// SPDX-License-Identifier: GPL-2.0-or-later /* * CXL Flash Device Driver * * Written by: Manoj N. Kumar , IBM Corporation * Matthew R. Ochs , IBM Corporation * * Copyright (C) 2015 IBM Corporation */ #include #include #include #include #include #include #include #include #include "main.h" #include "sislite.h" #include "common.h" MODULE_DESCRIPTION(CXLFLASH_ADAPTER_NAME); MODULE_AUTHOR("Manoj N. Kumar "); MODULE_AUTHOR("Matthew R. Ochs "); MODULE_LICENSE("GPL"); static struct class *cxlflash_class; static u32 cxlflash_major; static DECLARE_BITMAP(cxlflash_minor, CXLFLASH_MAX_ADAPTERS); /** * process_cmd_err() - command error handler * @cmd: AFU command that experienced the error. * @scp: SCSI command associated with the AFU command in error. * * Translates error bits from AFU command to SCSI command results. */ static void process_cmd_err(struct afu_cmd *cmd, struct scsi_cmnd *scp) { struct afu *afu = cmd->parent; struct cxlflash_cfg *cfg = afu->parent; struct device *dev = &cfg->dev->dev; struct sisl_ioasa *ioasa; u32 resid; if (unlikely(!cmd)) return; ioasa = &(cmd->sa); if (ioasa->rc.flags & SISL_RC_FLAGS_UNDERRUN) { resid = ioasa->resid; scsi_set_resid(scp, resid); dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p, resid = %d\n", __func__, cmd, scp, resid); } if (ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN) { dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p\n", __func__, cmd, scp); scp->result = (DID_ERROR << 16); } dev_dbg(dev, "%s: cmd failed afu_rc=%02x scsi_rc=%02x fc_rc=%02x " "afu_extra=%02x scsi_extra=%02x fc_extra=%02x\n", __func__, ioasa->rc.afu_rc, ioasa->rc.scsi_rc, ioasa->rc.fc_rc, ioasa->afu_extra, ioasa->scsi_extra, ioasa->fc_extra); if (ioasa->rc.scsi_rc) { /* We have a SCSI status */ if (ioasa->rc.flags & SISL_RC_FLAGS_SENSE_VALID) { memcpy(scp->sense_buffer, ioasa->sense_data, SISL_SENSE_DATA_LEN); scp->result = ioasa->rc.scsi_rc; } else scp->result = ioasa->rc.scsi_rc | (DID_ERROR << 16); } /* * We encountered an error. Set scp->result based on nature * of error. */ if (ioasa->rc.fc_rc) { /* We have an FC status */ switch (ioasa->rc.fc_rc) { case SISL_FC_RC_LINKDOWN: scp->result = (DID_REQUEUE << 16); break; case SISL_FC_RC_RESID: /* This indicates an FCP resid underrun */ if (!(ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN)) { /* If the SISL_RC_FLAGS_OVERRUN flag was set, * then we will handle this error else where. * If not then we must handle it here. * This is probably an AFU bug. */ scp->result = (DID_ERROR << 16); } break; case SISL_FC_RC_RESIDERR: /* Resid mismatch between adapter and device */ case SISL_FC_RC_TGTABORT: case SISL_FC_RC_ABORTOK: case SISL_FC_RC_ABORTFAIL: case SISL_FC_RC_NOLOGI: case SISL_FC_RC_ABORTPEND: case SISL_FC_RC_WRABORTPEND: case SISL_FC_RC_NOEXP: case SISL_FC_RC_INUSE: scp->result = (DID_ERROR << 16); break; } } if (ioasa->rc.afu_rc) { /* We have an AFU error */ switch (ioasa->rc.afu_rc) { case SISL_AFU_RC_NO_CHANNELS: scp->result = (DID_NO_CONNECT << 16); break; case SISL_AFU_RC_DATA_DMA_ERR: switch (ioasa->afu_extra) { case SISL_AFU_DMA_ERR_PAGE_IN: /* Retry */ scp->result = (DID_IMM_RETRY << 16); break; case SISL_AFU_DMA_ERR_INVALID_EA: default: scp->result = (DID_ERROR << 16); } break; case SISL_AFU_RC_OUT_OF_DATA_BUFS: /* Retry */ scp->result = (DID_ALLOC_FAILURE << 16); break; default: scp->result = (DID_ERROR << 16); } } } /** * cmd_complete() - command completion handler * @cmd: AFU command that has completed. * * For SCSI commands this routine prepares and submits commands that have * either completed or timed out to the SCSI stack. For internal commands * (TMF or AFU), this routine simply notifies the originator that the * command has completed. */ static void cmd_complete(struct afu_cmd *cmd) { struct scsi_cmnd *scp; ulong lock_flags; struct afu *afu = cmd->parent; struct cxlflash_cfg *cfg = afu->parent; struct device *dev = &cfg->dev->dev; struct hwq *hwq = get_hwq(afu, cmd->hwq_index); spin_lock_irqsave(&hwq->hsq_slock, lock_flags); list_del(&cmd->list); spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags); if (cmd->scp) { scp = cmd->scp; if (unlikely(cmd->sa.ioasc)) process_cmd_err(cmd, scp); else scp->result = (DID_OK << 16); dev_dbg_ratelimited(dev, "%s:scp=%p result=%08x ioasc=%08x\n", __func__, scp, scp->result, cmd->sa.ioasc); scp->scsi_done(scp); } else if (cmd->cmd_tmf) { spin_lock_irqsave(&cfg->tmf_slock, lock_flags); cfg->tmf_active = false; wake_up_all_locked(&cfg->tmf_waitq); spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); } else complete(&cmd->cevent); } /** * flush_pending_cmds() - flush all pending commands on this hardware queue * @hwq: Hardware queue to flush. * * The hardware send queue lock associated with this hardware queue must be * held when calling this routine. */ static void flush_pending_cmds(struct hwq *hwq) { struct cxlflash_cfg *cfg = hwq->afu->parent; struct afu_cmd *cmd, *tmp; struct scsi_cmnd *scp; ulong lock_flags; list_for_each_entry_safe(cmd, tmp, &hwq->pending_cmds, list) { /* Bypass command when on a doneq, cmd_complete() will handle */ if (!list_empty(&cmd->queue)) continue; list_del(&cmd->list); if (cmd->scp) { scp = cmd->scp; scp->result = (DID_IMM_RETRY << 16); scp->scsi_done(scp); } else { cmd->cmd_aborted = true; if (cmd->cmd_tmf) { spin_lock_irqsave(&cfg->tmf_slock, lock_flags); cfg->tmf_active = false; wake_up_all_locked(&cfg->tmf_waitq); spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); } else complete(&cmd->cevent); } } } /** * context_reset() - reset context via specified register * @hwq: Hardware queue owning the context to be reset. * @reset_reg: MMIO register to perform reset. * * When the reset is successful, the SISLite specification guarantees that * the AFU has aborted all currently pending I/O. Accordingly, these commands * must be flushed. * * Return: 0 on success, -errno on failure */ static int context_reset(struct hwq *hwq, __be64 __iomem *reset_reg) { struct cxlflash_cfg *cfg = hwq->afu->parent; struct device *dev = &cfg->dev->dev; int rc = -ETIMEDOUT; int nretry = 0; u64 val = 0x1; ulong lock_flags; dev_dbg(dev, "%s: hwq=%p\n", __func__, hwq); spin_lock_irqsave(&hwq->hsq_slock, lock_flags); writeq_be(val, reset_reg); do { val = readq_be(reset_reg); if ((val & 0x1) == 0x0) { rc = 0; break; } /* Double delay each time */ udelay(1 << nretry); } while (nretry++ < MC_ROOM_RETRY_CNT); if (!rc) flush_pending_cmds(hwq); spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags); dev_dbg(dev, "%s: returning rc=%d, val=%016llx nretry=%d\n", __func__, rc, val, nretry); return rc; } /** * context_reset_ioarrin() - reset context via IOARRIN register * @hwq: Hardware queue owning the context to be reset. * * Return: 0 on success, -errno on failure */ static int context_reset_ioarrin(struct hwq *hwq) { return context_reset(hwq, &hwq->host_map->ioarrin); } /** * context_reset_sq() - reset context via SQ_CONTEXT_RESET register * @hwq: Hardware queue owning the context to be reset. * * Return: 0 on success, -errno on failure */ static int context_reset_sq(struct hwq *hwq) { return context_reset(hwq, &hwq->host_map->sq_ctx_reset); } /** * send_cmd_ioarrin() - sends an AFU command via IOARRIN register * @afu: AFU associated with the host. * @cmd: AFU command to send. * * Return: * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure */ static int send_cmd_ioarrin(struct afu *afu, struct afu_cmd *cmd) { struct cxlflash_cfg *cfg = afu->parent; struct device *dev = &cfg->dev->dev; struct hwq *hwq = get_hwq(afu, cmd->hwq_index); int rc = 0; s64 room; ulong lock_flags; /* * To avoid the performance penalty of MMIO, spread the update of * 'room' over multiple commands. */ spin_lock_irqsave(&hwq->hsq_slock, lock_flags); if (--hwq->room < 0) { room = readq_be(&hwq->host_map->cmd_room); if (room <= 0) { dev_dbg_ratelimited(dev, "%s: no cmd_room to send " "0x%02X, room=0x%016llX\n", __func__, cmd->rcb.cdb[0], room); hwq->room = 0; rc = SCSI_MLQUEUE_HOST_BUSY; goto out; } hwq->room = room - 1; } list_add(&cmd->list, &hwq->pending_cmds); writeq_be((u64)&cmd->rcb, &hwq->host_map->ioarrin); out: spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags); dev_dbg_ratelimited(dev, "%s: cmd=%p len=%u ea=%016llx rc=%d\n", __func__, cmd, cmd->rcb.data_len, cmd->rcb.data_ea, rc); return rc; } /** * send_cmd_sq() - sends an AFU command via SQ ring * @afu: AFU associated with the host. * @cmd: AFU command to send. * * Return: * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure */ static int send_cmd_sq(struct afu *afu, struct afu_cmd *cmd) { struct cxlflash_cfg *cfg = afu->parent; struct device *dev = &cfg->dev->dev; struct hwq *hwq = get_hwq(afu, cmd->hwq_index); int rc = 0; int newval; ulong lock_flags; newval = atomic_dec_if_positive(&hwq->hsq_credits); if (newval <= 0) { rc = SCSI_MLQUEUE_HOST_BUSY; goto out; } cmd->rcb.ioasa = &cmd->sa; spin_lock_irqsave(&hwq->hsq_slock, lock_flags); *hwq->hsq_curr = cmd->rcb; if (hwq->hsq_curr < hwq->hsq_end) hwq->hsq_curr++; else hwq->hsq_curr = hwq->hsq_start; list_add(&cmd->list, &hwq->pending_cmds); writeq_be((u64)hwq->hsq_curr, &hwq->host_map->sq_tail); spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags); out: dev_dbg(dev, "%s: cmd=%p len=%u ea=%016llx ioasa=%p rc=%d curr=%p " "head=%016llx tail=%016llx\n", __func__, cmd, cmd->rcb.data_len, cmd->rcb.data_ea, cmd->rcb.ioasa, rc, hwq->hsq_curr, readq_be(&hwq->host_map->sq_head), readq_be(&hwq->host_map->sq_tail)); return rc; } /** * wait_resp() - polls for a response or timeout to a sent AFU command * @afu: AFU associated with the host. * @cmd: AFU command that was sent. * * Return: 0 on success, -errno on failure */ static int wait_resp(struct afu *afu, struct afu_cmd *cmd) { struct cxlflash_cfg *cfg = afu->parent; struct device *dev = &cfg->dev->dev; int rc = 0; ulong timeout = msecs_to_jiffies(cmd->rcb.timeout * 2 * 1000); timeout = wait_for_completion_timeout(&cmd->cevent, timeout); if (!timeout) rc = -ETIMEDOUT; if (cmd->cmd_aborted) rc = -EAGAIN; if (unlikely(cmd->sa.ioasc != 0)) { dev_err(dev, "%s: cmd %02x failed, ioasc=%08x\n", __func__, cmd->rcb.cdb[0], cmd->sa.ioasc); rc = -EIO; } return rc; } /** * cmd_to_target_hwq() - selects a target hardware queue for a SCSI command * @host: SCSI host associated with device. * @scp: SCSI command to send. * @afu: SCSI command to send. * * Hashes a command based upon the hardware queue mode. * * Return: Trusted index of target hardware queue */ static u32 cmd_to_target_hwq(struct Scsi_Host *host, struct scsi_cmnd *scp, struct afu *afu) { u32 tag; u32 hwq = 0; if (afu->num_hwqs == 1) return 0; switch (afu->hwq_mode) { case HWQ_MODE_RR: hwq = afu->hwq_rr_count++ % afu->num_hwqs; break; case HWQ_MODE_TAG: tag = blk_mq_unique_tag(scp->request); hwq = blk_mq_unique_tag_to_hwq(tag); break; case HWQ_MODE_CPU: hwq = smp_processor_id() % afu->num_hwqs; break; default: WARN_ON_ONCE(1); } return hwq; } /** * send_tmf() - sends a Task Management Function (TMF) * @cfg: Internal structure associated with the host. * @sdev: SCSI device destined for TMF. * @tmfcmd: TMF command to send. * * Return: * 0 on success, SCSI_MLQUEUE_HOST_BUSY or -errno on failure */ static int send_tmf(struct cxlflash_cfg *cfg, struct scsi_device *sdev, u64 tmfcmd) { struct afu *afu = cfg->afu; struct afu_cmd *cmd = NULL; struct device *dev = &cfg->dev->dev; struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ); bool needs_deletion = false; char *buf = NULL; ulong lock_flags; int rc = 0; ulong to; buf = kzalloc(sizeof(*cmd) + __alignof__(*cmd) - 1, GFP_KERNEL); if (unlikely(!buf)) { dev_err(dev, "%s: no memory for command\n", __func__); rc = -ENOMEM; goto out; } cmd = (struct afu_cmd *)PTR_ALIGN(buf, __alignof__(*cmd)); INIT_LIST_HEAD(&cmd->queue); /* When Task Management Function is active do not send another */ spin_lock_irqsave(&cfg->tmf_slock, lock_flags); if (cfg->tmf_active) wait_event_interruptible_lock_irq(cfg->tmf_waitq, !cfg->tmf_active, cfg->tmf_slock); cfg->tmf_active = true; spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); cmd->parent = afu; cmd->cmd_tmf = true; cmd->hwq_index = hwq->index; cmd->rcb.ctx_id = hwq->ctx_hndl; cmd->rcb.msi = SISL_MSI_RRQ_UPDATED; cmd->rcb.port_sel = CHAN2PORTMASK(sdev->channel); cmd->rcb.lun_id = lun_to_lunid(sdev->lun); cmd->rcb.req_flags = (SISL_REQ_FLAGS_PORT_LUN_ID | SISL_REQ_FLAGS_SUP_UNDERRUN | SISL_REQ_FLAGS_TMF_CMD); memcpy(cmd->rcb.cdb, &tmfcmd, sizeof(tmfcmd)); rc = afu->send_cmd(afu, cmd); if (unlikely(rc)) { spin_lock_irqsave(&cfg->tmf_slock, lock_flags); cfg->tmf_active = false; spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); goto out; } spin_lock_irqsave(&cfg->tmf_slock, lock_flags); to = msecs_to_jiffies(5000); to = wait_event_interruptible_lock_irq_timeout(cfg->tmf_waitq, !cfg->tmf_active, cfg->tmf_slock, to); if (!to) { dev_err(dev, "%s: TMF timed out\n", __func__); rc = -ETIMEDOUT; needs_deletion = true; } else if (cmd->cmd_aborted) { dev_err(dev, "%s: TMF aborted\n", __func__); rc = -EAGAIN; } else if (cmd->sa.ioasc) { dev_err(dev, "%s: TMF failed ioasc=%08x\n", __func__, cmd->sa.ioasc); rc = -EIO; } cfg->tmf_active = false; spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); if (needs_deletion) { spin_lock_irqsave(&hwq->hsq_slock, lock_flags); list_del(&cmd->list); spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags); } out: kfree(buf); return rc; } /** * cxlflash_driver_info() - information handler for this host driver * @host: SCSI host associated with device. * * Return: A string describing the device. */ static const char *cxlflash_driver_info(struct Scsi_Host *host) { return CXLFLASH_ADAPTER_NAME; } /** * cxlflash_queuecommand() - sends a mid-layer request * @host: SCSI host associated with device. * @scp: SCSI command to send. * * Return: 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure */ static int cxlflash_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scp) { struct cxlflash_cfg *cfg = shost_priv(host); struct afu *afu = cfg->afu; struct device *dev = &cfg->dev->dev; struct afu_cmd *cmd = sc_to_afuci(scp); struct scatterlist *sg = scsi_sglist(scp); int hwq_index = cmd_to_target_hwq(host, scp, afu); struct hwq *hwq = get_hwq(afu, hwq_index); u16 req_flags = SISL_REQ_FLAGS_SUP_UNDERRUN; ulong lock_flags; int rc = 0; dev_dbg_ratelimited(dev, "%s: (scp=%p) %d/%d/%d/%llu " "cdb=(%08x-%08x-%08x-%08x)\n", __func__, scp, host->host_no, scp->device->channel, scp->device->id, scp->device->lun, get_unaligned_be32(&((u32 *)scp->cmnd)[0]), get_unaligned_be32(&((u32 *)scp->cmnd)[1]), get_unaligned_be32(&((u32 *)scp->cmnd)[2]), get_unaligned_be32(&((u32 *)scp->cmnd)[3])); /* * If a Task Management Function is active, wait for it to complete * before continuing with regular commands. */ spin_lock_irqsave(&cfg->tmf_slock, lock_flags); if (cfg->tmf_active) { spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); rc = SCSI_MLQUEUE_HOST_BUSY; goto out; } spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); switch (cfg->state) { case STATE_PROBING: case STATE_PROBED: case STATE_RESET: dev_dbg_ratelimited(dev, "%s: device is in reset\n", __func__); rc = SCSI_MLQUEUE_HOST_BUSY; goto out; case STATE_FAILTERM: dev_dbg_ratelimited(dev, "%s: device has failed\n", __func__); scp->result = (DID_NO_CONNECT << 16); scp->scsi_done(scp); rc = 0; goto out; default: atomic_inc(&afu->cmds_active); break; } if (likely(sg)) { cmd->rcb.data_len = sg->length; cmd->rcb.data_ea = (uintptr_t)sg_virt(sg); } cmd->scp = scp; cmd->parent = afu; cmd->hwq_index = hwq_index; cmd->sa.ioasc = 0; cmd->rcb.ctx_id = hwq->ctx_hndl; cmd->rcb.msi = SISL_MSI_RRQ_UPDATED; cmd->rcb.port_sel = CHAN2PORTMASK(scp->device->channel); cmd->rcb.lun_id = lun_to_lunid(scp->device->lun); if (scp->sc_data_direction == DMA_TO_DEVICE) req_flags |= SISL_REQ_FLAGS_HOST_WRITE; cmd->rcb.req_flags = req_flags; memcpy(cmd->rcb.cdb, scp->cmnd, sizeof(cmd->rcb.cdb)); rc = afu->send_cmd(afu, cmd); atomic_dec(&afu->cmds_active); out: return rc; } /** * cxlflash_wait_for_pci_err_recovery() - wait for error recovery during probe * @cfg: Internal structure associated with the host. */ static void cxlflash_wait_for_pci_err_recovery(struct cxlflash_cfg *cfg) { struct pci_dev *pdev = cfg->dev; if (pci_channel_offline(pdev)) wait_event_timeout(cfg->reset_waitq, !pci_channel_offline(pdev), CXLFLASH_PCI_ERROR_RECOVERY_TIMEOUT); } /** * free_mem() - free memory associated with the AFU * @cfg: Internal structure associated with the host. */ static void free_mem(struct cxlflash_cfg *cfg) { struct afu *afu = cfg->afu; if (cfg->afu) { free_pages((ulong)afu, get_order(sizeof(struct afu))); cfg->afu = NULL; } } /** * cxlflash_reset_sync() - synchronizing point for asynchronous resets * @cfg: Internal structure associated with the host. */ static void cxlflash_reset_sync(struct cxlflash_cfg *cfg) { if (cfg->async_reset_cookie == 0) return; /* Wait until all async calls prior to this cookie have completed */ async_synchronize_cookie(cfg->async_reset_cookie + 1); cfg->async_reset_cookie = 0; } /** * stop_afu() - stops the AFU command timers and unmaps the MMIO space * @cfg: Internal structure associated with the host. * * Safe to call with AFU in a partially allocated/initialized state. * * Cancels scheduled worker threads, waits for any active internal AFU * commands to timeout, disables IRQ polling and then unmaps the MMIO space. */ static void stop_afu(struct cxlflash_cfg *cfg) { struct afu *afu = cfg->afu; struct hwq *hwq; int i; cancel_work_sync(&cfg->work_q); if (!current_is_async()) cxlflash_reset_sync(cfg); if (likely(afu)) { while (atomic_read(&afu->cmds_active)) ssleep(1); if (afu_is_irqpoll_enabled(afu)) { for (i = 0; i < afu->num_hwqs; i++) { hwq = get_hwq(afu, i); irq_poll_disable(&hwq->irqpoll); } } if (likely(afu->afu_map)) { cfg->ops->psa_unmap(afu->afu_map); afu->afu_map = NULL; } } } /** * term_intr() - disables all AFU interrupts * @cfg: Internal structure associated with the host. * @level: Depth of allocation, where to begin waterfall tear down. * @index: Index of the hardware queue. * * Safe to call with AFU/MC in partially allocated/initialized state. */ static void term_intr(struct cxlflash_cfg *cfg, enum undo_level level, u32 index) { struct afu *afu = cfg->afu; struct device *dev = &cfg->dev->dev; struct hwq *hwq; if (!afu) { dev_err(dev, "%s: returning with NULL afu\n", __func__); return; } hwq = get_hwq(afu, index); if (!hwq->ctx_cookie) { dev_err(dev, "%s: returning with NULL MC\n", __func__); return; } switch (level) { case UNMAP_THREE: /* SISL_MSI_ASYNC_ERROR is setup only for the primary HWQ */ if (index == PRIMARY_HWQ) cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 3, hwq); /* fall through */ case UNMAP_TWO: cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 2, hwq); /* fall through */ case UNMAP_ONE: cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 1, hwq); /* fall through */ case FREE_IRQ: cfg->ops->free_afu_irqs(hwq->ctx_cookie); /* fall through */ case UNDO_NOOP: /* No action required */ break; } } /** * term_mc() - terminates the master context * @cfg: Internal structure associated with the host. * @index: Index of the hardware queue. * * Safe to call with AFU/MC in partially allocated/initialized state. */ static void term_mc(struct cxlflash_cfg *cfg, u32 index) { struct afu *afu = cfg->afu; struct device *dev = &cfg->dev->dev; struct hwq *hwq; ulong lock_flags; if (!afu) { dev_err(dev, "%s: returning with NULL afu\n", __func__); return; } hwq = get_hwq(afu, index); if (!hwq->ctx_cookie) { dev_err(dev, "%s: returning with NULL MC\n", __func__); return; } WARN_ON(cfg->ops->stop_context(hwq->ctx_cookie)); if (index != PRIMARY_HWQ) WARN_ON(cfg->ops->release_context(hwq->ctx_cookie)); hwq->ctx_cookie = NULL; spin_lock_irqsave(&hwq->hrrq_slock, lock_flags); hwq->hrrq_online = false; spin_unlock_irqrestore(&hwq->hrrq_slock, lock_flags); spin_lock_irqsave(&hwq->hsq_slock, lock_flags); flush_pending_cmds(hwq); spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags); } /** * term_afu() - terminates the AFU * @cfg: Internal structure associated with the host. * * Safe to call with AFU/MC in partially allocated/initialized state. */ static void term_afu(struct cxlflash_cfg *cfg) { struct device *dev = &cfg->dev->dev; int k; /* * Tear down is carefully orchestrated to ensure * no interrupts can come in when the problem state * area is unmapped. * * 1) Disable all AFU interrupts for each master * 2) Unmap the problem state area * 3) Stop each master context */ for (k = cfg->afu->num_hwqs - 1; k >= 0; k--) term_intr(cfg, UNMAP_THREE, k); stop_afu(cfg); for (k = cfg->afu->num_hwqs - 1; k >= 0; k--) term_mc(cfg, k); dev_dbg(dev, "%s: returning\n", __func__); } /** * notify_shutdown() - notifies device of pending shutdown * @cfg: Internal structure associated with the host. * @wait: Whether to wait for shutdown processing to complete. * * This function will notify the AFU that the adapter is being shutdown * and will wait for shutdown processing to complete if wait is true. * This notification should flush pending I/Os to the device and halt * further I/Os until the next AFU reset is issued and device restarted. */ static void notify_shutdown(struct cxlflash_cfg *cfg, bool wait) { struct afu *afu = cfg->afu; struct device *dev = &cfg->dev->dev; struct dev_dependent_vals *ddv; __be64 __iomem *fc_port_regs; u64 reg, status; int i, retry_cnt = 0; ddv = (struct dev_dependent_vals *)cfg->dev_id->driver_data; if (!(ddv->flags & CXLFLASH_NOTIFY_SHUTDOWN)) return; if (!afu || !afu->afu_map) { dev_dbg(dev, "%s: Problem state area not mapped\n", __func__); return; } /* Notify AFU */ for (i = 0; i < cfg->num_fc_ports; i++) { fc_port_regs = get_fc_port_regs(cfg, i); reg = readq_be(&fc_port_regs[FC_CONFIG2 / 8]); reg |= SISL_FC_SHUTDOWN_NORMAL; writeq_be(reg, &fc_port_regs[FC_CONFIG2 / 8]); } if (!wait) return; /* Wait up to 1.5 seconds for shutdown processing to complete */ for (i = 0; i < cfg->num_fc_ports; i++) { fc_port_regs = get_fc_port_regs(cfg, i); retry_cnt = 0; while (true) { status = readq_be(&fc_port_regs[FC_STATUS / 8]); if (status & SISL_STATUS_SHUTDOWN_COMPLETE) break; if (++retry_cnt >= MC_RETRY_CNT) { dev_dbg(dev, "%s: port %d shutdown processing " "not yet completed\n", __func__, i); break; } msleep(100 * retry_cnt); } } } /** * cxlflash_get_minor() - gets the first available minor number * * Return: Unique minor number that can be used to create the character device. */ static int cxlflash_get_minor(void) { int minor; long bit; bit = find_first_zero_bit(cxlflash_minor, CXLFLASH_MAX_ADAPTERS); if (bit >= CXLFLASH_MAX_ADAPTERS) return -1; minor = bit & MINORMASK; set_bit(minor, cxlflash_minor); return minor; } /** * cxlflash_put_minor() - releases the minor number * @minor: Minor number that is no longer needed. */ static void cxlflash_put_minor(int minor) { clear_bit(minor, cxlflash_minor); } /** * cxlflash_release_chrdev() - release the character device for the host * @cfg: Internal structure associated with the host. */ static void cxlflash_release_chrdev(struct cxlflash_cfg *cfg) { device_unregister(cfg->chardev); cfg->chardev = NULL; cdev_del(&cfg->cdev); cxlflash_put_minor(MINOR(cfg->cdev.dev)); } /** * cxlflash_remove() - PCI entry point to tear down host * @pdev: PCI device associated with the host. * * Safe to use as a cleanup in partially allocated/initialized state. Note that * the reset_waitq is flushed as part of the stop/termination of user contexts. */ static void cxlflash_remove(struct pci_dev *pdev) { struct cxlflash_cfg *cfg = pci_get_drvdata(pdev); struct device *dev = &pdev->dev; ulong lock_flags; if (!pci_is_enabled(pdev)) { dev_dbg(dev, "%s: Device is disabled\n", __func__); return; } /* Yield to running recovery threads before continuing with remove */ wait_event(cfg->reset_waitq, cfg->state != STATE_RESET && cfg->state != STATE_PROBING); spin_lock_irqsave(&cfg->tmf_slock, lock_flags); if (cfg->tmf_active) wait_event_interruptible_lock_irq(cfg->tmf_waitq, !cfg->tmf_active, cfg->tmf_slock); spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); /* Notify AFU and wait for shutdown processing to complete */ notify_shutdown(cfg, true); cfg->state = STATE_FAILTERM; cxlflash_stop_term_user_contexts(cfg); switch (cfg->init_state) { case INIT_STATE_CDEV: cxlflash_release_chrdev(cfg); /* fall through */ case INIT_STATE_SCSI: cxlflash_term_local_luns(cfg); scsi_remove_host(cfg->host); /* fall through */ case INIT_STATE_AFU: term_afu(cfg); /* fall through */ case INIT_STATE_PCI: cfg->ops->destroy_afu(cfg->afu_cookie); pci_disable_device(pdev); /* fall