/* * Driver for Dell laptop extras * * Copyright (c) Red Hat * Copyright (c) 2014 Gabriele Mazzotta * Copyright (c) 2014 Pali Rohár * * Based on documentation in the libsmbios package: * Copyright (C) 2005-2014 Dell Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../../firmware/dcdbas.h" #include "dell-rbtn.h" #define BRIGHTNESS_TOKEN 0x7d #define KBD_LED_OFF_TOKEN 0x01E1 #define KBD_LED_ON_TOKEN 0x01E2 #define KBD_LED_AUTO_TOKEN 0x01E3 #define KBD_LED_AUTO_25_TOKEN 0x02EA #define KBD_LED_AUTO_50_TOKEN 0x02EB #define KBD_LED_AUTO_75_TOKEN 0x02EC #define KBD_LED_AUTO_100_TOKEN 0x02F6 /* This structure will be modified by the firmware when we enter * system management mode, hence the volatiles */ struct calling_interface_buffer { u16 class; u16 select; volatile u32 input[4]; volatile u32 output[4]; } __packed; struct calling_interface_token { u16 tokenID; u16 location; union { u16 value; u16 stringlength; }; }; struct calling_interface_structure { struct dmi_header header; u16 cmdIOAddress; u8 cmdIOCode; u32 supportedCmds; struct calling_interface_token tokens[]; } __packed; struct quirk_entry { u8 touchpad_led; int needs_kbd_timeouts; /* * Ordered list of timeouts expressed in seconds. * The list must end with -1 */ int kbd_timeouts[]; }; static struct quirk_entry *quirks; static struct quirk_entry quirk_dell_vostro_v130 = { .touchpad_led = 1, }; static int __init dmi_matched(const struct dmi_system_id *dmi) { quirks = dmi->driver_data; return 1; } /* * These values come from Windows utility provided by Dell. If any other value * is used then BIOS silently set timeout to 0 without any error message. */ static struct quirk_entry quirk_dell_xps13_9333 = { .needs_kbd_timeouts = 1, .kbd_timeouts = { 0, 5, 15, 60, 5 * 60, 15 * 60, -1 }, }; static int da_command_address; static int da_command_code; static int da_num_tokens; static struct calling_interface_token *da_tokens; static struct platform_driver platform_driver = { .driver = { .name = "dell-laptop", } }; static struct platform_device *platform_device; static struct backlight_device *dell_backlight_device; static struct rfkill *wifi_rfkill; static struct rfkill *bluetooth_rfkill; static struct rfkill *wwan_rfkill; static bool force_rfkill; module_param(force_rfkill, bool, 0444); MODULE_PARM_DESC(force_rfkill, "enable rfkill on non whitelisted models"); static const struct dmi_system_id dell_device_table[] __initconst = { { .ident = "Dell laptop", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."), DMI_MATCH(DMI_CHASSIS_TYPE, "8"), }, }, { .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."), DMI_MATCH(DMI_CHASSIS_TYPE, "9"), /*Laptop*/ }, }, { .ident = "Dell Computer Corporation", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Computer Corporation"), DMI_MATCH(DMI_CHASSIS_TYPE, "8"), }, }, { } }; MODULE_DEVICE_TABLE(dmi, dell_device_table); static const struct dmi_system_id dell_quirks[] __initconst = { { .callback = dmi_matched, .ident = "Dell Vostro V130", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."), DMI_MATCH(DMI_PRODUCT_NAME, "Vostro V130"), }, .driver_data = &quirk_dell_vostro_v130, }, { .callback = dmi_matched, .ident = "Dell Vostro V131", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."), DMI_MATCH(DMI_PRODUCT_NAME, "Vostro V131"), }, .driver_data = &quirk_dell_vostro_v130, }, { .callback = dmi_matched, .ident = "Dell Vostro 3350", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."), DMI_MATCH(DMI_PRODUCT_NAME, "Vostro 3350"), }, .driver_data = &quirk_dell_vostro_v130, }, { .callback = dmi_matched, .ident = "Dell Vostro 3555", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."), DMI_MATCH(DMI_PRODUCT_NAME, "Vostro 3555"), }, .driver_data = &quirk_dell_vostro_v130, }, { .callback = dmi_matched, .ident = "Dell Inspiron N311z", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."), DMI_MATCH(DMI_PRODUCT_NAME, "Inspiron N311z"), }, .driver_data = &quirk_dell_vostro_v130, }, { .callback = dmi_matched, .ident = "Dell Inspiron M5110", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."), DMI_MATCH(DMI_PRODUCT_NAME, "Inspiron M5110"), }, .driver_data = &quirk_dell_vostro_v130, }, { .callback = dmi_matched, .ident = "Dell Vostro 3360", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."), DMI_MATCH(DMI_PRODUCT_NAME, "Vostro 3360"), }, .driver_data = &quirk_dell_vostro_v130, }, { .callback = dmi_matched, .ident = "Dell Vostro 3460", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."), DMI_MATCH(DMI_PRODUCT_NAME, "Vostro 3460"), }, .driver_data = &quirk_dell_vostro_v130, }, { .callback = dmi_matched, .ident = "Dell Vostro 3560", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."), DMI_MATCH(DMI_PRODUCT_NAME, "Vostro 3560"), }, .driver_data = &quirk_dell_vostro_v130, }, { .callback = dmi_matched, .ident = "Dell Vostro 3450", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."), DMI_MATCH(DMI_PRODUCT_NAME, "Dell System Vostro 3450"), }, .driver_data = &quirk_dell_vostro_v130, }, { .callback = dmi_matched, .ident = "Dell Inspiron 5420", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."), DMI_MATCH(DMI_PRODUCT_NAME, "Inspiron 5420"), }, .driver_data = &quirk_dell_vostro_v130, }, { .callback = dmi_matched, .ident = "Dell Inspiron 5520", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."), DMI_MATCH(DMI_PRODUCT_NAME, "Inspiron 5520"), }, .driver_data = &quirk_dell_vostro_v130, }, { .callback = dmi_matched, .ident = "Dell Inspiron 5720", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."), DMI_MATCH(DMI_PRODUCT_NAME, "Inspiron 5720"), }, .driver_data = &quirk_dell_vostro_v130, }, { .callback = dmi_matched, .ident = "Dell Inspiron 7420", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."), DMI_MATCH(DMI_PRODUCT_NAME, "Inspiron 7420"), }, .driver_data = &quirk_dell_vostro_v130, }, { .callback = dmi_matched, .ident = "Dell Inspiron 7520", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."), DMI_MATCH(DMI_PRODUCT_NAME, "Inspiron 