set_drvdata(dev, usbphyc); usbphyc->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(usbphyc->base)) return PTR_ERR(usbphyc->base); usbphyc->clk = devm_clk_get(dev, NULL); if (IS_ERR(usbphyc->clk)) return dev_err_probe(dev, PTR_ERR(usbphyc->clk), "clk get_failed\n"); ret = clk_prepare_enable(usbphyc->clk); if (ret) { dev_err(dev, "clk enable failed: %d\n", ret); return ret; } usbphyc->rst = devm_reset_control_get(dev, NULL); if (!IS_ERR(usbphyc->rst)) { reset_control_assert(usbphyc->rst); udelay(2); reset_control_deassert(usbphyc->rst); } else { ret = PTR_ERR(usbphyc->rst); if (ret == -EPROBE_DEFER) goto clk_disable; stm32_usbphyc_clr_bits(usbphyc->base + STM32_USBPHYC_PLL, PLLEN); } /* * Wait for minimum width of powerdown pulse (ENABLE = Low): * we have to ensure the PLL is disabled before phys initialization. */ if (readl_relaxed_poll_timeout(usbphyc->base + STM32_USBPHYC_PLL, pllen, !(pllen & PLLEN), 5, 50)) { dev_warn(usbphyc->dev, "PLL not reset\n"); ret = -EPROBE_DEFER; goto clk_disable; } usbphyc->switch_setup = -EINVAL; usbphyc->nphys = of_get_child_count(np); usbphyc->phys = devm_kcalloc(dev, usbphyc->nphys, sizeof(*usbphyc->phys), GFP_KERNEL); if (!usbphyc->phys) { ret = -ENOMEM; goto clk_disable; } usbphyc->vdda1v1 = devm_regulator_get(dev, "vdda1v1"); if (IS_ERR(usbphyc->vdda1v1)) { ret = PTR_ERR(usbphyc->vdda1v1); if (ret != -EPROBE_DEFER) dev_err(dev, "failed to get vdda1v1 supply: %d\n", ret); goto clk_disable; } usbphyc->vdda1v8 = devm_regulator_get(dev, "vdda1v8"); if (IS_ERR(usbphyc->vdda1v8)) { ret = PTR_ERR(usbphyc->vdda1v8); if (ret != -EPROBE_DEFER) dev_err(dev, "failed to get vdda1v8 supply: %d\n", ret); goto clk_disable; } for_each_child_of_node(np, child) { struct stm32_usbphyc_phy *usbphyc_phy; struct phy *phy; u32 index; phy = devm_phy_create(dev, child, &stm32_usbphyc_phy_ops); if (IS_ERR(phy)) { ret = PTR_ERR(phy); if (ret != -EPROBE_DEFER) dev_err(dev, "failed to create phy%d: %d\n", port, ret); goto put_child; } usbphyc_phy = devm_kzalloc(dev, sizeof(*usbphyc_phy), GFP_KERNEL); if (!usbphyc_phy) { ret = -ENOMEM; goto put_child; } ret = of_property_read_u32(child, "reg", &index); if (ret || index > usbphyc->nphys) { dev_err(&phy->dev, "invalid reg property: %d\n", ret); goto put_child; } usbphyc->phys[port] = usbphyc_phy; phy_set_bus_width(phy, 8); phy_set_drvdata(phy, usbphyc_phy); usbphyc->phys[port]->phy = phy; usbphyc->phys[port]->usbphyc = usbphyc; usbphyc->phys[port]->index = index; usbphyc->phys[port]->active = false; usbphyc->phys[port]->vbus = devm_regulator_get_optional(&phy->dev, "vbus"); if (IS_ERR(usbphyc->phys[port]->vbus)) { ret = PTR_ERR(usbphyc->phys[port]->vbus); if (ret == -EPROBE_DEFER) goto put_child; usbphyc->phys[port]->vbus = NULL; } /* Configure phy tuning */ stm32_usbphyc_phy_tuning(usbphyc, child, index); port++; } phy_provider = devm_of_phy_provider_register(dev, stm32_usbphyc_of_xlate); if (IS_ERR(phy_provider)) { ret = PTR_ERR(phy_provider); dev_err(dev, "failed to register phy provider: %d\n", ret); goto clk_disable; } ret = stm32_usbphyc_clk48_register(usbphyc); if (ret) { dev_err(dev, "failed to register ck_usbo_48m clock: %d\n", ret); goto clk_disable; } version = readl_relaxed(usbphyc->base + STM32_USBPHYC_VERSION); dev_info(dev, "registered rev:%lu.%lu\n", FIELD_GET(MAJREV, version), FIELD_GET(MINREV, version)); return 0; put_child: of_node_put(child); clk_disable: clk_disable_unprepare(usbphyc->clk); return ret; } static int stm32_usbphyc_remove(struct platform_device *pdev) { struct stm32_usbphyc *usbphyc = dev_get_drvdata(&pdev->dev); int port; /* Ensure PHYs are not active, to allow PLL disabling */ for (port = 0; port < usbphyc->nphys; port++) if (usbphyc->phys[port]->active) stm32_usbphyc_phy_exit(usbphyc->phys[port]->phy); stm32_usbphyc_clk48_unregister(usbphyc); clk_disable_unprepare(usbphyc->clk); return 0; } static int __maybe_unused stm32_usbphyc_resume(struct device *dev) { struct stm32_usbphyc *usbphyc = dev_get_drvdata(dev); struct stm32_usbphyc_phy *usbphyc_phy; int port; if (usbphyc->switch_setup >= 0) stm32_usbphyc_switch_setup(usbphyc, usbphyc->switch_setup); for (port = 0; port < usbphyc->nphys; port++) { usbphyc_phy = usbphyc->phys[port]; writel_relaxed(usbphyc_phy->tune, usbphyc->base + STM32_USBPHYC_TUNE(port)); } return 0; } static SIMPLE_DEV_PM_OPS(stm32_usbphyc_pm_ops, NULL, stm32_usbphyc_resume); static const struct of_device_id stm32_usbphyc_of_match[] = { { .compatible = "st,stm32mp1-usbphyc", }, { }, }; MODULE_DEVICE_TABLE(of, stm32_usbphyc_of_match); static struct platform_driver stm32_usbphyc_driver = { .probe = stm32_usbphyc_probe, .remove = stm32_usbphyc_remove, .driver = { .of_match_table = stm32_usbphyc_of_match, .name = "stm32-usbphyc", .pm = &stm32_usbphyc_pm_ops, } }; module_platform_driver(stm32_usbphyc_driver); MODULE_DESCRIPTION("STMicroelectronics STM32 USBPHYC driver"); MODULE_AUTHOR("Amelie Delaunay "); MODULE_LICENSE("GPL v2");