through */ case INIT_STATE_NONE: free_mem(cfg); scsi_host_put(cfg->host); break; } dev_dbg(dev, "%s: returning\n", __func__); } /** * alloc_mem() - allocates the AFU and its command pool * @cfg: Internal structure associated with the host. * * A partially allocated state remains on failure. * * Return: * 0 on success * -ENOMEM on failure to allocate memory */ static int alloc_mem(struct cxlflash_cfg *cfg) { int rc = 0; struct device *dev = &cfg->dev->dev; /* AFU is ~28k, i.e. only one 64k page or up to seven 4k pages */ cfg->afu = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, get_order(sizeof(struct afu))); if (unlikely(!cfg->afu)) { dev_err(dev, "%s: cannot get %d free pages\n", __func__, get_order(sizeof(struct afu))); rc = -ENOMEM; goto out; } cfg->afu->parent = cfg; cfg->afu->desired_hwqs = CXLFLASH_DEF_HWQS; cfg->afu->afu_map = NULL; out: return rc; } /** * init_pci() - initializes the host as a PCI device * @cfg: Internal structure associated with the host. * * Return: 0 on success, -errno on failure */ static int init_pci(struct cxlflash_cfg *cfg) { struct pci_dev *pdev = cfg->dev; struct device *dev = &cfg->dev->dev; int rc = 0; rc = pci_enable_device(pdev); if (rc || pci_channel_offline(pdev)) { if (pci_channel_offline(pdev)) { cxlflash_wait_for_pci_err_recovery(cfg); rc = pci_enable_device(pdev); } if (rc) { dev_err(dev, "%s: Cannot enable adapter\n", __func__); cxlflash_wait_for_pci_err_recovery(cfg); goto out; } } out: dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); return rc; } /** * init_scsi() - adds the host to the SCSI stack and kicks off host scan * @cfg: Internal structure associated with the host. * * Return: 0 on success, -errno on failure */ static int init_scsi(struct cxlflash_cfg *cfg) { struct pci_dev *pdev = cfg->dev; struct device *dev = &cfg->dev->dev; int rc = 0; rc = scsi_add_host(cfg->host, &pdev->dev); if (rc) { dev_err(dev, "%s: scsi_add_host failed rc=%d\n", __func__, rc); goto out; } scsi_scan_host(cfg->host); out: dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); return rc; } /** * set_port_online() - transitions the specified host FC port to online state * @fc_regs: Top of MMIO region defined for specified port. * * The provided MMIO region must be mapped prior to call. Online state means * that the FC link layer has synced, completed the handshaking process, and * is ready for login to start. */ static void set_port_online(__be64 __iomem *fc_regs) { u64 cmdcfg; cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]); cmdcfg &= (~FC_MTIP_CMDCONFIG_OFFLINE); /* clear OFF_LINE */ cmdcfg |= (FC_MTIP_CMDCONFIG_ONLINE); /* set ON_LINE */ writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]); } /** * set_port_offline() - transitions the specified host FC port to offline state * @fc_regs: Top of MMIO region defined for specified port. * * The provided MMIO region must be mapped prior to call. */ static void set_port_offline(__be64 __iomem *fc_regs) { u64 cmdcfg; cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]); cmdcfg &= (~FC_MTIP_CMDCONFIG_ONLINE); /* clear ON_LINE */ cmdcfg |= (FC_MTIP_CMDCONFIG_OFFLINE); /* set OFF_LINE */ writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]); } /** * wait_port_online() - waits for the specified host FC port come online * @fc_regs: Top of MMIO region defined for specified port. * @delay_us: Number of microseconds to delay between reading port status. * @nretry: Number of cycles to retry reading port status. * * The provided MMIO region must be mapped prior to call. This will timeout * when the cable is not plugged in. * * Return: * TRUE (1) when the specified port is online * FALSE (0) when the specified port fails to come online after timeout */ static bool wait_port_online(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry) { u64 status; WARN_ON(delay_us < 1000); do { msleep(delay_us / 1000); status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]); if (status == U64_MAX) nretry /= 2; } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_ONLINE && nretry--); return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_ONLINE); } /** * wait_port_offline() - waits for the specified host FC port go offline * @fc_regs: Top of MMIO region defined for specified port. * @delay_us: Number of microseconds to delay between reading port status. * @nretry: Number of cycles to retry reading port status. * * The provided MMIO region must be mapped prior to call. * * Return: * TRUE (1) when the specified port is offline * FALSE (0) when the specified port fails to go offline after timeout */ static bool wait_port_offline(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry) { u64 status; WARN_ON(delay_us < 1000); do { msleep(delay_us / 1000); status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]); if (status == U64_MAX) nretry /= 2; } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_OFFLINE && nretry--); return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_OFFLINE); } /** * afu_set_wwpn() - configures the WWPN for the specified host FC port * @afu: AFU associated with the host that owns the specified FC port. * @port: Port number being configured. * @fc_regs: Top of MMIO region defined for specified port. * @wwpn: The world-wide-port-number previously discovered for port. * * The provided MMIO region must be mapped prior to call. As part of the * sequence to configure the WWPN, the port is toggled offline and then back * online. This toggling action can cause this routine to delay up to a few * seconds. When configured to use the internal LUN feature of the AFU, a * failure to come online is overridden. */ static void afu_set_wwpn(struct afu *afu, int port, __be64 __iomem *fc_regs, u64 wwpn) { struct cxlflash_cfg *cfg = afu->parent; struct device *dev = &cfg->dev->dev; set_port_offline(fc_regs); if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US, FC_PORT_STATUS_RETRY_CNT)) { dev_dbg(dev, "%s: wait on port %d to go offline timed out\n", __func__, port); } writeq_be(wwpn, &fc_regs[FC_PNAME / 8]); set_port_online(fc_regs); if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US, FC_PORT_STATUS_RETRY_CNT)) { dev_dbg(dev, "%s: wait on port %d to go online timed out\n", __func__, port); } } /** * afu_link_reset() - resets the specified host FC port * @afu: AFU associated with the host that owns the specified FC port. * @port: Port number being configured. * @fc_regs: Top of MMIO region defined for specified port. * * The provided MMIO region must be mapped prior to call. The sequence to * reset the port involves toggling it offline and then back online. This * action can cause this routine to delay up to a few seconds. An effort * is made to maintain link with the device by switching to host to use * the alternate port exclusively while the reset takes place. * failure to come online is overridden. */ static void afu_link_reset(struct afu *afu, int port, __be64 __iomem *fc_regs) { struct cxlflash_cfg *cfg = afu->parent; struct device *dev = &cfg->dev->dev; u64 port_sel; /* first switch the AFU to the other links, if any */ port_sel = readq_be(&afu->afu_map->global.regs.afu_port_sel); port_sel &= ~(1ULL << port); writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel); cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC); set_port_offline(fc_regs); if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US, FC_PORT_STATUS_RETRY_CNT)) dev_err(dev, "%s: wait on port %d to go offline timed out\n", __func__, port); set_port_online(fc_regs); if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US, FC_PORT_STATUS_RETRY_CNT)) dev_err(dev, "%s: wait on port %d to go online timed out\n", __func__, port); /* switch back to include this port */ port_sel |= (1ULL << port); writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel); cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC); dev_dbg(dev, "%s: returning port_sel=%016llx\n", __func__, port_sel); } /** * afu_err_intr_init() - clears and initializes the AFU for error interrupts * @afu: AFU associated with the host. */ static void afu_err_intr_init(struct afu *afu) { struct cxlflash_cfg *cfg = afu->parent; __be64 __iomem *fc_port_regs; int i; struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ); u64 reg; /* global async interrupts: AFU clears afu_ctrl on context exit * if async interrupts were sent to that context. This prevents * the AFU form sending further async interrupts when * there is * nobody to receive them. */ /* mask all */ writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_mask); /* set LISN# to send and point to primary master context */ reg = ((u64) (((hwq->ctx_hndl << 8) | SISL_MSI_ASYNC_ERROR)) << 40); if (afu->internal_lun) reg |= 1; /* Bit 63 indicates local lun */ writeq_be(reg, &afu->afu_map->global.regs.afu_ctrl); /* clear all */ writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear); /* unmask bits that are of interest */ /* note: afu can send an interrupt after this step */ writeq_be(SISL_ASTATUS_MASK, &afu->afu_map->global.regs.aintr_mask); /* clear again in case a bit came on after previous clear but before */ /* unmask */ writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear); /* Clear/Set internal lun bits */ fc_port_regs = get_fc_port_regs(cfg, 0); reg = readq_be(&fc_port_regs[FC_CONFIG2 / 8]); reg &= SISL_FC_INTERNAL_MASK; if (afu->internal_lun) reg |= ((u64)(afu->internal_lun - 1) << SISL_FC_INTERNAL_SHIFT); writeq_be(reg, &fc_port_regs[FC_CONFIG2 / 8]); /* now clear FC errors */ for (i = 0; i < cfg->num_fc_ports; i++) { fc_port_regs = get_fc_port_regs(cfg, i); writeq_be(0xFFFFFFFFU, &fc_port_regs[FC_ERROR / 8]); writeq_be(0, &fc_port_regs[FC_ERRCAP / 8]); } /* sync interrupts for master's IOARRIN write */ /* note that unlike asyncs, there can be no pending sync interrupts */ /* at this time (this is a fresh context and master has not written */ /* IOARRIN yet), so there is nothing to clear. */ /* set LISN#, it is always sent to the context that wrote IOARRIN */ for (i = 0; i < afu->num_hwqs; i++) { hwq = get_hwq(afu, i); reg = readq_be(&hwq->host_map->ctx_ctrl); WARN_ON((reg & SISL_CTX_CTRL_LISN_MASK) != 0); reg |= SISL_MSI_SYNC_ERROR; writeq_be(reg, &hwq->host_map->ctx_ctrl); writeq_be(SISL_ISTATUS_MASK, &hwq->host_map->intr_mask); } } /** * cxlflash_sync_err_irq() - interrupt handler for synchronous errors * @irq: Interrupt number. * @data: Private data provided at interrupt registration, the AFU. * * Return: Always return IRQ_HANDLED. */ static irqreturn_t cxlflash_sync_err_irq(int irq, void *data) { struct hwq *hwq = (struct hwq *)data; struct cxlflash_cfg *cfg = hwq->afu->parent; struct device *dev = &cfg->dev->dev; u64 reg; u64 reg_unmasked; reg = readq_be(&hwq->host_map->intr_status); reg_unmasked = (reg & SISL_ISTATUS_UNMASK); if (reg_unmasked == 0UL) { dev_err(dev, "%s: spurious interrupt, intr_status=%016llx\n", __func__, reg); goto cxlflash_sync_err_irq_exit; } dev_err(dev, "%s: unexpected interrupt, intr_status=%016llx\n", __func__, reg); writeq_be(reg_unmasked, &hwq->host_map->intr_clear); cxlflash_sync_err_irq_exit: return IRQ_HANDLED; } /** * process_hrrq() - process the read-response queue * @afu: AFU associated with the host. * @doneq: Queue of commands harvested from the RRQ. * @budget: Threshold of RRQ entries to process. * * This routine must be called holding the disabled RRQ spin lock. * * Return: The number of entries processed. */ static int process_hrrq(struct hwq *hwq, struct list_head *doneq, int budget) { struct afu *afu = hwq->afu; struct afu_cmd *cmd; struct sisl_ioasa *ioasa; struct sisl_ioarcb *ioarcb; bool toggle = hwq->toggle; int num_hrrq = 0; u64 entry, *hrrq_start = hwq->hrrq_start, *hrrq_end = hwq->hrrq_end, *hrrq_curr = hwq->hrrq_curr; /* Process ready RRQ entries up to the specified budget (if any) */ while (true) { entry = *hrrq_curr; if ((entry & SISL_RESP_HANDLE_T_BIT) != toggle) break; entry &= ~SISL_RESP_HANDLE_T_BIT; if (afu_is_sq_cmd_mode(afu)) { ioasa = (struct sisl_ioasa *)entry; cmd = container_of(ioasa, struct afu_cmd, sa); } else { ioarcb = (struct sisl_ioarcb *)entry; cmd = container_of(ioarcb, struct afu_cmd, rcb); } list_add_tail(&cmd->queue, doneq); /* Advance to next entry or wrap and flip the toggle bit */ if (hrrq_curr < hrrq_end) hrrq_curr++; else { hrrq_curr = hrrq_start; toggle ^= SISL_RESP_HANDLE_T_BIT; } atomic_inc(&hwq->hsq_credits); num_hrrq++; if (budget > 0 && num_hrrq >= budget) break; } hwq->hrrq_curr = hrrq_curr; hwq->toggle = toggle; return num_hrrq; } /** * process_cmd_doneq() - process a queue of harvested RRQ commands * @doneq: Queue of completed commands. * * Note that upon return the queue can no longer be trusted. */ static void process_cmd_doneq(struct list_head *doneq) { struct afu_cmd *cmd, *tmp; WARN_ON(list_empty(doneq)); list_for_each_entry_safe(cmd, tmp, doneq, queue) cmd_complete(cmd); } /** * cxlflash_irqpoll() - process a queue of harvested RRQ commands * @irqpoll: IRQ poll structure associated with queue to poll. * @budget: Threshold of RRQ entries to process per poll. * * Return: The number of entries processed. */ static int cxlflash_irqpoll(struct irq_poll *irqpoll, int budget) { struct hwq *hwq = container_of(irqpoll, struct hwq, irqpoll); unsigned long hrrq_flags; LIST_HEAD(doneq); int num_entries = 0; spin_lock_irqsave(&hwq->hrrq_slock, hrrq_flags); num_entries = process_hrrq(hwq, &doneq, budget); if (num_entries < budget) irq_poll_complete(irqpoll); spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags); process_cmd_doneq(&doneq); return num_entries; } /** * cxlflash_rrq_irq() - interrupt handler for read-response queue (normal path) * @irq: Interrupt number. * @data: Private data provided at interrupt registration, the AFU. * * Return: IRQ_HANDLED or IRQ_NONE when no ready entries found. */ static irqreturn_t cxlflash_rrq_irq(int irq, void *data) { struct hwq *hwq = (struct hwq *)data; struct afu *afu = hwq->afu; unsigned long hrrq_flags; LIST_HEAD(doneq); int num_entries = 0; spin_lock_irqsave(&hwq->hrrq_slock, hrrq_flags); /* Silently drop spurious interrupts when queue is not online */ if (!hwq->hrrq_online) { spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags); return IRQ_HANDLED; } if (afu_is_irqpoll_enabled(afu)) { irq_poll_sched(&hwq->irqpoll); spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags); return IRQ_HANDLED; } num_entries = process_hrrq(hwq, &doneq, -1); spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags); if (num_entries == 0) return IRQ_NONE; process_cmd_doneq(&doneq); return IRQ_HANDLED; } /* * Asynchronous interrupt information table * * NOTE: * - Order matters here as this array is indexed by bit position. * * - The checkpatch script considers the BUILD_SISL_ASTATUS_FC_PORT macro * as complex and complains due to a lack of parentheses/braces. */ #define ASTATUS_FC(_a, _b, _c, _d) \ { SISL_ASTATUS_FC##_a##_##_b, _c, _a, (_d) } #define BUILD_SISL_ASTATUS_FC_PORT(_a) \ ASTATUS_FC(_a, LINK_UP, "link up", 0), \ ASTATUS_FC(_a, LINK_DN, "link down", 0), \ ASTATUS_FC(_a, LOGI_S, "login succeeded", SCAN_HOST), \ ASTATUS_FC(_a, LOGI_F, "login failed", CLR_FC_ERROR), \ ASTATUS_FC(_a, LOGI_R, "login timed out, retrying", LINK_RESET), \ ASTATUS_FC(_a, CRC_T, "CRC threshold exceeded", LINK_RESET), \ ASTATUS_FC(_a, LOGO, "target initiated LOGO", 0), \ ASTATUS_FC(_a, OTHER, "other error", CLR_FC_ERROR | LINK_RESET) static const struct asyc_intr_info ainfo[] = { BUILD_SISL_ASTATUS_FC_PORT(1), BUILD_SISL_ASTATUS_FC_PORT(0), BUILD_SISL_ASTATUS_FC_PORT(3), BUILD_SISL_ASTATUS_FC_PORT(2) }; /** * cxlflash_async_err_irq() - interrupt handler for asynchronous errors * @irq: Interrupt number. * @data: Private data provided at interrupt registration, the AFU. * * Return: Always return IRQ_HANDLED. */ static irqreturn_t cxlflash_async_err_irq(int irq, void *data) { struct hwq *hwq = (struct hwq *)data; struct afu *afu = hwq->afu; struct cxlflash_cfg *cfg = afu->parent; struct device *dev = &cfg->dev->dev; const struct asyc_intr_info *info; struct sisl_global_map __iomem *global = &afu->afu_map->global; __be64 __iomem *fc_port_regs; u64 reg_unmasked; u64 reg; u64 bit; u8 port; reg = readq_be(&global->regs.aintr_status); reg_unmasked = (reg & SISL_ASTATUS_UNMASK); if (unlikely(reg_unmasked == 0)) { dev_err(dev, "%s: spurious interrupt, aintr_status=%016llx\n", __func__, reg); goto out; } /* FYI, it is 'okay' to clear AFU status before FC_ERROR */ writeq_be(reg_unmasked, &global->regs.aintr_clear); /* Check each bit that is on */ for_each_set_bit(bit, (ulong *)®_unmasked, BITS_PER_LONG) { if (unlikely(bit >= ARRAY_SIZE(ainfo))) { WARN_ON_ONCE(1); continue; } info = &ainfo[bit]; if (unlikely(info->status != 1ULL << bit)) { WARN_ON_ONCE(1); continue; } port = info->port; fc_port_regs = get_fc_port_regs(cfg, port); dev_err(dev, "%s: FC Port %d -> %s, fc_status=%016llx\n", __func__, port, info->desc, readq_be(&fc_port_regs[FC_STATUS / 8])); /* * Do link reset first, some OTHER errors will set FC_ERROR * again if cleared before or w/o a reset */ if (info->action & LINK_RESET) { dev_err(dev, "%s: FC Port %d: resetting link\n", __func__, port); cfg->lr_state = LINK_RESET_REQUIRED; cfg->lr_port = port; schedule_work(&cfg->work_q); } if (info->action & CLR_FC_ERROR) { reg = readq_be(&fc_port_regs[FC_ERROR / 8]); /* * Since all errors are unmasked, FC_ERROR and FC_ERRCAP * should be the same and tracing one is sufficient. */ dev_err(dev, "%s: fc %d: clearing fc_error=%016llx\n", __func__, port, reg); writeq_be(reg, &fc_port_regs[FC_ERROR / 8]); writeq_be(0, &fc_port_regs[FC_ERRCAP / 8]); } if (info->action & SCAN_HOST) { atomic_inc(&cfg->scan_host_needed); schedule_work(&cfg->work_q); } } out: return IRQ_HANDLED; } /** * read_vpd() - obtains the WWPNs from VPD * @cfg: Internal structure associated with the host. * @wwpn: Array of size MAX_FC_PORTS to pass back WWPNs * * Return: 0 on success, -errno on failure */ static int read_vpd(struct cxlflash_cfg *cfg, u64 wwpn[]) { struct device *dev = &cfg->dev->dev; struct pci_dev *pdev = cfg->dev; int rc = 0; int ro_start, ro_size, i, j, k; ssize_t vpd_size; char vpd_data[CXLFLASH_VPD_LEN]; char tmp_buf[WWPN_BUF_LEN] = { 0 }; const struct dev_dependent_vals *ddv = (struct dev_dependent_vals *) cfg->dev_id->driver_data; const bool wwpn_vpd_required = ddv->flags & CXLFLASH_WWPN_VPD_REQUIRED; const char *wwpn_vpd_tags[MAX_FC_PORTS] = { "V5", "V6", "V7", "V8" }; /* Get the VPD data from the device */ vpd_size = cfg->ops->read_adapter_vpd(pdev, vpd_data, sizeof(vpd_data)); if (unlikely(vpd_size <= 0)) { dev_err(dev, "%s: Unable to read VPD (size = %ld)\n", __func__, vpd_size); rc = -ENODEV; goto out; } /* Get the read only section offset */ ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA); if (unlikely(ro_start < 0)) { dev_err(dev, "%s: VPD Read-only data not found\n", __func__); rc = -ENODEV; goto out; } /* Get the read only section size, cap when extends beyond read VPD */ ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]); j = ro_size; i = ro_start + PCI_VPD_LRDT_TAG_SIZE; if (unlikely((i + j) > vpd_size)) { dev_dbg(dev, "%s: Might need to read more VPD (%d > %ld)\n", __func__, (i + j), vpd_size); ro_size = vpd_size - i; } /* * Find the offset of the WWPN tag within the read only * VPD data and validate the found field (partials are * no good to us). Convert the ASCII data to an integer * value. Note that we must copy to a temporary buffer * because the conversion service requires that the ASCII * string be terminated. * * Allow for WWPN not being found for all devices, setting * the returned WWPN to zero when not found. Notify with a * log error for cards that should have had WWPN keywords * in the VPD - cards requiring WWPN will not have their * ports programmed and operate in an undefined state. */ for (k = 0; k < cfg->num_fc_ports; k++) { j = ro_size; i = ro_start + PCI_VPD_LRDT_TAG_SIZE; i = pci_vpd_find_info_keyword(vpd_data, i, j, wwpn_vpd_tags[k]); if (i < 0) { if (wwpn_vpd_required) dev_err(dev, "%s: Port %d WWPN not found\n", __func__, k); wwpn[k] = 0ULL; continue; } j = pci_vpd_info_field_size(&vpd_data[i]); i += PCI_VPD_INFO_FLD_HDR_SIZE; if (unlikely((i + j > vpd_size) || (j != WWPN_LEN))) { dev_err(dev, "%s: Port %d WWPN incomplete or bad VPD\n", __func__, k); rc = -ENODEV; goto out; } memcpy(tmp_buf, &vpd_data[i], WWPN_LEN); rc = kstrtoul(tmp_buf, WWPN_LEN, (ulong *)&wwpn[k]); if (unlikely(rc)) { dev_err(dev, "%s: WWPN conversion failed for port %d\n", __func__, k); rc = -ENODEV; goto out; } dev_dbg(dev, "%s: wwpn%d=%016llx\n", __func__, k, wwpn[k]); } out: dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); return rc; } /** * init_pcr() - initialize the provisioning and control registers * @cfg: Internal structure associated with the host. * * Also sets up fast access to the mapped registers and initializes AFU * command fields that never change. */ static void init_pcr(struct cxlflash_cfg *cfg) { struct afu *afu = cfg->afu; struct sisl_ctrl_map __iomem *ctrl_map; struct hwq *hwq; void *cookie; int i; for (i = 0; i < MAX_CONTEXT; i++) { ctrl_map = &afu->afu_map->ctrls[i].ctrl; /* Disrupt any clients that could be running */ /* e.g. clients that survived a master restart */ writeq_be(0, &ctrl_map->rht_start); writeq_be(0, &ctrl_map->rht_cnt_id); writeq_be(0, &ctrl_map->ctx_cap); } /* Copy frequently used fields into hwq */ for (i = 0; i < afu->num_hwqs; i++) { hwq = get_hwq(afu, i); cookie = hwq->ctx_cookie; hwq->ctx_hndl = (u16) cfg->ops->process_element(cookie); hwq->host_map = &afu->afu_map->hosts[hwq->ctx_hndl].host; hwq->ctrl_map = &afu->afu_map->ctrls[hwq->ctx_hndl].ctrl; /* Program the Endian Control for the master context */ writeq_be(SISL_ENDIAN_CTRL, &hwq->host_map->endian_ctrl); } } /** * init_global() - initialize AFU global registers * @cfg: Internal structure associated with the host. */ static int init_global(struct cxlflash_cfg *cfg) { struct afu *afu = cfg->afu; struct device *dev = &cfg->dev->dev; struct hwq *hwq; struct sisl_host_map __iomem *hmap; __be64 __iomem *fc_port_regs; u64 wwpn[MAX_FC_PORTS]; /* wwpn of AFU ports */ int i = 0, num_ports = 0; int rc = 0; int j; void *ctx; u64 reg; rc = read_vpd(cfg, &wwpn[0]); if (rc) { dev_err(dev, "%s: could not read vpd rc=%d\n", __func__, rc); goto out; } /* Set up RRQ and SQ in HWQ for master issued cmds */ for (i = 0; i < afu->num_hwqs; i++) { hwq = get_hwq(afu, i); hmap = hwq->host_map; writeq_be((u64) hwq->hrrq_start, &hmap->rrq_start); writeq_be((u64) hwq->hrrq_end, &hmap->rrq_end); hwq->hrrq_online = true; if (afu_is_sq_cmd_mode(afu)) { writeq_be((u64)hwq->hsq_start, &hmap->sq_start); writeq_be((u64)hwq->hsq_end, &hmap->sq_end); } } /* AFU configuration */ reg = readq_be(&afu->afu_map->global.regs.afu_config); reg |= SISL_AFUCONF_AR_ALL|SISL_AFUCONF_ENDIAN; /* enable all auto retry options and control endianness */ /* leave others at default: */ /* CTX_CAP write protected, mbox_r does not clear on read and */ /* checker on if dual afu */ writeq_be(reg, &afu->afu_map->global.regs.afu_config); /* Global port select: select either port */ if (afu->internal_lun) { /* Only use port 0 */ writeq_be(PORT0, &afu->afu_map->global.regs.afu_port_sel); num_ports = 0; } else { writeq_be(PORT_MASK(cfg->num_fc_ports), &afu->afu_map->global.regs.afu_port_sel); num_ports = cfg->num_fc_ports; } for (i = 0; i < num_ports; i++) { fc_port_regs = get_fc_port_regs(cfg, i); /* Unmask all errors (but they are still masked at AFU) */ writeq_be(0, &fc_port_regs[FC_ERRMSK / 8]); /* Clear CRC error cnt & set a threshold */ (void)readq_be(&fc_port_regs[FC_CNT_CRCERR / 8]); writeq_be(MC_CRC_THRESH, &fc_port_regs[FC_CRC_THRESH / 8]); /* Set WWPNs. If already programmed, wwpn[i] is 0 */ if (wwpn[i] != 0) afu_set_wwpn(afu, i, &fc_port_regs[0], wwpn[i]); /* Programming WWPN back to back causes additional * offline/online transitions and a PLOGI */ msleep(100); } if (afu_is_ocxl_lisn(afu)) { /* Set up the LISN effective address for each master */ for (i = 0; i < afu->num_hwqs; i++) { hwq = get_hwq(afu, i); ctx = hwq->ctx_cookie; for (j = 0; j < hwq->num_irqs; j++) { reg = cfg->ops->get_irq_objhndl(ctx, j); writeq_be(reg, &hwq->ctrl_map->lisn_ea[j]); } reg = hwq->ctx_hndl; writeq_be(SISL_LISN_PASID(reg, reg), &hwq->ctrl_map->lisn_pasid[0]); writeq_be(SISL_LISN_PASID(0UL, reg), &hwq->ctrl_map->lisn_pasid[1]); } } /* Set up master's own CTX_CAP to allow real mode, host translation */ /* tables, afu cmds and read/write GSCSI cmds. */ /* First, unlock ctx_cap write by reading mbox */ for (i = 0; i < afu->num_hwqs; i++) { hwq = get_hwq(afu, i); (void)readq_be(&hwq->ctrl_map->mbox_r); /* unlock ctx_cap */ writeq_be((SISL_CTX_CAP_REAL_MODE | SISL_CTX_CAP_HOST_XLATE | SISL_CTX_CAP_READ_CMD | SISL_CTX_CAP_WRITE_CMD | SISL_CTX_CAP_AFU_CMD | SISL_CTX_CAP_GSCSI_CMD), &hwq->ctrl_map->ctx_cap); } /* * Determine write-same unmap support for host by evaluating the unmap * sector support bit of the context control register associated with * the primary hardware queue. Note that while this status is reflected * in a context register, the outcome can be assumed to be host-wide. */ hwq = get_hwq(afu, PRIMARY_HWQ); reg = readq_be(&hwq->host_map->ctx_ctrl); if (reg & SISL_CTX_CTRL_UNMAP_SECTOR) cfg->ws_unmap = true; /* Initialize heartbeat */ afu->hb = readq_be(&afu->afu_map->global.regs.afu_hb); out: return rc; } /** * start_afu() - initializes and starts the AFU * @cfg: Internal structure associated with the host. */ static int start_afu(struct cxlflash_cfg *cfg) { struct afu *afu = cfg->afu; struct device *dev = &cfg->dev->dev; struct hwq *hwq; int rc = 0; int i; init_pcr(cfg); /* Initialize each HWQ */ for (i = 0; i < afu->num_hwqs; i++) { hwq = get_hwq(afu, i); /* After an AFU reset, RRQ entries are stale, clear them */ memset(&hwq->rrq_entry, 0, sizeof(hwq->rrq_entry)); /* Initialize RRQ pointers */ hwq->hrrq_start = &hwq->rrq_entry[0]; hwq->hrrq_end = &hwq->rrq_entry[NUM_RRQ_ENTRY - 1]; hwq->hrrq_curr = hwq->hrrq_start; hwq->toggle = 1; /* Initialize spin locks */ spin_lock_init(&hwq->hrrq_slock); spin_lock_init(&hwq->hsq_slock); /* Initialize SQ */ if (afu_is_sq_cmd_mode(afu)) { memset(&hwq->sq, 0, sizeof(hwq->sq)); hwq->hsq_start = &hwq->sq[0]; hwq->hsq_end = &hwq->sq[NUM_SQ_ENTRY - 1]; hwq->hsq_curr = hwq->hsq_start; atomic_set(&hwq->hsq_credits, NUM_SQ_ENTRY - 1); } /* Initialize IRQ poll */ if (afu_is_irqpoll_enabled(afu)) irq_poll_init(&hwq->irqpoll, afu->irqpoll_weight, cxlflash_irqpoll); } rc = init_global(cfg); dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); return rc; } /** * init_intr() - setup interrupt handlers for the master context * @cfg: Internal structure associated with the host. * @hwq: Hardware queue to initialize. * * Return: 0 on success, -errno on failure */ static enum undo_level init_intr(struct cxlflash_cfg *cfg, struct hwq *hwq) { struct device *dev = &cfg->dev->dev; void *ctx = hwq->ctx_cookie; int rc = 0; enum undo_level level = UNDO_NOOP; bool is_primary_hwq = (hwq->index == PRIMARY_HWQ); int num_irqs = hwq->num_irqs; rc = cfg->ops->allocate_afu_irqs(ctx, num_irqs); if (unlikely(rc)) { dev_err(dev, "%s: allocate_afu_irqs failed rc=%d\n", __func__, rc); level = UNDO_NOOP; goto out; } rc = cfg->ops->map_afu_irq(ctx, 1, cxlflash_sync_err_irq, hwq, "SISL_MSI_SYNC_ERROR"); if (unlikely(rc <= 0)) { dev_err(dev, "%s: SISL_MSI_SYNC_ERROR map failed\n", __func__); level = FREE_IRQ; goto out; } rc = cfg->ops->map_afu_irq(ctx, 2, cxlflash_rrq_irq, hwq, "SISL_MSI_RRQ_UPDATED"); if (unlikely(rc <= 0)) { dev_err(dev, "%s: SISL_MSI_RRQ_UPDATED map failed\n", __func__); level = UNMAP_ONE; goto out; } /* SISL_MSI_ASYNC_ERROR is setup only for the primary HWQ */ if (!is_primary_hwq) goto out; rc = cfg->ops->map_afu_irq(ctx, 3, cxlflash_async_err_irq, hwq, "SISL_MSI_ASYNC_ERROR"); if (unlikely(rc <= 0)) { dev_err(dev, "%s: SISL_MSI_ASYNC_ERROR map failed\n", __func__); level = UNMAP_TWO; goto out; } out: return level; } /** * init_mc() - create and register as the master context * @cfg: Internal structure associated with the host. * index: HWQ Index of the master context. * * Return: 0 on success, -errno on failure */ static int init_mc(struct cxlflash_cfg *cfg, u32 index) { void *ctx; struct device *dev = &cfg->dev->dev; struct hwq *hwq = get_hwq(cfg->afu, index); int rc = 0; int num_irqs; enum undo_level level; hwq->afu = cfg->afu; hwq->index = index; INIT_LIST_HEAD(&hwq->pending_cmds); if (index == PRIMARY_HWQ) { ctx = cfg->ops->get_context(cfg->dev, cfg->afu_cookie); num_irqs = 3; } else { ctx = cfg->ops->dev_context_init(cfg->dev, cfg->afu_cookie); num_irqs = 2; } if (IS_ERR_OR_NULL(ctx)) { rc = -ENOMEM; goto err1; } WARN_ON(hwq->ctx_cookie); hwq->ctx_cookie = ctx; hwq->num_irqs = num_irqs; /* Set it up as a master with the CXL */ cfg->ops->set_master(ctx); /* Reset AFU when initializing primary context */ if (index == PRIMARY_HWQ) { rc = cfg->ops->afu_reset(ctx); if (unlikely(rc)) { dev_err(dev, "%s: AFU reset failed rc=%d\n", __func__, rc); goto err1; } } level = init_intr(cfg, hwq); if (unlikely(level)) { dev_err(dev, "%s: interrupt init failed rc=%d\n", __func__, rc); goto err2; } /* Finally, activate the context by starting it */ rc = cfg->ops->start_context(hwq->ctx_cookie); if (unlikely(rc)) { dev_err(dev, "%s: start context failed rc=%d\n", __func__, rc); level = UNMAP_THREE; goto err2; } out: dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); return rc; err2: term_intr(cfg, level, index); if (index != PRIMARY_HWQ) cfg->ops->release_context(ctx); err1: hwq->ctx_cookie = NULL; goto out; } /** * get_num_afu_ports() - determines and configures the number of AFU ports * @cfg: Internal structure associated with the host. * * This routine determines the number of AFU ports by converting the global * port selection mask. The converted value is only valid following an AFU * reset (explicit or power-on). This routine must be invoked shortly after * mapping as other routines are dependent on the number of ports during the * initialization sequence. * * To support legacy AFUs that might not have reflected an initial global * port mask (value read is 0), default to the number of ports originally * supported by the cxlflash driver (2) before hardware with other port * offerings was introduced. */ static void get_num_afu_ports(struct cxlflash_cfg *cfg) { struct afu *afu = cfg->afu; struct device *dev = &cfg->dev->dev; u64 port_mask; int num_fc_ports = LEGACY_FC_PORTS; port_mask = readq_be(&afu->afu_map->global.regs.afu_port_sel); if (port_mask != 0ULL) num_fc_ports = min(ilog2(port_mask) + 1, MAX_FC_PORTS); dev_dbg(dev, "%s: port_mask=%016llx num_fc_ports=%d\n", __func__, port_mask, num_fc_ports); cfg->num_fc_ports = num_fc_ports; cfg->host->max_channel = PORTNUM2CHAN(num_fc_ports); } /** * init_afu() - setup as master context and start AFU * @cfg: Internal structure associated with the host. * * This routine is a higher level of control for configuring the * AFU on probe and reset paths. * * Return: 0 on success, -errno on failure */ static int init_afu(struct cxlflash_cfg *cfg) { u64 reg; int rc = 0; struct afu *afu = cfg->afu; struct device *dev = &cfg->dev->dev; struct hwq *hwq; int i; cfg->ops->perst_reloads_same_image(cfg->afu_cookie, true); mutex_init(&afu->sync_active); afu->num_hwqs = afu->desired_hwqs; for (i = 0; i < afu->num_hwqs; i++) { rc = init_mc(cfg, i); if (rc) { dev_err(dev, "%s: init_mc failed rc=%d index=%d\n", __func__, rc, i); goto err1; } } /* Map the entire MMIO space of the AFU using the first context */ hwq = get_hwq(afu, PRIMARY_HWQ); afu->afu_map = cfg->ops->psa_map(hwq->ctx_cookie); if (!afu->afu_map) { dev_err(dev, "%s: psa_map failed\n", __func__); rc = -ENOMEM; goto err1; } /* No byte reverse on reading afu_version or string will be backwards */ reg = readq(&afu->afu_map->global.regs.afu_version); memcpy(afu->version, ®, sizeof(reg)); afu->interface_version = readq_be(&afu->afu_map->global.regs.interface_version); if ((afu->interface_version + 1) == 0) { dev_err(dev, "Back level AFU, please upgrade. AFU version %s " "interface version %016llx\n", afu->version, afu->interface_version); rc = -EINVAL; goto err1; } if (afu_is_sq_cmd_mode(afu)) { afu->send_cmd = send_cmd_sq; afu->context_reset = context_reset_sq; } else { afu->send_cmd = send_cmd_ioarrin; afu->context_reset = context_reset_ioarrin; } dev_dbg(dev, "%s: afu_ver=%s interface_ver=%016llx\n", __func__, afu->version, afu->interface_version); get_num_afu_ports(cfg); rc = start_afu(cfg); if (rc) { dev_err(dev, "%s: start_afu failed, rc=%d\n", __func__, rc); goto err1; } afu_err_intr_init(cfg->afu); for (i = 0; i < afu->num_hwqs; i++) { hwq = get_hwq(afu, i); hwq->room = readq_be(&hwq->host_map->cmd_room); } /* Restore the LUN mappings */ cxlflash_restore_luntable(cfg); out: dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); return rc; err1: for (i = afu->num_hwqs - 1; i >= 0; i--) { term_intr(cfg, UNMAP_THREE, i); term_mc(cfg, i); } goto out; } /** * afu_reset() - resets the AFU * @cfg: Internal structure associated with the host. * * Return: 0 on success, -errno on failure */ static int afu_reset(struct cxlflash_cfg *cfg) { struct device *dev = &cfg->dev->dev; int rc = 0; /* Stop the context before the reset. Since the context is * no longer available restart it after the reset is complete */ term_afu(cfg); rc = init_afu(cfg); dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); return rc; } /** * drain_ioctls() - wait until all currently executing ioctls have completed * @cfg: Internal structure associated with the host. * * Obtain write access to read/write semaphore that wraps ioctl * handling to 'drain' ioctls currently executing. */ static void drain_ioctls(struct cxlflash_cfg *cfg) { down_write(&cfg->ioctl_rwsem); up_write(&cfg->ioctl_rwsem); } /** * cxlflash_async_reset_host() - asynchronous host reset handler * @data: Private data provided while scheduling reset. * @cookie: Cookie that can be used for checkpointing. */ static void cxlflash_async_reset_host(void *data, async_cookie_t cookie) { struct cxlflash_cfg *cfg = data; struct device *dev = &cfg->dev->dev; int rc = 0; if (cfg->state != STATE_RESET) { dev_dbg(dev, "%s: Not performing a reset, state=%d\n", __func__, cfg->state); goto out; } drain_ioctls(cfg); cxlflash_mark_contexts_error(cfg); rc = afu_reset(cfg); if (rc) cfg->state = STATE_FAILTERM; else cfg->state = STATE_NORMAL; wake_up_all(&cfg->reset_waitq); out: scsi_unblock_requests(cfg->host); } /** * cxlflash_schedule_async_reset() - schedule an asynchronous host reset * @cfg: Internal structure associated with the host. */ static void cxlflash_schedule_async_reset(struct cxlflash_cfg *cfg) { struct device *dev = &cfg->dev->dev; if (cfg->state != STATE_NORMAL) { dev_dbg(dev, "%s: Not performing reset state=%d\n", __func__, cfg->state); return; } cfg->state = STATE_RESET; scsi_block_requests(cfg->host); cfg->async_reset_cookie = async_schedule(cxlflash_async_reset_host, cfg); } /** * send_afu_cmd() - builds and sends an internal AFU command * @afu: AFU associated with the host. * @rcb: Pre-populated IOARCB describing command to send. * * The AFU can only take one internal AFU command at a time. This limitation is * enforced by using a mutex to provide exclusive access to the AFU during the * operation. This design point requires calling threads to not be on interrupt * context due to the possibility of sleeping during concurrent AFU operations. * * The command status is optionally passed back to the caller when the caller * populates the IOASA field of the IOARCB with a pointer to an IOASA structure. * * Return: * 0 on success, -errno on failure */ static int send_afu_cmd(struct afu *afu, struct sisl_ioarcb *rcb) { struct cxlflash_cfg *cfg = afu->parent; struct device *dev = &cfg->dev->dev; struct afu_cmd *cmd = NULL; struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ); ulong lock_flags; char *buf = NULL; int rc = 0; int nretry = 0; if (cfg->state != STATE_NORMAL) { dev_dbg(dev, "%s: Sync not required state=%u\n", __func__, cfg->state); return 0; } mutex_lock(&afu->sync_active); atomic_inc(&afu->cmds_active); buf = kmalloc(sizeof(*cmd) + __alignof__(*cmd) - 1, GFP_KERNEL); if (unlikely(!buf)) { dev_err(dev, "%s: no memory for command\n", __func__); rc = -ENOMEM; goto out; } cmd = (struct afu_cmd *)PTR_ALIGN(buf, __alignof__(*cmd)); retry: memset(cmd, 0, sizeof(*cmd)); memcpy(&cmd->rcb, rcb, sizeof(*rcb)); INIT_LIST_HEAD(&cmd->queue); init_completion(&cmd->cevent); cmd->parent = afu; cmd->hwq_index = hwq->index; cmd->rcb.ctx_id = hwq->ctx_hndl; dev_dbg(dev, "%s: afu=%p cmd=%p type=%02x nretry=%d\n", __func__, afu, cmd, cmd->rcb.cdb[0], nretry); rc = afu->send_cmd(afu, cmd); if (unlikely(rc)) { rc = -ENOBUFS; goto out; } rc = wait_resp(afu, cmd); switch (rc) { case -ETIMEDOUT: rc = afu->context_reset(hwq); if (rc) { /* Delete the command from