7520"), }, .driver_data = &quirk_dell_vostro_v130, }, { .callback = dmi_matched, .ident = "Dell Inspiron 7720", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."), DMI_MATCH(DMI_PRODUCT_NAME, "Inspiron 7720"), }, .driver_data = &quirk_dell_vostro_v130, }, { .callback = dmi_matched, .ident = "Dell XPS13 9333", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."), DMI_MATCH(DMI_PRODUCT_NAME, "XPS13 9333"), }, .driver_data = &quirk_dell_xps13_9333, }, { } }; static struct calling_interface_buffer *buffer; static struct page *bufferpage; static DEFINE_MUTEX(buffer_mutex); static int hwswitch_state; static void get_buffer(void) { mutex_lock(&buffer_mutex); memset(buffer, 0, sizeof(struct calling_interface_buffer)); } static void release_buffer(void) { mutex_unlock(&buffer_mutex); } static void __init parse_da_table(const struct dmi_header *dm) { /* Final token is a terminator, so we don't want to copy it */ int tokens = (dm->length-11)/sizeof(struct calling_interface_token)-1; struct calling_interface_token *new_da_tokens; struct calling_interface_structure *table = container_of(dm, struct calling_interface_structure, header); /* 4 bytes of table header, plus 7 bytes of Dell header, plus at least 6 bytes of entry */ if (dm->length < 17) return; da_command_address = table->cmdIOAddress; da_command_code = table->cmdIOCode; new_da_tokens = krealloc(da_tokens, (da_num_tokens + tokens) * sizeof(struct calling_interface_token), GFP_KERNEL); if (!new_da_tokens) return; da_tokens = new_da_tokens; memcpy(da_tokens+da_num_tokens, table->tokens, sizeof(struct calling_interface_token) * tokens); da_num_tokens += tokens; } static void __init find_tokens(const struct dmi_header *dm, void *dummy) { switch (dm->type) { case 0xd4: /* Indexed IO */ case 0xd5: /* Protected Area Type 1 */ case 0xd6: /* Protected Area Type 2 */ break; case 0xda: /* Calling interface */ parse_da_table(dm); break; } } static int find_token_id(int tokenid) { int i; for (i = 0; i < da_num_tokens; i++) { if (da_tokens[i].tokenID == tokenid) return i; } return -1; } static int find_token_location(int tokenid) { int id; id = find_token_id(tokenid); if (id == -1) return -1; return da_tokens[id].location; } static struct calling_interface_buffer * dell_send_request(struct calling_interface_buffer *buffer, int class, int select) { struct smi_cmd command; command.magic = SMI_CMD_MAGIC; command.command_address = da_command_address; command.command_code = da_command_code; command.ebx = virt_to_phys(buffer); command.ecx = 0x42534931; buffer->class = class; buffer->select = select; dcdbas_smi_request(&command); return buffer; } static inline int dell_smi_error(int value) { switch (value) { case 0: /* Completed successfully */ return 0; case -1: /* Completed with error */ return -EIO; case -2: /* Function not supported */ return -ENXIO; default: /* Unknown error */ return -EINVAL; } } /* Derived from information in DellWirelessCtl.cpp: Class 17, select 11 is radio control. It returns an array of 32-bit values. Input byte 0 = 0: Wireless information result[0]: return code result[1]: Bit 0: Hardware switch supported Bit 1: Wifi locator supported Bit 2: Wifi is supported Bit 3: Bluetooth is supported Bit 4: WWAN is supported Bit 5: Wireless keyboard supported Bits 6-7: Reserved Bit 8: Wifi is installed Bit 9: Bluetooth is installed Bit 10: WWAN is installed Bits 11-15: Reserved Bit 16: Hardware switch is on Bit 17: Wifi is blocked Bit 18: Bluetooth is blocked Bit 19: WWAN is blocked Bits 20-31: Reserved result[2]: NVRAM size in bytes result[3]: NVRAM format version number Input byte 0 = 2: Wireless switch configuration result[0]: return code result[1]: Bit 0: Wifi controlled by switch Bit 1: Bluetooth controlled by switch Bit 2: WWAN controlled by switch Bits 3-6: Reserved Bit 7: Wireless switch config locked Bit 8: Wifi locator enabled Bits 9-14: Reserved Bit 15: Wifi locator setting locked Bits 16-31: Reserved */ static int dell_rfkill_set(void *data, bool blocked) { int disable = blocked ? 1 : 0; unsigned long radio = (unsigned long)data; int hwswitch_bit = (unsigned long)data - 1; get_buffer(); dell_send_request(buffer, 17, 11); /* If the hardware switch controls this radio, and the hardware switch is disabled, always disable the radio */ if ((hwswitch_state & BIT(hwswitch_bit)) && !(buffer->output[1] & BIT(16))) disable = 1; buffer->input[0] = (1 | (radio<<8) | (disable << 16)); dell_send_request(buffer, 17, 11); release_buffer(); return 0; } /* Must be called with the buffer held */ static void dell_rfkill_update_sw_state(struct rfkill *rfkill, int radio, int status) { if (status & BIT(0)) { /* Has hw-switch, sync sw_state to BIOS */ int block = rfkill_blocked(rfkill); buffer->input[0] = (1 | (radio << 8) | (block << 16)); dell_send_request(buffer, 17, 11); } else { /* No hw-switch, sync BIOS state to sw_state */ rfkill_set_sw_state(rfkill, !!(status & BIT(radio + 16))); } } static void dell_rfkill_update_hw_state(struct rfkill *rfkill, int radio, int status) { if (hwswitch_state & (BIT(radio - 1))) rfkill_set_hw_state(rfkill, !(status & BIT(16))); } static void dell_rfkill_query(struct rfkill *rfkill, void *data) { int status; get_buffer(); dell_send_request(buffer, 17, 11); status = buffer->output[1]; dell_rfkill_update_hw_state(rfkill, (unsigned long)data, status); release_buffer(); } static const struct rfkill_ops dell_rfkill_ops = { .set_block = dell_rfkill_set, .query = dell_rfkill_query, }; static struct dentry *dell_laptop_dir; static int dell_debugfs_show(struct seq_file *s, void *data) { int status; get_buffer(); dell_send_request(buffer, 17, 11); status = buffer->output[1]; release_buffer(); seq_printf(s, "status:\t0x%X\n", status); seq_printf(s, "Bit 0 : Hardware switch supported: %lu\n", status & BIT(0)); seq_printf(s, "Bit 1 : Wifi locator supported: %lu\n", (status & BIT(1)) >> 1); seq_printf(s, "Bit 2 : Wifi is supported: %lu\n", (status & BIT(2)) >> 2); seq_printf(s, "Bit 3 : Bluetooth is