pending_cmds list */ spin_lock_irqsave(&hwq->hsq_slock, lock_flags); list_del(&cmd->list); spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags); cxlflash_schedule_async_reset(cfg); break; } /* fall through - to retry */ case -EAGAIN: if (++nretry < 2) goto retry; /* fall through - to exit */ default: break; } if (rcb->ioasa) *rcb->ioasa = cmd->sa; out: atomic_dec(&afu->cmds_active); mutex_unlock(&afu->sync_active); kfree(buf); dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); return rc; } /** * cxlflash_afu_sync() - builds and sends an AFU sync command * @afu: AFU associated with the host. * @ctx: Identifies context requesting sync. * @res: Identifies resource requesting sync. * @mode: Type of sync to issue (lightweight, heavyweight, global). * * AFU sync operations are only necessary and allowed when the device is * operating normally. When not operating normally, sync requests can occur as * part of cleaning up resources associated with an adapter prior to removal. * In this scenario, these requests are simply ignored (safe due to the AFU * going away). * * Return: * 0 on success, -errno on failure */ int cxlflash_afu_sync(struct afu *afu, ctx_hndl_t ctx, res_hndl_t res, u8 mode) { struct cxlflash_cfg *cfg = afu->parent; struct device *dev = &cfg->dev->dev; struct sisl_ioarcb rcb = { 0 }; dev_dbg(dev, "%s: afu=%p ctx=%u res=%u mode=%u\n", __func__, afu, ctx, res, mode); rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD; rcb.msi = SISL_MSI_RRQ_UPDATED; rcb.timeout = MC_AFU_SYNC_TIMEOUT; rcb.cdb[0] = SISL_AFU_CMD_SYNC; rcb.cdb[1] = mode; put_unaligned_be16(ctx, &rcb.cdb[2]); put_unaligned_be32(res, &rcb.cdb[4]); return send_afu_cmd(afu, &rcb); } /** * cxlflash_eh_abort_handler() - abort a SCSI command * @scp: SCSI command to abort. * * CXL Flash devices do not support a single command abort. Reset the context * as per SISLite specification. Flush any pending commands in the hardware * queue before the reset. * * Return: SUCCESS/FAILED as defined in scsi/scsi.h */ static int cxlflash_eh_abort_handler(struct scsi_cmnd *scp) { int rc = FAILED; struct Scsi_Host *host = scp->device->host; struct cxlflash_cfg *cfg = shost_priv(host); struct afu_cmd *cmd = sc_to_afuc(scp); struct device *dev = &cfg->dev->dev; struct afu *afu = cfg->afu; struct hwq *hwq = get_hwq(afu, cmd->hwq_index); dev_dbg(dev, "%s: (scp=%p) %d/%d/%d/%llu " "cdb=(%08x-%08x-%08x-%08x)\n", __func__, scp, host->host_no, scp->device->channel, scp->device->id, scp->device->lun, get_unaligned_be32(&((u32 *)scp->cmnd)[0]), get_unaligned_be32(&((u32 *)scp->cmnd)[1]), get_unaligned_be32(&((u32 *)scp->cmnd)[2]), get_unaligned_be32(&((u32 *)scp->cmnd)[3])); /* When the state is not normal, another reset/reload is in progress. * Return failed and the mid-layer will invoke host reset handler. */ if (cfg->state != STATE_NORMAL) { dev_dbg(dev, "%s: Invalid state for abort, state=%d\n", __func__, cfg->state); goto out; } rc = afu->context_reset(hwq); if (unlikely(rc)) goto out; rc = SUCCESS; out: dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); return rc; } /** * cxlflash_eh_device_reset_handler() - reset a single LUN * @scp: SCSI command to send. * * Return: * SUCCESS as defined in scsi/scsi.h * FAILED as defined in scsi/scsi.h */ static int cxlflash_eh_device_reset_handler(struct scsi_cmnd *scp) { int rc = SUCCESS; struct scsi_device *sdev = scp->device; struct Scsi_Host *host = sdev->host; struct cxlflash_cfg *cfg = shost_priv(host); struct device *dev = &cfg->dev->dev; int rcr = 0; dev_dbg(dev, "%s: %d/%d/%d/%llu\n", __func__, host->host_no, sdev->channel, sdev->id, sdev->lun); retry: switch (cfg->state) { case STATE_NORMAL: rcr = send_tmf(cfg, sdev, TMF_LUN_RESET); if (unlikely(rcr)) rc = FAILED; break; case STATE_RESET: wait_event(cfg->reset_waitq, cfg->state != STATE_RESET); goto retry; default: rc = FAILED; break; } dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); return rc; } /** * cxlflash_eh_host_reset_handler() - reset the host adapter * @scp: SCSI command from stack identifying host. * * Following a reset, the state is evaluated again in case an EEH occurred * during the reset. In such a scenario, the host reset will either yield * until the EEH recovery is complete or return success or failure based * upon the current device state. * * Return: * SUCCESS as defined in scsi/scsi.h * FAILED as defined in scsi/scsi.h */ static int cxlflash_eh_host_reset_handler(struct scsi_cmnd *scp) { int rc = SUCCESS; int rcr = 0; struct Scsi_Host *host = scp->device->host; struct cxlflash_cfg *cfg = shost_priv(host); struct device *dev = &cfg->dev->dev; dev_dbg(dev, "%s: %d\n", __func__, host->host_no); switch (cfg->state) { case STATE_NORMAL: cfg->state = STATE_RESET; drain_ioctls(cfg); cxlflash_mark_contexts_error(cfg); rcr = afu_reset(cfg); if (rcr) { rc = FAILED; cfg->state = STATE_FAILTERM; } else cfg->state = STATE_NORMAL; wake_up_all(&cfg->reset_waitq); ssleep(1); /* fall through */ case STATE_RESET: wait_event(cfg->reset_waitq, cfg->state != STATE_RESET); if (cfg->state == STATE_NORMAL) break; /* fall through */ default: rc = FAILED; break; } dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); return rc; } /** * cxlflash_change_queue_depth() - change the queue depth for the device * @sdev: SCSI device destined for queue depth change. * @qdepth: Requested queue depth value to set. * * The requested queue depth is capped to the maximum supported value. * * Return: The actual queue depth set. */ static int cxlflash_change_queue_depth(struct scsi_device *sdev, int qdepth) { if (qdepth > CXLFLASH_MAX_CMDS_PER_LUN) qdepth = CXLFLASH_MAX_CMDS_PER_LUN; scsi_change_queue_depth(sdev, qdepth); return sdev->queue_depth; } /** * cxlflash_show_port_status() - queries and presents the current port status * @port: Desired port for status reporting. * @cfg: Internal structure associated with the host. * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. * * Return: The size of the ASCII string returned in @buf or -EINVAL. */ static ssize_t cxlflash_show_port_status(u32 port, struct cxlflash_cfg *cfg, char *buf) { struct device *dev = &cfg->dev->dev; char *disp_status; u64 status; __be64 __iomem *fc_port_regs; WARN_ON(port >= MAX_FC_PORTS); if (port >= cfg->num_fc_ports) { dev_info(dev, "%s: Port %d not supported on this card.\n", __func__, port); return -EINVAL; } fc_port_regs = get_fc_port_regs(cfg, port); status = readq_be(&fc_port_regs[FC_MTIP_STATUS / 8]); status &= FC_MTIP_STATUS_MASK; if (status == FC_MTIP_STATUS_ONLINE) disp_status = "online"; else if (status == FC_MTIP_STATUS_OFFLINE) disp_status = "offline"; else disp_status = "unknown"; return scnprintf(buf, PAGE_SIZE, "%s\n", disp_status); } /** * port0_show() - queries and presents the current status of port 0 * @dev: Generic device associated with the host owning the port. * @attr: Device attribute representing the port. * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. * * Return: The size of the ASCII string returned in @buf. */ static ssize_t port0_show(struct device *dev, struct device_attribute *attr, char *buf) { struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); return cxlflash_show_port_status(0, cfg, buf); } /** * port1_show() - queries and presents the current status of port 1 * @dev: Generic device associated with the host owning the port. * @attr: Device attribute representing the port. * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. * * Return: The size of the ASCII string returned in @buf. */ static ssize_t port1_show(struct device *dev, struct device_attribute *attr, char *buf) { struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); return cxlflash_show_port_status(1, cfg, buf); } /** * port2_show() - queries and presents the current status of port 2 * @dev: Generic device associated with the host owning the port. * @attr: Device attribute representing the port. * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. * * Return: The size of the ASCII string returned in @buf. */ static ssize_t port2_show(struct device *dev, struct device_attribute *attr, char *buf) { struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); return cxlflash_show_port_status(2, cfg, buf); } /** * port3_show() - queries and presents the current status of port 3 * @dev: Generic device associated with the host owning the port. * @attr: Device attribute representing the port. * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. * * Return: The size of the ASCII string returned in @buf. */ static ssize_t port3_show(struct device *dev, struct device_attribute *attr, char *buf) { struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); return cxlflash_show_port_status(3, cfg, buf); } /** * lun_mode_show() - presents the current LUN mode of the host * @dev: Generic device associated with the host. * @attr: Device attribute representing the LUN mode. * @buf: Buffer of length PAGE_SIZE to report back the LUN mode in ASCII. * * Return: The size of the ASCII string returned in @buf. */ static ssize_t lun_mode_show(struct device *dev, struct device_attribute *attr, char *buf) { struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); struct afu *afu = cfg->afu; return scnprintf(buf, PAGE_SIZE, "%u\n", afu->internal_lun); } /** * lun_mode_store() - sets the LUN mode of the host * @dev: Generic device associated with the host. * @attr: Device attribute representing the LUN mode. * @buf: Buffer of length PAGE_SIZE containing the LUN mode in ASCII. * @count: Length of data resizing in @buf. * * The CXL Flash AFU supports a dummy LUN mode where the external * links and storage are not required. Space on the FPGA is used * to create 1 or 2 small LUNs which are presented to the system * as if they were a normal storage device. This feature is useful * during development and also provides manufacturing with a way * to test the AFU without an actual device. * * 0 = external LUN[s] (default) * 1 = internal LUN (1 x 64K, 512B blocks, id 0) * 2 = internal LUN (1 x 64K, 4K blocks, id 0) * 3 = internal LUN (2 x 32K, 512B blocks, ids 0,1) * 4 = internal LUN (2 x 32K, 4K blocks, ids 0,1) * * Return: The size of the ASCII string returned in @buf. */ static ssize_t lun_mode_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct Scsi_Host *shost = class_to_shost(dev); struct cxlflash_cfg *cfg = shost_priv(shost); struct afu *afu = cfg->afu; int rc; u32 lun_mode; rc = kstrtouint(buf, 10, &lun_mode); if (!rc && (lun_mode < 5) && (lun_mode != afu->internal_lun)) { afu->internal_lun = lun_mode; /* * When configured for internal LUN, there is only one channel, * channel number 0, else there will be one less than the number * of fc ports for this card. */ if (afu->internal_lun) shost->max_channel = 0; else shost->max_channel = PORTNUM2CHAN(cfg->num_fc_ports); afu_reset(cfg); scsi_scan_host(cfg->host); } return count; } /** * ioctl_version_show() - presents the current ioctl version of the host * @dev: Generic device associated with the host. * @attr: Device attribute representing the ioctl version. * @buf: Buffer of length PAGE_SIZE to report back the ioctl version. * * Return: The size of the ASCII string returned in @buf. */ static ssize_t ioctl_version_show(struct device *dev, struct device_attribute *attr, char *buf) { ssize_t bytes = 0; bytes = scnprintf(buf, PAGE_SIZE, "disk: %u\n", DK_CXLFLASH_VERSION_0); bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes, "host: %u\n", HT_CXLFLASH_VERSION_0); return bytes; } /** * cxlflash_show_port_lun_table() - queries and presents the port LUN table * @port: Desired port for status reporting. * @cfg: Internal structure associated with the host. * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. * * Return: The size of the ASCII string returned in @buf or -EINVAL. */ static ssize_t cxlflash_show_port_lun_table(u32 port, struct cxlflash_cfg *cfg, char *buf) { struct device *dev = &cfg->dev->dev; __be64 __iomem *fc_port_luns; int i; ssize_t bytes = 0; WARN_ON(port >= MAX_FC_PORTS); if (port >= cfg->num_fc_ports) { dev_info(dev, "%s: Port %d not supported on this card.\n", __func__, port); return -EINVAL; } fc_port_luns = get_fc_port_luns(cfg, port); for (i = 0; i < CXLFLASH_NUM_VLUNS; i++) bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes, "%03d: %016llx\n", i, readq_be(&fc_port_luns[i])); return bytes; } /** * port0_lun_table_show() - presents the current LUN table of port 0 * @dev: Generic device associated with the host owning the port. * @attr: Device attribute representing the port. * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. * * Return: The size of the ASCII string returned in @buf. */ static ssize_t port0_lun_table_show(struct device *dev, struct device_attribute *attr, char *buf) { struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); return cxlflash_show_port_lun_table(0, cfg, buf); } /** * port1_lun_table_show() - presents the current LUN table of port 1 * @dev: Generic device associated with the host owning the port. * @attr: Device attribute representing the port. * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. * * Return: The size of the ASCII string returned in @buf. */ static ssize_t port1_lun_table_show(struct device *dev, struct device_attribute *attr, char *buf) { struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); return cxlflash_show_port_lun_table(1, cfg, buf); } /** * port2_lun_table_show() - presents the current LUN table of port 2 * @dev: Generic device associated with the host owning the port. * @attr: Device attribute representing the port. * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. * * Return: The size of the ASCII string returned in @buf. */ static ssize_t port2_lun_table_show(struct device *dev, struct device_attribute *attr, char *buf) { struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); return cxlflash_show_port_lun_table(2, cfg, buf); } /** * port3_lun_table_show() - presents the current LUN table of port 3 * @dev: Generic device associated with the host owning the port. * @attr: Device attribute representing the port. * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. * * Return: The size of the ASCII string returned in @buf. */ static ssize_t port3_lun_table_show(struct device *dev, struct device_attribute *attr, char *buf) { struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); return cxlflash_show_port_lun_table(3, cfg, buf); } /** * irqpoll_weight_show() - presents the current IRQ poll weight for the host * @dev: Generic device associated with the host. * @attr: Device attribute representing the IRQ poll weight. * @buf: Buffer of length PAGE_SIZE to report back the current IRQ poll * weight in ASCII. * * An IRQ poll weight of 0 indicates polling is disabled. * * Return: The size of the ASCII string returned in @buf. */ static ssize_t irqpoll_weight_show(struct device *dev, struct device_attribute *attr, char *buf) { struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); struct afu *afu = cfg->afu; return scnprintf(buf, PAGE_SIZE, "%u\n", afu->irqpoll_weight); } /** * irqpoll_weight_store() - sets the current IRQ poll weight for the host * @dev: Generic device associated with the host. * @attr: Device attribute representing the IRQ poll weight. * @buf: Buffer of length PAGE_SIZE containing the desired IRQ poll * weight in ASCII. * @count: Length of data resizing in @buf. * * An IRQ poll weight of 0 indicates polling is disabled. * * Return: The size of the ASCII string returned in @buf. */ static ssize_t irqpoll_weight_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); struct device *cfgdev = &cfg->dev->dev; struct afu *afu = cfg->afu; struct hwq *hwq; u32 weight; int rc, i; rc = kstrtouint(buf, 10, &weight); if (rc) return -EINVAL; if (weight > 256) { dev_info(cfgdev, "Invalid IRQ poll weight. It must be 256 or less.\n"); return -EINVAL; } if (weight == afu->irqpoll_weight) { dev_info(cfgdev, "Current IRQ poll weight has the same weight.\n"); return -EINVAL; } if (afu_is_irqpoll_enabled(afu)) { for (i = 0; i < afu->num_hwqs; i++) { hwq = get_hwq(afu, i); irq_poll_disable(&hwq->irqpoll); } } afu->irqpoll_weight = weight; if (weight > 0) { for (i = 0; i < afu->num_hwqs; i++) { hwq = get_hwq(afu, i); irq_poll_init(&hwq->irqpoll, weight, cxlflash_irqpoll); } } return count; } /** * num_hwqs_show() - presents the number of hardware queues for the host * @dev: Generic device associated with the host. * @attr: Device attribute representing the number of hardware queues. * @buf: Buffer of length PAGE_SIZE to report back the number of hardware * queues in ASCII. * * Return: The size of the ASCII string returned in @buf. */ static ssize_t num_hwqs_show(struct device *dev, struct device_attribute *attr, char *buf) { struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); struct afu *afu = cfg->afu; return scnprintf(buf, PAGE_SIZE, "%u\n", afu->num_hwqs); } /** * num_hwqs_store() - sets the number of hardware queues for the host * @dev: Generic device associated with the host. * @attr: Device attribute representing the number of hardware queues. * @buf: Buffer of length PAGE_SIZE containing the number of hardware * queues in ASCII. * @count: Length of data resizing in @buf. * * n > 0: num_hwqs = n * n = 0: num_hwqs = num_online_cpus() * n < 0: num_online_cpus() / abs(n) * * Return: The size of the ASCII string returned in @buf. */ static ssize_t num_hwqs_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); struct afu *afu = cfg->afu; int rc; int nhwqs, num_hwqs; rc = kstrtoint(buf, 10, &nhwqs); if (rc) return -EINVAL; if (nhwqs >= 1) num_hwqs = nhwqs; else if (nhwqs == 0) num_hwqs = num_online_cpus(); else num_hwqs = num_online_cpus() / abs(nhwqs); afu->desired_hwqs = min(num_hwqs, CXLFLASH_MAX_HWQS); WARN_ON_ONCE(afu->desired_hwqs == 0); retry: switch (cfg->state) { case STATE_NORMAL: cfg->state = STATE_RESET; drain_ioctls(cfg); cxlflash_mark_contexts_error(cfg); rc = afu_reset(cfg); if (rc) cfg->state = STATE_FAILTERM; else cfg->state = STATE_NORMAL; wake_up_all(&cfg->reset_waitq); break; case STATE_RESET: wait_event(cfg->reset_waitq, cfg->state != STATE_RESET); if (cfg->state == STATE_NORMAL) goto retry; /* else, fall through */ default: /* Ideally should not happen */ dev_err(dev, "%s: Device is not ready, state=%d\n", __func__, cfg->state); break; } return count; } static const char *hwq_mode_name[MAX_HWQ_MODE] = { "rr", "tag", "cpu" }; /** * hwq_mode_show() - presents the HWQ steering mode for the host * @dev: Generic device associated with the host. * @attr: Device attribute representing the HWQ steering mode. * @buf: Buffer of length PAGE_SIZE to report back the HWQ steering mode * as a character string. * * Return: The size of the ASCII string returned in @buf. */ static ssize_t hwq_mode_show(struct device *dev, struct device_attribute *attr, char *buf) { struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); struct afu *afu = cfg->afu; return scnprintf(buf, PAGE_SIZE, "%s\n", hwq_mode_name[afu->hwq_mode]); } /** * hwq_mode_store() - sets the HWQ steering mode for the host * @dev: Generic device associated with the host. * @attr: Device attribute representing the HWQ steering mode. * @buf: Buffer of length PAGE_SIZE containing the HWQ steering mode * as a character string. * @count: Length of data resizing in @buf. * * rr = Round-Robin * tag = Block MQ Tagging * cpu = CPU Affinity * * Return: The size of the ASCII string returned in @buf. */ static ssize_t hwq_mode_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct Scsi_Host *shost = class_to_shost(dev); struct cxlflash_cfg *cfg = shost_priv(shost); struct device *cfgdev = &cfg->dev->dev; struct afu *afu = cfg->afu; int i; u32 mode = MAX_HWQ_MODE; for (i = 0; i < MAX_HWQ_MODE; i++) { if (!strncmp(hwq_mode_name[i], buf, strlen(hwq_mode_name[i]))) { mode = i; break; } } if (mode >= MAX_HWQ_MODE) { dev_info(cfgdev, "Invalid HWQ steering mode.\n"); return -EINVAL; } afu->hwq_mode = mode; return count; } /** * mode_show() - presents the current mode of the device * @dev: Generic device associated with the device. * @attr: Device attribute representing the device mode. * @buf: Buffer of length PAGE_SIZE to report back the dev mode in ASCII. * * Return: The size of the ASCII string returned in @buf. */ static ssize_t mode_show(struct device *dev, struct device_attribute *attr, char *buf) { struct scsi_device *sdev = to_scsi_device(dev); return scnprintf(buf, PAGE_SIZE, "%s\n", sdev->hostdata ? "superpipe" : "legacy"); } /* * Host attributes */ static DEVICE_ATTR_RO(port0); static DEVICE_ATTR_RO(port1); static DEVICE_ATTR_RO(port2); static DEVICE_ATTR_RO(port3); static DEVICE_ATTR_RW(lun_mode); static DEVICE_ATTR_RO(ioctl_version); static DEVICE_ATTR_RO(port0_lun_table); static DEVICE_ATTR_RO(port1_lun_table); static DEVICE_ATTR_RO(port2_lun_table); static DEVICE_ATTR_RO(port3_lun_table); static DEVICE_ATTR_RW(irqpoll_weight); static DEVICE_ATTR_RW(num_hwqs); static DEVICE_ATTR_RW(hwq_mode); static struct device_attribute *cxlflash_host_attrs[] = { &dev_attr_port0, &dev_attr_port1, &dev_attr_port2, &dev_attr_port3, &dev_attr_lun_mode, &dev_attr_ioctl_version, &dev_attr_port0_lun_table, &dev_attr_port1_lun_table, &dev_attr_port2_lun_table, &dev_attr_port3_lun_table, &dev_attr_irqpoll_weight, &dev_attr_num_hwqs, &dev_attr_hwq_mode, NULL }; /* * Device attributes */ static DEVICE_ATTR_RO(mode); static struct device_attribute *cxlflash_dev_attrs[] = { &dev_attr_mode, NULL }; /* * Host template */ static struct scsi_host_template driver_template = { .module = THIS_MODULE, .name = CXLFLASH_ADAPTER_NAME, .info = cxlflash_driver_info, .ioctl = cxlflash_ioctl, .proc_name = CXLFLASH_NAME, .queuecommand = cxlflash_queuecommand, .eh_abort_handler = cxlflash_eh_abort_handler, .eh_device_reset_handler = cxlflash_eh_device_reset_handler, .eh_host_reset_handler = cxlflash_eh_host_reset_handler, .change_queue_depth = cxlflash_change_queue_depth, .cmd_per_lun = CXLFLASH_MAX_CMDS_PER_LUN, .can_queue = CXLFLASH_MAX_CMDS, .cmd_size = sizeof(struct afu_cmd) + __alignof__(struct afu_cmd) - 1, .this_id = -1, .sg_tablesize = 1, /* No scatter gather support */ .max_sectors = CXLFLASH_MAX_SECTORS, .shost_attrs = cxlflash_host_attrs, .sdev_attrs = cxlflash_dev_attrs, }; /* * Device dependent values */ static struct dev_dependent_vals dev_corsa_vals = { CXLFLASH_MAX_SECTORS, CXLFLASH_WWPN_VPD_REQUIRED }; static struct dev_dependent_vals dev_flash_gt_vals = { CXLFLASH_MAX_SECTORS, CXLFLASH_NOTIFY_SHUTDOWN }; static struct dev_dependent_vals dev_briard_vals = { CXLFLASH_MAX_SECTORS, (CXLFLASH_NOTIFY_SHUTDOWN | CXLFLASH_OCXL_DEV) }; /* * PCI device binding table */ static struct pci_device_id cxlflash_pci_table[] = { {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_CORSA, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_corsa_vals}, {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_FLASH_GT, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_flash_gt_vals}, {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_BRIARD, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_briard_vals}, {} }; MODULE_DEVICE_TABLE(pci, cxlflash_pci_table); /** * cxlflash_worker_thread() - work thread handler for the AFU * @work: Work structure contained within cxlflash associated with host. * * Handles the following events: * - Link reset which cannot be performed on interrupt context due to * blocking up to a few seconds * - Rescan the host */ static void cxlflash_worker_thread(struct work_struct *work) { struct cxlflash_cfg *cfg = container_of(work, struct cxlflash_cfg, work_q); struct afu *afu = cfg->afu; struct device *dev = &cfg->dev->dev; __be64 __iomem *fc_port_regs; int port; ulong lock_flags; /* Avoid MMIO if the device has failed */ if (cfg->state != STATE_NORMAL) return; spin_lock_irqsave(cfg->host->host_lock, lock_flags); if (cfg->lr_state == LINK_RESET_REQUIRED) { port = cfg->lr_port; if (port < 0) dev_err(dev, "%s: invalid port index %d\n", __func__, port); else { spin_unlock_irqrestore(cfg->host->host_lock, lock_flags); /* The reset can block... */ fc_port_regs = get_fc_port_regs(cfg, port); afu_link_reset(afu, port, fc_port_regs); spin_lock_irqsave(cfg->host->host_lock, lock_flags); } cfg->lr_state = LINK_RESET_COMPLETE; } spin_unlock_irqrestore(cfg->host->host_lock, lock_flags); if (atomic_dec_if_positive(&cfg->scan_host_needed) >= 0) scsi_scan_host(cfg->host); } /** * cxlflash_chr_open() - character device open handler * @inode: Device inode associated with this character device. * @file: File pointer for this device. * * Only users with admin