supported: %lu\n", (status & BIT(3)) >> 3); seq_printf(s, "Bit 4 : WWAN is supported: %lu\n", (status & BIT(4)) >> 4); seq_printf(s, "Bit 5 : Wireless keyboard supported: %lu\n", (status & BIT(5)) >> 5); seq_printf(s, "Bit 8 : Wifi is installed: %lu\n", (status & BIT(8)) >> 8); seq_printf(s, "Bit 9 : Bluetooth is installed: %lu\n", (status & BIT(9)) >> 9); seq_printf(s, "Bit 10: WWAN is installed: %lu\n", (status & BIT(10)) >> 10); seq_printf(s, "Bit 16: Hardware switch is on: %lu\n", (status & BIT(16)) >> 16); seq_printf(s, "Bit 17: Wifi is blocked: %lu\n", (status & BIT(17)) >> 17); seq_printf(s, "Bit 18: Bluetooth is blocked: %lu\n", (status & BIT(18)) >> 18); seq_printf(s, "Bit 19: WWAN is blocked: %lu\n", (status & BIT(19)) >> 19); seq_printf(s, "\nhwswitch_state:\t0x%X\n", hwswitch_state); seq_printf(s, "Bit 0 : Wifi controlled by switch: %lu\n", hwswitch_state & BIT(0)); seq_printf(s, "Bit 1 : Bluetooth controlled by switch: %lu\n", (hwswitch_state & BIT(1)) >> 1); seq_printf(s, "Bit 2 : WWAN controlled by switch: %lu\n", (hwswitch_state & BIT(2)) >> 2); seq_printf(s, "Bit 7 : Wireless switch config locked: %lu\n", (hwswitch_state & BIT(7)) >> 7); seq_printf(s, "Bit 8 : Wifi locator enabled: %lu\n", (hwswitch_state & BIT(8)) >> 8); seq_printf(s, "Bit 15: Wifi locator setting locked: %lu\n", (hwswitch_state & BIT(15)) >> 15); return 0; } static int dell_debugfs_open(struct inode *inode, struct file *file) { return single_open(file, dell_debugfs_show, inode->i_private); } static const struct file_operations dell_debugfs_fops = { .owner = THIS_MODULE, .open = dell_debugfs_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static void dell_update_rfkill(struct work_struct *ignored) { int status; get_buffer(); dell_send_request(buffer, 17, 11); status = buffer->output[1]; if (wifi_rfkill) { dell_rfkill_update_hw_state(wifi_rfkill, 1, status); dell_rfkill_update_sw_state(wifi_rfkill, 1, status); } if (bluetooth_rfkill) { dell_rfkill_update_hw_state(bluetooth_rfkill, 2, status); dell_rfkill_update_sw_state(bluetooth_rfkill, 2, status); } if (wwan_rfkill) { dell_rfkill_update_hw_state(wwan_rfkill, 3, status); dell_rfkill_update_sw_state(wwan_rfkill, 3, status); } release_buffer(); } static DECLARE_DELAYED_WORK(dell_rfkill_work, dell_update_rfkill); static bool dell_laptop_i8042_filter(unsigned char data, unsigned char str, struct serio *port) { static bool extended; if (str & I8042_STR_AUXDATA) return false; if (unlikely(data == 0xe0)) { extended = true; return false; } else if (unlikely(extended)) { switch (data) { case 0x8: schedule_delayed_work(&dell_rfkill_work, round_jiffies_relative(HZ / 4)); break; } extended = false; } return false; } static int (*dell_rbtn_notifier_register_func)(struct notifier_block *); static int (*dell_rbtn_notifier_unregister_func)(struct notifier_block *); static int dell_laptop_rbtn_notifier_call(struct notifier_block *nb, unsigned long action, void *data) { schedule_delayed_work(&dell_rfkill_work, 0); return NOTIFY_OK; } static struct notifier_block dell_laptop_rbtn_notifier = { .notifier_call = dell_laptop_rbtn_notifier_call, }; static int __init dell_setup_rfkill(void) { int status, ret, whitelisted; const char *product; /* * rfkill support causes trouble on various models, mostly Inspirons. * So we whitelist certain series, and don't support rfkill on others. */ whitelisted = 0; product = dmi_get_system_info(DMI_PRODUCT_NAME); if (product && (strncmp(product, "Latitude", 8) == 0 || strncmp(product, "Precision", 9) == 0)) whitelisted = 1; if (!force_rfkill && !whitelisted) return 0; get_buffer(); dell_send_request(buffer, 17, 11); status = buffer->output[1]; buffer->input[0] = 0x2; dell_send_request(buffer, 17, 11); hwswitch_state = buffer->output[1]; release_buffer(); if (!(status & BIT(0))) { if (force_rfkill) { /* No hwsitch, clear all hw-controlled bits */ hwswitch_state &= ~7; } else { /* rfkill is only tested on laptops with a hwswitch */ return 0; } } if ((status & (1<<2|1<<8)) == (1<<2|1<<8)) { wifi_rfkill = rfkill_alloc("dell-wifi", &platform_device->dev, RFKILL_TYPE_WLAN, &dell_rfkill_ops, (void *) 1); if (!wifi_rfkill) { ret = -ENOMEM; goto err_wifi; } ret = rfkill_register(wifi_rfkill); if (ret) goto err_wifi; } if ((status & (1<<3|1<<9)) == (1<<3|1<<9)) { bluetooth_rfkill = rfkill_alloc("dell-bluetooth", &platform_device->dev, RFKILL_TYPE_BLUETOOTH, &dell_rfkill_ops, (void *) 2); if (!bluetooth_rfkill) { ret = -ENOMEM; goto err_bluetooth; } ret = rfkill_register(bluetooth_rfkill); if (ret) goto err_bluetooth; } if ((status & (1<<4|1<<10)) == (1<<4|1<<10)) { wwan_rfkill = rfkill_alloc("dell-wwan", &platform_device->dev, RFKILL_TYPE_WWAN, &dell_rfkill_ops, (void *) 3); if (!wwan_rfkill) { ret = -ENOMEM; goto err_wwan; } ret = rfkill_register(wwan_rfkill); if (ret) goto err_wwan; } /* * Dell Airplane Mode Switch driver (dell-rbtn) supports ACPI devices * which can receive events from HW slider switch. * * Dell SMBIOS on whitelisted models supports controlling radio devices * but does not support receiving HW button switch events. We can use * i8042 filter hook function to receive keyboard data and handle * keycode for HW button. * * So if it is possible we will use Dell Airplane Mode Switch ACPI * driver for receiving HW events and Dell SMBIOS for setting rfkill * states. If ACPI driver or device is not available we will fallback to * i8042 filter hook function. * * To prevent duplicate rfkill devices which control and do same thing, * dell-rbtn driver will automatically remove its own rfkill devices * once function dell_rbtn_notifier_register() is called. */ dell_rbtn_notifier_register_func = symbol_request(dell_rbtn_notifier_register); if (dell_rbtn_notifier_register_func) { dell_rbtn_notifier_unregister_func = symbol_request(dell_rbtn_notifier_unregister); if (!dell_rbtn_notifier_unregister_func) { symbol_put(dell_rbtn_notifier_register); dell_rbtn_notifier_register_func = NULL; } } if (dell_rbtn_notifier_register_func) { ret = dell_rbtn_notifier_register_func( &dell_laptop_rbtn_notifier); symbol_put(dell_rbtn_notifier_register); dell_rbtn_notifier_register_func = NULL; if (ret != 0) { symbol_put(dell_rbtn_notifier_unregister); dell_rbtn_notifier_unregister_func = NULL; } } else { pr_info("Symbols from dell-rbtn acpi driver are not available\n"); ret = -ENODEV; } if (ret == 0) { pr_info("Using dell-rbtn acpi driver for receiving events\n"); } else if (ret != -ENODEV) { pr_warn("Unable to register dell rbtn notifier\n"); goto err_filter; } else { ret = i8042_install_filter(dell_laptop_i8042_filter); if (ret) { pr_warn("Unable to install key filter\n"); goto err_filter; } pr_info("Using i8042 filter function for receiving events\n"); } return 0; err_filter: if (wwan_rfkill) rfkill_unregister(wwan_rfkill); err_wwan: rfkill_destroy(wwan_rfkill); if (bluetooth_rfkill) rfkill_unregister(bluetooth_rfkill); err_bluetooth: rfkill_destroy(bluetooth_rfkill); if (wifi_rfkill) rfkill_unregister(wifi_rfkill); err_wifi: rfkill_destroy(wifi_rfkill); return ret; } static void dell_cleanup_rfkill(void) { if (dell_rbtn_notifier_unregister_func) { dell_rbtn_notifier_unregister_func(&dell_laptop_rbtn_notifier); symbol_put(dell_rbtn_notifier_unregister); dell_rbtn_notifier_unregister_func = NULL; } else { i8042_remove_filter(dell_laptop_i8042_filter); } cancel_delayed_work_sync(&dell_rfkill_work); if (wifi_rfkill) { rfkill_unregister(wifi_rfkill); rfkill_destroy(wifi_rfkill); } if (bluetooth_rfkill) { rfkill_unregister(bluetooth_rfkill); rfkill_destroy(bluetooth_rfkill); } if (wwan_rfkill) { rfkill_unregister(wwan_rfkill); rfkill_destroy(wwan_rfkill); } } static int dell_send_intensity(struct backlight_device *bd) { int ret = 0; get_buffer(); buffer->input[0] = find_token_location(BRIGHTNESS_TOKEN); buffer->input[1] = bd->props.brightness; if (buffer->input[0] == -1) { ret = -ENODEV; goto out; } if (power_supply_is_system_supplied() > 0) dell_send_request(buffer, 1, 2); else dell_send_request(buffer, 1, 1); out: release_buffer(); return ret; } static int dell_get_intensity(struct backlight_device *bd) { int ret = 0; get_buffer(); buffer->input[0] = find_token_location(BRIGHTNESS_TOKEN); if (buffer->input[0] == -1) { ret = -ENODEV; goto out; } if (power_supply_is_system_supplied() > 0) dell_send_request(buffer, 0, 2); else dell_send_request(buffer, 0, 1); ret = buffer->output[1]; out: release_buffer(); return ret; } static const struct backlight_ops dell_ops = { .get_brightness = dell_get_intensity, .update_status = dell_send_intensity, }; static void touchpad_led_on(void) { int command = 0x97; char data = 1; i8042_command(&data, command | 1 << 12); } static void touchpad_led_off(void) { int command = 0x97; char data = 2; i8042_command(&data, command | 1 << 12); } static void touchpad_led_set(struct led_classdev *led_cdev, enum led_brightness value) { if (value > 0) touchpad_led_on(); else touchpad_led_off(); } static struct led_classdev touchpad_led = { .name = "dell-laptop::touchpad", .brightness_set = touchpad_led_set, .flags = LED_CORE_SUSPENDRESUME, }; static int __init touchpad_led_init(struct device *dev) { return led_classdev_register(dev, &touchpad_led); } static void touchpad_led_exit(void) { led_classdev_unregister(&touchpad_led); } /* * Derived from information in smbios-keyboard-ctl: * * cbClass 4 * cbSelect 11 * Keyboard illumination * cbArg1 determines the function to be performed * * cbArg1 0x0 = Get Feature Information * cbRES1 Standard return codes (0, -1, -2) * cbRES2, word0 Bitmap of user-selectable modes * bit 0 Always off (All systems) * bit 1 Always on (Travis ATG, Siberia) * bit 2 Auto: ALS-based On; ALS-based Off (Travis ATG) * bit 3 Auto: ALS- and input-activity-based On; input-activity based Off * bit 4 Auto: Input-activity-based On; input-activity based Off * bit 5 Auto: Input-activity-based On (illumination level 25%); input-activity based Off * bit 6 Auto: Input-activity-based On (illumination level 50%); input-activity based Off * bit 7 Auto: Input-activity-based On (illumination level 75%); input-activity based Off * bit 8 Auto: Input-activity-based On (illumination level 100%); input-activity based Off * bits 9-15 Reserved for future use * cbRES2, byte2 Reserved for future use * cbRES2, byte3 Keyboard illumination type * 0 Reserved * 1 Tasklight * 2 Backlight * 3-255 Reserved for future use * cbRES3, byte0 Supported auto keyboard illumination trigger bitmap. * bit 0 Any keystroke * bit 1 Touchpad activity * bit 2 Pointing stick * bit 3 Any mouse * bits 4-7 Reserved for future use * cbRES3, byte1 Supported timeout unit bitmap * bit 0 Seconds * bit 1 Minutes * bit 2 Hours * bit 3 Days * bits 4-7 Reserved for future use * cbRES3, byte2 Number of keyboard light brightness levels * cbRES4, byte0 Maximum acceptable seconds value (0 if seconds not supported). * cbRES4, byte1 Maximum acceptable minutes value (0 if minutes not supported). * cbRES4, byte2 Maximum acceptable hours value (0 if hours not supported). * cbRES4, byte3 Maximum acceptable days value (0 if days not supported) * * cbArg1 0x1 = Get Current State * cbRES1 Standard return codes (0, -1, -2) * cbRES2, word0 Bitmap of current mode state * bit 0 Always off (All systems) * bit 1 Always on (Travis ATG, Siberia) * bit 2 Auto: ALS-based On; ALS-based Off (Travis ATG) * bit 3 Auto: ALS- and input-activity-based On; input-activity based Off * bit 4 Auto: Input-activity-based On; input-activity based Off * bit 5 Auto: Input-activity-based On (illumination level 25%); input-activity based Off * bit 6 Auto: Input-activity-based On (illumination level 50%); input-activity based Off * bit 7 Auto: Input-activity-based On (illumination level 75%); input-activity based Off * bit 8 Auto: Input-activity-based On (illumination level 100%); input-activity based Off * bits 9-15 Reserved for future use * Note: Only One bit can be set * cbRES2, byte2 Currently active auto keyboard illumination triggers. * bit 0 Any keystroke * bit 1 Touchpad activity * bit 2 Pointing stick * bit 3 Any mouse * bits 4-7 Reserved for future use * cbRES2, byte3 Current Timeout * bits 7:6 Timeout units indicator: * 00b Seconds * 01b Minutes * 10b Hours * 11b Days * bits 5:0 Timeout value (0-63) in sec/min/hr/day * NOTE: A value of 0 means always on (no timeout) if any bits of RES3 byte * are set upon return from the [Get feature information] call. * cbRES3, byte0 Current setting of ALS value that turns the light on or off. * cbRES3, byte1 Current ALS reading * cbRES3, byte2 Current keyboard light level. * * cbArg1 0x2 = Set New State * cbRES1 Standard return codes (0, -1, -2) * cbArg2, word0 Bitmap of current mode state * bit 0 Always off (All systems) * bit 1 Always on (Travis ATG, Siberia) * bit 2 Auto: ALS-based On; ALS-based Off (Travis ATG) * bit 3 Auto: ALS- and input-activity-based On; input-activity based Off * bit 4 Auto: Input-activity-based On; input-activity based Off * bit 5 Auto: Input-activity-based On (illumination level 25%); input-activity based Off * bit 6 Auto: Input-activity-based On (illumination level 50%); input-activity based Off * bit 7 Auto: Input-activity-based On (illumination level 75%); input-activity based Off * bit 8 Auto: Input-activity-based On (illumination level 100%); input-activity based Off * bits 9-15 Reserved for future use * Note: Only One bit can be set * cbArg2, byte2 Desired auto keyboard illumination triggers. Must remain inactive to allow * keyboard to turn off automatically. * bit 0 Any keystroke * bit 1 Touchpad activity * bit 2 Pointing stick * bit 3 Any mouse * bits 4-7 Reserved for future use * cbArg2, byte3 Desired Timeout * bits 7:6 Timeout units indicator: * 00b Seconds * 01b Minutes * 10b Hours * 11b Days * bits 5:0 Timeout value (0-63) in sec/min/hr/day * cbArg3, byte0 Desired setting of ALS value that turns the light on or off. * cbArg3, byte2 Desired keyboard light level. */ enum kbd_timeout_unit { KBD_TIMEOUT_SECONDS = 0, KBD_TIMEOUT_MINUTES, KBD_TIMEOUT_HOURS, KBD_TIMEOUT_DAYS, }; enum kbd_mode_bit { KBD_MODE_BIT_OFF = 0, KBD_MODE_BIT_ON, KBD_MODE_BIT_ALS, KBD_MODE_BIT_TRIGGER_ALS, KBD_MODE_BIT_TRIGGER, KBD_MODE_BIT_TRIGGER_25, KBD_MODE_BIT_TRIGGER_50, KBD_MODE_BIT_TRIGGER_75, KBD_MODE_BIT_TRIGGER_100, }; #define kbd_is_als_mode_bit(bit) \ ((bit) == KBD_MODE_BIT_ALS || (bit) == KBD_MODE_BIT_TRIGGER_ALS) #define kbd_is_trigger_mode_bit(bit) \ ((bit) >= KBD_MODE_BIT_TRIGGER_ALS && (bit) <= KBD_MODE_BIT_TRIGGER_100) #define kbd_is_level_mode_bit(bit) \ ((bit) >= KBD_MODE_BIT_TRIGGER_25 && (bit) <= KBD_MODE_BIT_TRIGGER_100) struct kbd_info { u16 modes; u8 type; u8 triggers; u8 levels; u8 seconds; u8 minutes; u8 hours; u8 days; }; struct kbd_state { u8 mode_bit; u8 triggers; u8 timeout_value; u8 timeout_unit; u8 als_setting; u8 als_value; u8 level; }; static const int kbd_tokens[] = { KBD_LED_OFF_TOKEN, KBD_LED_AUTO_25_TOKEN, KBD_LED_AUTO_50_TOKEN, KBD_LED_AUTO_75_TOKEN, KBD_LED_AUTO_100_TOKEN, KBD_LED_ON_TOKEN, }; static u16 kbd_token_bits; static struct kbd_info kbd_info; static bool kbd_als_supported; static bool kbd_triggers_supported; static u8 kbd_mode_levels[16]; static int kbd_mode_levels_count; static u8 kbd_previous_level; static u8 kbd_previous_mode_bit; static bool kbd_led_present; /* * NOTE: there are three ways to set the keyboard backlight level. * First, via kbd_state.mode_bit (assigning KBD_MODE_BIT_TRIGGER_* value). * Second, via kbd_state.level (assigning numerical value <= kbd_info.levels). * Third, via SMBIOS tokens (KBD_LED_* in kbd_tokens) * * There are laptops which support only one of these methods. If we want to * support as many machines as possible we need to implement all three methods. * The first two methods use the kbd_state structure. The third uses SMBIOS * tokens. If kbd_info.levels == 0, the machine does not support setting the * keyboard backlight level via kbd_state.level. */ static int kbd_get_info(struct kbd_info *info) { u8 units; int ret; get_buffer(); buffer->input[0] = 0x0; dell_send_request(buffer, 4, 11); ret = buffer->output[0]; if (ret) { ret = dell_smi_error(ret); goto out; } info->modes = buffer->output[1] & 0xFFFF; info->type = (buffer->output[1] >> 24) & 0xFF; info->triggers = buffer->output[2] & 0xFF; units = (buffer->output[2] >> 8) & 0xFF; info->levels = (buffer->output[2] >> 16) & 0xFF; if (units & BIT(0)) info->seconds = (buffer->output[3] >> 0) & 0xFF; if (units & BIT(1)) info->minutes = (buffer->output[3] >> 8) & 0xFF; if (units & BIT(2)) info->hours = (buffer->output[3] >> 16) & 0xFF; if (units & BIT(3)) info->days = (buffer->output[3] >> 24) & 0xFF; out: release_buffer(); return ret; } static unsigned int kbd_get_max_level(void) { if (kbd_info.levels != 0) return kbd_info.levels; if (kbd_mode_levels_count > 0) return kbd_mode_levels_count - 1; return 0; } static int kbd_get_level(struct kbd_state *state) { int i; if (kbd_info.levels != 0) return state->level; if (kbd_mode_levels_count > 0) { for (i = 0; i < kbd_mode_levels_count; ++i) if (kbd_mode_levels[i] == state->mode_bit) return i; return 0; } return -EINVAL; } static int kbd_set_level(struct kbd_state *state, u8 level) { if (kbd_info.levels != 0) { if (level != 0) kbd_previous_level = level; if (state->level == level) return 0; state->level = level; if (level != 0 && state->mode_bit == KBD_MODE_BIT_OFF) state->mode_bit = kbd_previous_mode_bit; else if (level == 0 && state->mode_bit != KBD_MODE_BIT_OFF) { kbd_previous_mode_bit = state->mode_bit; state->mode_bit = KBD_MODE_BIT_OFF; } return 0; } if (kbd_mode_levels_count > 0 && level < kbd_mode_levels_count) { if (level != 0) kbd_previous_level = level; state->mode_bit = kbd_mode_levels[level]; return 0; } return -EINVAL; } static int kbd_get_state(struct kbd_state *state) { int ret; get_buffer(); buffer->input[0] = 0x1; dell_send_request(buffer, 4, 11); ret = buffer->output[0]; if (ret) { ret = dell_smi_error(ret); goto out; } state->mode_bit = ffs(buffer->output[1] & 0xFFFF); if (state->mode_bit != 0) state->mode_bit--; state->triggers = (buffer->output[1] >> 16) & 0xFF; state->timeout_value = (buffer->output[1] >> 24) & 0x3F; state->timeout_unit = (buffer->output[1] >> 30) & 0x3; state->als_setting = buffer->output[2] & 0xFF; state->als_value = (buffer->output[2] >> 8) & 0xFF; state->level = (buffer->output[2] >> 16) & 0xFF; out: release_buffer(); return ret; } static int kbd_set_state(struct kbd_state *state) { int ret; get_buffer(); buffer->input[0] = 0x2; buffer->input[1] = BIT(state->mode_bit) & 0xFFFF; buffer->input[1] |= (state->triggers & 0xFF) << 16; buffer->input[1] |= (state->timeout_value & 0x3F) << 24; buffer->input[1] |= (state->timeout_unit & 0x3) << 30; buffer->input[2] = state->als_setting & 0xFF; buffer->input[2] |= (state->level & 0xFF) << 16; dell_send_request(buffer, 4, 11); ret = buffer->output[0]; release_buffer(); return dell_smi_error(ret); } static int kbd_set_state_safe(struct kbd_state *state, struct kbd_state *old) { int ret; ret = kbd_set_state(state); if (ret == 0) return 0; /* * When setting the new state fails,try to restore the previous one. * This is needed on some machines where BIOS sets a default state when * setting a new state fails. This default state could be all off. */ if (kbd_set_state(old)) pr_err("Setting old previous keyboard state failed\n"); return ret; } static int kbd_set_token_bit(u8 bit) { int id; int ret; if (bit >= ARRAY_SIZE(kbd_tokens)) return -EINVAL; id = find_token_id(kbd_tokens[bit]); if (id == -1) return -EINVAL; get_buffer(); buffer->input[0] = da_tokens[id].location; buffer->input[1] = da_tokens[id].value; dell_send_request(buffer, 1, 0); ret = buffer->output[0]; release_buffer(); return dell_smi_error(ret); } static int kbd_get_token_bit(u8 bit) { int id; int ret; int val; if (bit >= ARRAY_SIZE(kbd_tokens)) return -EINVAL; id = find_token_id(kbd_tokens[bit]); if (id == -1) return -EINVAL; get_buffer(); buffer->input[0] = da_tokens[id].location; dell_send_request(buffer, 0, 0); ret = buffer->output[0]; val = buffer->output[1]; release_buffer(); if (ret) return dell_smi_error(ret); return (val == da_tokens[id].value); } static int kbd_get_first_active_token_bit(void) { int i; int ret; for (i = 0; i < ARRAY_SIZE(kbd_tokens); ++i) { ret = kbd_get_token_bit(i); if (ret == 1) return i; } return ret; } static int kbd_get_valid_token_counts(void) { return hweight16(kbd_token_bits); } static inline int kbd_init_info(void) { struct kbd_state state; int ret; int i; ret = kbd_get_info(&kbd_info); if (ret) return ret; kbd_get_state(&state); /* NOTE: timeout value is stored in 6 bits so max value is 63 */ if (kbd_info.seconds > 63) kbd_info.seconds = 63; if (kbd_info.minutes > 63) kbd_info.minutes = 63; if (kbd_info.hours > 63) kbd_info.hours = 63; if (kbd_info.days > 63) kbd_info.days = 63; /* NOTE: On tested machines ON mode did not work and caused * problems (turned backlight off) so do not use it */ kbd_info.modes &= ~BIT(KBD_MODE_BIT_ON); kbd_previous_level = kbd_get_level(&state); kbd_previous_mode_bit = state.mode_bit; if (kbd_previous_level == 0 && kbd_get_max_level() != 0) kbd_previous_level = 1; if (kbd_previous_mode_bit == KBD_MODE_BIT_OFF) { kbd_previous_mode_bit = ffs(kbd_info.modes & ~BIT(KBD_MODE_BIT_OFF)); if (kbd_previous_mode_bit != 0) kbd_previous_mode_bit--; } if (kbd_info.modes & (BIT(KBD_MODE_BIT_ALS) | BIT(KBD_MODE_BIT_TRIGGER_ALS))) kbd_als_supported = true; if (kbd_info.modes & ( BIT(KBD_MODE_BIT_TRIGGER_ALS) | BIT(KBD_MODE_BIT_TRIGGER) | BIT(KBD_MODE_BIT_TRIGGER_25) | BIT(KBD_MODE_BIT_TRIGGER_50) | BIT(KBD_MODE_BIT_TRIGGER_75) | BIT(KBD_MODE_BIT_TRIGGER_100) )) kbd_triggers_supported = true; /* kbd_mode_levels[0] is reserved, see below */ for (i = 0; i < 16; ++i) if (kbd_is_level_mode_bit(i) && (BIT(i) & kbd_info.modes)) kbd_mode_levels[1 + kbd_mode_levels_count++] = i; /* * Find the first supported mode and assign to kbd_mode_levels[0]. * This should be 0 (off), but we cannot depend on the BIOS to * support 0. */ if (kbd_mode_levels_count > 0) { for (i = 0; i < 16; ++i) { if (BIT(i) & kbd_info.modes) { kbd_mode_levels[0] = i; break; } } kbd_mode_levels_count++; } return 0; } static inline void kbd_init_tokens(void) { int i; for (i = 0; i < ARRAY_SIZE(kbd_tokens); ++i) if (find_token_id(kbd_tokens[i]) != -1) kbd_token_bits |= BIT(i); } static void kbd_init(void) { int ret; ret = kbd_init_info(); kbd_init_tokens(); if (kbd_token_bits != 0 || ret == 0) kbd_led_present = true; } static ssize_t kbd_led_timeout_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct kbd_state new_state; struct kbd_state state; bool convert; int value; int ret; char ch; u8 unit; int i; ret = sscanf(buf, "%d %c", &value, &ch); if (ret < 1) return -EINVAL; else if (ret == 1) ch = 's'; if (value < 0) return -EINVAL; convert = false; switch (ch) { case 's': if (value > kbd_info.seconds) convert = true; unit = KBD_TIMEOUT_SECONDS; break; case 'm': if (value > kbd_info.minutes) convert = true; unit = KBD_TIMEOUT_MINUTES; break; case 'h': if (value > kbd_info.hours) convert = true; unit = KBD_TIMEOUT_HOURS; break; case 'd': if (value > kbd_info.days) convert = true; unit = KBD_TIMEOUT_DAYS; break; default: return -EINVAL; } if (quirks && quirks->needs_kbd_timeouts) convert = true; if (convert) { /* Convert value from current units to seconds */ switch (unit) { case KBD_TIMEOUT_DAYS: value *= 24; case KBD_TIMEOUT_HOURS: value *= 60; case KBD_TIMEOUT_MINUTES: value *= 60; unit = KBD_TIMEOUT_SECONDS; } if (quirks && quirks->needs_kbd_timeouts) { for (i = 0; quirks->kbd_timeouts[i] != -1; i++) { if (value <= quirks->kbd_timeouts[i]) { value = quirks->kbd_timeouts[i]; break; } } } if (value <= kbd_info.seconds && kbd_info.seconds) { unit = KBD_TIMEOUT_SECONDS; } else if (value / 60 <= kbd_info.minutes && kbd_info.minutes) { value /= 60; unit = KBD_TIMEOUT_MINUTES; } else if (value / (60 * 60) <= kbd_info.hours && kbd_info.hours) { value /= (60 * 60); unit = KBD_TIMEOUT_HOURS; } else if (value / (60 * 60 * 24) <= kbd_info.days && kbd_info.days) { value /= (60 * 60 * 24); unit = KBD_TIMEOUT_DAYS; } else { return -EINVAL; } } ret = kbd_get_state(&state); if (ret) return ret; new_state = state; new_state.timeout_value = value; new_state.timeout_unit = unit; ret = kbd_set_state_safe(&new_state, &state); if (ret) return ret; return count; } static ssize_t kbd_led_timeout_show(struct device *dev, struct device_attribute *attr, char *buf) { struct kbd_state state; int ret; int len; ret = kbd_get_state(&state); if (ret) return ret; len = sprintf(buf, "%d", state.timeout_value); switch (state.timeout_unit) { case KBD_TIMEOUT_SECONDS: return len + sprintf(buf+len, "s\n"); case KBD_TIMEOUT_MINUTES: return len + sprintf(buf+len, "m\n"); case KBD_TIMEOUT_HOURS: return len + sprintf(buf+len, "h\n"); case KBD_TIMEOUT_DAYS: return len + sprintf(buf+len, "d\n"); default: return -EINVAL; } return len; } static DEVICE_ATTR(stop_timeout, S_IRUGO | S_IWUSR, kbd_led_timeout_show, kbd_led_timeout_store); static const char * const kbd_led_triggers[] = { "keyboard", "touchpad", /*"trackstick"*/ NULL, /* NOTE: trackstick is just alias for touchpad */ "mouse", }; static ssize_t kbd_led_triggers_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct kbd_state new_state; struct kbd_state state; bool triggers_enabled = false; int trigger_bit = -1; char trigger[21]; int i, ret; ret = sscanf(buf, "%20s", trigger); if (ret != 1) return -EINVAL; if (trigger[0] != '+' && trigger[0] != '-') return -EINVAL; ret = kbd_get_state(&state); if (ret) return ret; if (kbd_triggers_supported) triggers_enabled = kbd_is_trigger_mode_bit(state.mode_bit); if (kbd_triggers_supported) { for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); ++i) { if (!(kbd_info.triggers & BIT(i))) continue; if (!kbd_led_triggers[i]) continue; if (strcmp(trigger+1, kbd_led_triggers[i]) != 0) continue; if (trigger[0] == '+' && triggers_enabled && (state.triggers & BIT(i))) return count; if (trigger[0] == '-' && (!triggers_enabled || !(state.triggers & BIT(i)))) return count; trigger_bit = i; break; } } if (trigger_bit != -1) { new_state = state; if (trigger[0] == '+') new_state.triggers |= BIT(trigger_bit); else { new_state.triggers &= ~BIT(trigger_bit); /* NOTE: trackstick bit (2) must be disabled when * disabling touchpad bit (1), otherwise touchpad * bit (1) will not be disabled */ if (trigger_bit == 1) new_state.triggers &= ~BIT(2); } if ((kbd_info.triggers & new_state.triggers) != new_state.triggers) return -EINVAL; if (new_state.triggers && !triggers_enabled) { new_state.mode_bit = KBD_MODE_BIT_TRIGGER; kbd_set_level(&new_state, kbd_previous_level); } else if (new_state.triggers == 0) { kbd_set_level(&new_state, 0); } if (!(kbd_info.modes & BIT(new_state.mode_bit))) return -EINVAL; ret = kbd_set_state_safe(&new_state, &state); if (ret) return ret; if (new_state.mode_bit != KBD_MODE_BIT_OFF) kbd_previous_mode_bit = new_state.mode_bit; return count; } return -EINVAL; } static ssize_t kbd_led_triggers_show(struct device *dev, struct device_attribute *attr, char *buf) { struct kbd_state state; bool triggers_enabled; int level, i, ret; int len = 0; ret = kbd_get_state(&state); if (ret) return ret; len = 0; if (kbd_triggers_supported) { triggers_enabled = kbd_is_trigger_mode_bit(state.mode_bit); level = kbd_get_level(&state); for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); ++i) { if (!(kbd_info.triggers & BIT(i))) continue; if (!kbd_led_triggers[i]) continue; if ((triggers_enabled || level <= 0) && (state.triggers & BIT(i))) buf[len++] = '+'; else buf[len++] = '-'; len += sprintf(buf+len, "%s ", kbd_led_triggers[i]); } } if (len) buf[len - 1] = '\n'; return len; } static DEVICE_ATTR(start_triggers, S_IRUGO | S_IWUSR, kbd_led_triggers_show, kbd_led_triggers_store); static ssize_t kbd_led_als_enabled_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct kbd_state new_state; struct kbd_state state; bool triggers_enabled = false; int enable; int ret; ret = kstrtoint(buf, 0, &enable); if (ret) return ret; ret = kbd_get_state(&state); if (ret) return ret; if (enable == kbd_is_als_mode_bit(state.mode_bit)) return count; new_state = state; if (kbd_triggers_supported) triggers_enabled = kbd_is_trigger_mode_bit(state.mode_bit); if (enable) { if (triggers_enabled) new_state.mode_bit = KBD_MODE_BIT_TRIGGER_ALS; else new_state.mode_bit = KBD_MODE_BIT_ALS; } else { if (triggers_enabled) { new_state.mode_bit = KBD_MODE_BIT_TRIGGER; kbd_set_level(&new_state, kbd_previous_level); } else { new_state.mode_bit = KBD_MODE_BIT_ON; } } if (!(kbd_info.modes & BIT(new_state.mode_bit))) return -EINVAL; ret = kbd_set_state_safe(&new_state, &state); if (ret) return ret; kbd_previous_mode_bit = new_state.mode_bit; return count; } static ssize_t kbd_led_als_enabled_show(struct device *dev, struct device_attribute *attr, char *buf) { struct kbd_state state; bool enabled = false; int ret; ret = kbd_get_state(&state); if (ret) return ret; enabled = kbd_is_als_mode_bit(state.mode_bit); return sprintf(buf, "%d\n", enabled ? 1 : 0); } static DEVICE_ATTR(als_enabled, S_IRUGO | S_IWUSR, kbd_led_als_enabled_show, kbd_led_als_enabled_store); static ssize_t kbd_led_als_setting_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct kbd_state state; struct kbd_state new_state; u8 setting; int ret; ret = kstrtou8(buf, 10, &setting); if (ret) return ret; ret = kbd_get_state(&state); if (ret) return ret; new_state = state; new_state.als_setting = setting; ret = kbd_set_state_safe(&new_state, &state); if (ret) return ret; return count; } static ssize_t kbd_led_als_setting_show(struct device *dev, struct device_attribute *attr, char *buf) { struct kbd_state state; int ret; ret = kbd_get_state(&state); if (ret) return ret; return sprintf(buf, "%d\n", state.als_setting); } static DEVICE_ATTR(als_setting, S_IRUGO | S_IWUSR, kbd_led_als_setting_show, kbd_led_als_setting_store); static struct attribute *kbd_led_attrs[] = { &dev_attr_stop_timeout.attr, &dev_attr_start_triggers.attr, NULL, }; static const struct attribute_group kbd_led_group = { .attrs = kbd_led_attrs, }; static struct attribute *kbd_led_als_attrs[] = { &dev_attr_als_enabled.attr, &dev_attr_als_setting.attr, NULL, }; static const struct attribute_group kbd_led_als_group = { .attrs = kbd_led_als_attrs, }; static const struct attribute_group *kbd_led_groups[] = { &kbd_led_group, &kbd_led_als_group, NULL, }; static enum led_brightness kbd_led_level_get(struct led_classdev *led_cdev) { int ret; u16 num; struct kbd_state state; if (kbd_get_max_level()) { ret = kbd_get_state(&state); if (ret) return 0; ret = kbd_get_level(&state); if (ret < 0) return 0; return ret; } if (kbd_get_valid_token_counts()) { ret = kbd_get_first_active_token_bit(); if (ret < 0) return 0; for (num = kbd_token_bits; num != 0 && ret > 0; --ret) num &= num - 1; /* clear the first bit set */ if (num == 0) return 0; return ffs(num) - 1; } pr_warn("Keyboard brightness level control not supported\n"); return 0; } static void kbd_led_level_set(struct led_classdev *led_cdev, enum led_brightness value) { struct kbd_state state; struct kbd_state new_state; u16 num; if (kbd_get_max_level()) { if (kbd_get_state(&state)) return; new_state = state; if (kbd_set_level(&new_state, value)) return; kbd_set_state_safe(&new_state, &state); return; } if (kbd_get_valid_token_counts()) { for (num = kbd_token_bits; num != 0 && value > 0; --value) num &= num - 1; /* clear the first bit set */ if (num == 0) return; kbd_set_token_bit(ffs(num) - 1); return; } pr_warn("Keyboard brightness level control not supported\n"); } static struct led_classdev kbd_led = { .name = "dell::kbd_backlight", .brightness_set = kbd_led_level_set, .brightness_get = kbd_led_level_get, .groups = kbd_led_groups, }; static int __init kbd_led_init(struct device *dev) { kbd_init(); if (!kbd_led_present) return -ENODEV; if (!kbd_als_supported) kbd_led_groups[1] = NULL; kbd_led.max_brightness = kbd_get_max_level(); if (!kbd_led.max_brightness) { kbd_led.max_brightness = kbd_get_valid_token_counts(); if (kbd_led.max_brightness) kbd_led.max_brightness--; } return led_classdev_register(dev, &kbd_led); } static void brightness_set_exit(struct led_classdev *led_cdev, enum led_brightness value) { /* Don't change backlight level on exit */ }; static void kbd_led_exit(void) { if (!kbd_led_present) return; kbd_led.brightness_set = brightness_set_exit; led_classdev_unregister(&kbd_led); } static int __init dell_init(void) { int max_intensity = 0; int ret; if (!dmi_check_system(dell_device_table)) return -ENODEV; quirks = NULL; /* find if this machine support other functions */ dmi_check_system(dell_quirks); dmi_walk(find_tokens, NULL); if (!da_tokens) { pr_info("Unable to find dmi tokens\n"); return -ENODEV; } ret = platform_driver_register(&platform_driver); if (ret) goto fail_platform_driver; platform_device = platform_device_alloc("dell-laptop", -1); if (!platform_device) { ret = -ENOMEM; goto fail_platform_device1; } ret = platform_device_add(platform_device); if (ret) goto fail_platform_device2; /* * Allocate buffer below 4GB for SMI data--only 32-bit physical addr * is passed to SMI handler. */ bufferpage = alloc_page(GFP_KERNEL | GFP_DMA32); if (!bufferpage) { ret = -ENOMEM; goto fail_buffer; } buffer = page_address(bufferpage); ret = dell_setup_rfkill(); if (ret) { pr_warn("Unable to setup rfkill\n"); goto fail_rfkill; } if (quirks && quirks->touchpad_led) touchpad_led_init(&platform_device->dev); kbd_led_init(&platform_device->dev); dell_laptop_dir = debugfs_create_dir("dell_laptop", NULL); if (dell_laptop_dir != NULL) debugfs_create_file("rfkill", 0444, dell_laptop_dir, NULL, &dell_debugfs_fops); if (acpi_video_get_backlight_type() != acpi_backlight_vendor) return 0; get_buffer(); buffer->input[0] = find_token_location(BRIGHTNESS_TOKEN); if (buffer->input[0] != -1) { dell_send_request(buffer, 0, 2); max_intensity = buffer->output[3]; } release_buffer(); if (max_intensity) { struct backlight_properties props; memset(&props, 0, sizeof(struct backlight_properties)); props.type = BACKLIGHT_PLATFORM; props.max_brightness = max_intensity; dell_backlight_device = backlight_device_register("dell_backlight", &platform_device->dev, NULL, &dell_ops, &props); if (IS_ERR(dell_backlight_device)) { ret = PTR_ERR(dell_backlight_device); dell_backlight_device = NULL; goto fail_backlight; } dell_backlight_device->props.brightness = dell_get_intensity(dell_backlight_device); backlight_update_status(dell_backlight_device); } return 0; fail_backlight: dell_cleanup_rfkill(); fail_rfkill: free_page((unsigned long)bufferpage); fail_buffer: platform_device_del(platform_device); fail_platform_device2: platform_device_put(platform_device); fail_platform_device1: platform_driver_unregister(&platform_driver); fail_platform_driver: kfree(da_tokens); return ret; } static void __exit dell_exit(void) { debugfs_remove_recursive(dell_laptop_dir); if (quirks && quirks->touchpad_led) touchpad_led_exit(); kbd_led_exit(); backlight_device_unregister(dell_backlight_device); dell_cleanup_rfkill(); if (platform_device) { platform_device_unregister(platform_device); platform_driver_unregister(&platform_driver); } kfree(da_tokens); free_page((unsigned long)buffer); } /* dell-rbtn.c driver export functions which will not work correctly (and could * cause kernel crash) if they are called before dell-rbtn.c init code. This is * not problem when dell-rbtn.c is compiled as external module. When both files * (dell-rbtn.c and dell-laptop.c) are compiled statically into kernel, then we * need to ensure that dell_init() will be called after initializing dell-rbtn. * This can be achieved by late_initcall() instead module_init(). */ late_initcall(dell_init); module_exit(dell_exit); MODULE_AUTHOR("Matthew Garrett "); MODULE_AUTHOR("Gabriele Mazzotta "); MODULE_AUTHOR("Pali Rohár "); MODULE_DESCRIPTION("Dell laptop driver"); MODULE_LICENSE("GPL");