privileges are allowed to open the character device. * * Return: 0 on success, -errno on failure */ static int cxlflash_chr_open(struct inode *inode, struct file *file) { struct cxlflash_cfg *cfg; if (!capable(CAP_SYS_ADMIN)) return -EACCES; cfg = container_of(inode->i_cdev, struct cxlflash_cfg, cdev); file->private_data = cfg; return 0; } /** * decode_hioctl() - translates encoded host ioctl to easily identifiable string * @cmd: The host ioctl command to decode. * * Return: A string identifying the decoded host ioctl. */ static char *decode_hioctl(unsigned int cmd) { switch (cmd) { case HT_CXLFLASH_LUN_PROVISION: return __stringify_1(HT_CXLFLASH_LUN_PROVISION); } return "UNKNOWN"; } /** * cxlflash_lun_provision() - host LUN provisioning handler * @cfg: Internal structure associated with the host. * @arg: Kernel copy of userspace ioctl data structure. * * Return: 0 on success, -errno on failure */ static int cxlflash_lun_provision(struct cxlflash_cfg *cfg, struct ht_cxlflash_lun_provision *lunprov) { struct afu *afu = cfg->afu; struct device *dev = &cfg->dev->dev; struct sisl_ioarcb rcb; struct sisl_ioasa asa; __be64 __iomem *fc_port_regs; u16 port = lunprov->port; u16 scmd = lunprov->hdr.subcmd; u16 type; u64 reg; u64 size; u64 lun_id; int rc = 0; if (!afu_is_lun_provision(afu)) { rc = -ENOTSUPP; goto out; } if (port >= cfg->num_fc_ports) { rc = -EINVAL; goto out; } switch (scmd) { case HT_CXLFLASH_LUN_PROVISION_SUBCMD_CREATE_LUN: type = SISL_AFU_LUN_PROVISION_CREATE; size = lunprov->size; lun_id = 0; break; case HT_CXLFLASH_LUN_PROVISION_SUBCMD_DELETE_LUN: type = SISL_AFU_LUN_PROVISION_DELETE; size = 0; lun_id = lunprov->lun_id; break; case HT_CXLFLASH_LUN_PROVISION_SUBCMD_QUERY_PORT: fc_port_regs = get_fc_port_regs(cfg, port); reg = readq_be(&fc_port_regs[FC_MAX_NUM_LUNS / 8]); lunprov->max_num_luns = reg; reg = readq_be(&fc_port_regs[FC_CUR_NUM_LUNS / 8]); lunprov->cur_num_luns = reg; reg = readq_be(&fc_port_regs[FC_MAX_CAP_PORT / 8]); lunprov->max_cap_port = reg; reg = readq_be(&fc_port_regs[FC_CUR_CAP_PORT / 8]); lunprov->cur_cap_port = reg; goto out; default: rc = -EINVAL; goto out; } memset(&rcb, 0, sizeof(rcb)); memset(&asa, 0, sizeof(asa)); rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD; rcb.lun_id = lun_id; rcb.msi = SISL_MSI_RRQ_UPDATED; rcb.timeout = MC_LUN_PROV_TIMEOUT; rcb.ioasa = &asa; rcb.cdb[0] = SISL_AFU_CMD_LUN_PROVISION; rcb.cdb[1] = type; rcb.cdb[2] = port; put_unaligned_be64(size, &rcb.cdb[8]); rc = send_afu_cmd(afu, &rcb); if (rc) { dev_err(dev, "%s: send_afu_cmd failed rc=%d asc=%08x afux=%x\n", __func__, rc, asa.ioasc, asa.afu_extra); goto out; } if (scmd == HT_CXLFLASH_LUN_PROVISION_SUBCMD_CREATE_LUN) { lunprov->lun_id = (u64)asa.lunid_hi << 32 | asa.lunid_lo; memcpy(lunprov->wwid, asa.wwid, sizeof(lunprov->wwid)); } out: dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); return rc; } /** * cxlflash_afu_debug() - host AFU debug handler * @cfg: Internal structure associated with the host. * @arg: Kernel copy of userspace ioctl data structure. * * For debug requests requiring a data buffer, always provide an aligned * (cache line) buffer to the AFU to appease any alignment requirements. * * Return: 0 on success, -errno on failure */ static int cxlflash_afu_debug(struct cxlflash_cfg *cfg, struct ht_cxlflash_afu_debug *afu_dbg) { struct afu *afu = cfg->afu; struct device *dev = &cfg->dev->dev; struct sisl_ioarcb rcb; struct sisl_ioasa asa; char *buf = NULL; char *kbuf = NULL; void __user *ubuf = (__force void __user *)afu_dbg->data_ea; u16 req_flags = SISL_REQ_FLAGS_AFU_CMD; u32 ulen = afu_dbg->data_len; bool is_write = afu_dbg->hdr.flags & HT_CXLFLASH_HOST_WRITE; int rc = 0; if (!afu_is_afu_debug(afu)) { rc = -ENOTSUPP; goto out; } if (ulen) { req_flags |= SISL_REQ_FLAGS_SUP_UNDERRUN; if (ulen > HT_CXLFLASH_AFU_DEBUG_MAX_DATA_LEN) { rc = -EINVAL; goto out; } buf = kmalloc(ulen + cache_line_size() - 1, GFP_KERNEL); if (unlikely(!buf)) { rc = -ENOMEM; goto out; } kbuf = PTR_ALIGN(buf, cache_line_size()); if (is_write) { req_flags |= SISL_REQ_FLAGS_HOST_WRITE; if (copy_from_user(kbuf, ubuf, ulen)) { rc = -EFAULT; goto out; } } } memset(&rcb, 0, sizeof(rcb)); memset(&asa, 0, sizeof(asa)); rcb.req_flags = req_flags; rcb.msi = SISL_MSI_RRQ_UPDATED; rcb.timeout = MC_AFU_DEBUG_TIMEOUT; rcb.ioasa = &asa; if (ulen) { rcb.data_len = ulen; rcb.data_ea = (uintptr_t)kbuf; } rcb.cdb[0] = SISL_AFU_CMD_DEBUG; memcpy(&rcb.cdb[4], afu_dbg->afu_subcmd, HT_CXLFLASH_AFU_DEBUG_SUBCMD_LEN); rc = send_afu_cmd(afu, &rcb); if (rc) { dev_err(dev, "%s: send_afu_cmd failed rc=%d asc=%08x afux=%x\n", __func__, rc, asa.ioasc, asa.afu_extra); goto out; } if (ulen && !is_write) { if (copy_to_user(ubuf, kbuf, ulen)) rc = -EFAULT; } out: kfree(buf); dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); return rc; } /** * cxlflash_chr_ioctl() - character device IOCTL handler * @file: File pointer for this device. * @cmd: IOCTL command. * @arg: Userspace ioctl data structure. * * A read/write semaphore is used to implement a 'drain' of currently * running ioctls. The read semaphore is taken at the beginning of each * ioctl thread and released upon concluding execution. Additionally the * semaphore should be released and then reacquired in any ioctl execution * path which will wait for an event to occur that is outside the scope of * the ioctl (i.e. an adapter reset). To drain the ioctls currently running, * a thread simply needs to acquire the write semaphore. * * Return: 0 on success, -errno on failure */ static long cxlflash_chr_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { typedef int (*hioctl) (struct cxlflash_cfg *, void *); struct cxlflash_cfg *cfg = file->private_data; struct device *dev = &cfg->dev->dev; char buf[sizeof(union cxlflash_ht_ioctls)]; void __user *uarg = (void __user *)arg; struct ht_cxlflash_hdr *hdr; size_t size = 0; bool known_ioctl = false; int idx = 0; int rc = 0; hioctl do_ioctl = NULL; static const struct { size_t size; hioctl ioctl; } ioctl_tbl[] = { /* NOTE: order matters here */ { sizeof(struct ht_cxlflash_lun_provision), (hioctl)cxlflash_lun_provision }, { sizeof(struct ht_cxlflash_afu_debug), (hioctl)cxlflash_afu_debug }, }; /* Hold read semaphore so we can drain if needed */ down_read(&cfg->ioctl_rwsem); dev_dbg(dev, "%s: cmd=%u idx=%d tbl_size=%lu\n", __func__, cmd, idx, sizeof(ioctl_tbl)); switch (cmd) { case HT_CXLFLASH_LUN_PROVISION: case HT_CXLFLASH_AFU_DEBUG: known_ioctl = true; idx = _IOC_NR(HT_CXLFLASH_LUN_PROVISION) - _IOC_NR(cmd); size = ioctl_tbl[idx].size; do_ioctl = ioctl_tbl[idx].ioctl; if (likely(do_ioctl)) break; /* fall through */ default: rc = -EINVAL; goto out; } if (unlikely(copy_from_user(&buf, uarg, size))) { dev_err(dev, "%s: copy_from_user() fail " "size=%lu cmd=%d (%s) uarg=%p\n", __func__, size, cmd, decode_hioctl(cmd), uarg); rc = -EFAULT; goto out; } hdr = (struct ht_cxlflash_hdr *)&buf; if (hdr->version != HT_CXLFLASH_VERSION_0) { dev_dbg(dev, "%s: Version %u not supported for %s\n", __func__, hdr->version, decode_hioctl(cmd)); rc = -EINVAL; goto out; } if (hdr->rsvd[0] || hdr->rsvd[1] || hdr->return_flags) { dev_dbg(dev, "%s: Reserved/rflags populated\n", __func__); rc = -EINVAL; goto out; } rc = do_ioctl(cfg, (void *)&buf); if (likely(!rc)) if (unlikely(copy_to_user(uarg, &buf, size))) { dev_err(dev, "%s: copy_to_user() fail " "size=%lu cmd=%d (%s) uarg=%p\n", __func__, size, cmd, decode_hioctl(cmd), uarg); rc = -EFAULT; } /* fall through to exit */ out: up_read(&cfg->ioctl_rwsem); if (unlikely(rc && known_ioctl)) dev_err(dev, "%s: ioctl %s (%08X) returned rc=%d\n", __func__, decode_hioctl(cmd), cmd, rc); else dev_dbg(dev, "%s: ioctl %s (%08X) returned rc=%d\n", __func__, decode_hioctl(cmd), cmd, rc); return rc; } /* * Character device file operations */ static const struct file_operations cxlflash_chr_fops = { .owner = THIS_MODULE, .open = cxlflash_chr_open, .unlocked_ioctl = cxlflash_chr_ioctl, .compat_ioctl = compat_ptr_ioctl, }; /** * init_chrdev() - initialize the character device for the host * @cfg: Internal structure associated with the host. * * Return: 0 on success, -errno on failure */ static int init_chrdev(struct cxlflash_cfg *cfg) { struct device *dev = &cfg->dev->dev; struct device *char_dev; dev_t devno; int minor; int rc = 0; minor = cxlflash_get_minor(); if (unlikely(minor < 0)) { dev_err(dev, "%s: Exhausted allowed adapters\n", __func__); rc = -ENOSPC; goto out; } devno = MKDEV(cxlflash_major, minor); cdev_init(&cfg->cdev, &cxlflash_chr_fops); rc = cdev_add(&cfg->cdev, devno, 1); if (rc) { dev_err(dev, "%s: cdev_add failed rc=%d\n", __func__, rc); goto err1; } char_dev = device_create(cxlflash_class, NULL, devno, NULL, "cxlflash%d", minor); if (IS_ERR(char_dev)) { rc = PTR_ERR(char_dev); dev_err(dev, "%s: device_create failed rc=%d\n", __func__, rc); goto err2; } cfg->chardev = char_dev; out: dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); return rc; err2: cdev_del(&cfg->cdev); err1: cxlflash_put_minor(minor); goto out; } /** * cxlflash_probe() - PCI entry point to add host * @pdev: PCI device associated with the host. * @dev_id: PCI device id associated with device. * * The device will initially start out in a 'probing' state and * transition to the 'normal' state at the end of a successful * probe. Should an EEH event occur during probe, the notification * thread (error_detected()) will wait until the probe handler * is nearly complete. At that time, the device will be moved to * a 'probed' state and the EEH thread woken up to drive the slot * reset and recovery (device moves to 'normal' state). Meanwhile, * the probe will be allowed to exit successfully. * * Return: 0 on success, -errno on failure */ static int cxlflash_probe(struct pci_dev *pdev, const struct pci_device_id *dev_id) { struct Scsi_Host *host; struct cxlflash_cfg *cfg = NULL; struct device *dev = &pdev->dev; struct dev_dependent_vals *ddv; int rc = 0; int k; dev_dbg(&pdev->dev, "%s: Found CXLFLASH with IRQ: %d\n", __func__, pdev->irq); ddv = (struct dev_dependent_vals *)dev_id->driver_data; driver_template.max_sectors = ddv->max_sectors; host = scsi_host_alloc(&driver_template, sizeof(struct cxlflash_cfg)); if (!host) { dev_err(dev, "%s: scsi_host_alloc failed\n", __func__); rc = -ENOMEM; goto out; } host->max_id = CXLFLASH_MAX_NUM_TARGETS_PER_BUS; host->max_lun = CXLFLASH_MAX_NUM_LUNS_PER_TARGET; host->unique_id = host->host_no; host->max_cmd_len = CXLFLASH_MAX_CDB_LEN; cfg = shost_priv(host); cfg->state = STATE_PROBING; cfg->host = host; rc = alloc_mem(cfg); if (rc) { dev_err(dev, "%s: alloc_mem failed\n", __func__); rc = -ENOMEM; scsi_host_put(cfg->host); goto out; } cfg->init_state = INIT_STATE_NONE; cfg->dev = pdev; cfg->cxl_fops = cxlflash_cxl_fops; cfg->ops = cxlflash_assign_ops(ddv); WARN_ON_ONCE(!cfg->ops); /* * Promoted LUNs move to the top of the LUN table. The rest stay on * the bottom half. The bottom half grows from the end (index = 255), * whereas the top half grows from the beginning (index = 0). * * Initialize the last LUN index for all possible ports. */ cfg->promote_lun_index = 0; for (k = 0; k < MAX_FC_PORTS; k++) cfg->last_lun_index[k] = CXLFLASH_NUM_VLUNS/2 - 1; cfg->dev_id = (struct pci_device_id *)dev_id; init_waitqueue_head(&cfg->tmf_waitq); init_waitqueue_head(&cfg->reset_waitq); INIT_WORK(&cfg->work_q, cxlflash_worker_thread); cfg->lr_state = LINK_RESET_INVALID; cfg->lr_port = -1; spin_lock_init(&cfg->tmf_slock); mutex_init(&cfg->ctx_tbl_list_mutex); mutex_init(&cfg->ctx_recovery_mutex); init_rwsem(&cfg->ioctl_rwsem); INIT_LIST_HEAD(&cfg->ctx_err_recovery); INIT_LIST_HEAD(&cfg->lluns); pci_set_drvdata(pdev, cfg); rc = init_pci(cfg); if (rc) { dev_err(dev, "%s: init_pci failed rc=%d\n", __func__, rc); goto out_remove; } cfg->init_state = INIT_STATE_PCI; cfg->afu_cookie = cfg->ops->create_afu(pdev); if (unlikely(!cfg->afu_cookie)) { dev_err(dev, "%s: create_afu failed\n", __func__); goto out_remove; } rc = init_afu(cfg); if (rc && !wq_has_sleeper(&cfg->reset_waitq)) { dev_err(dev, "%s: init_afu failed rc=%d\n", __func__, rc); goto out_remove; } cfg->init_state = INIT_STATE_AFU; rc = init_scsi(cfg); if (rc) { dev_err(dev, "%s: init_scsi failed rc=%d\n", __func__, rc); goto out_remove; } cfg->init_state = INIT_STATE_SCSI; rc = init_chrdev(cfg); if (rc) { dev_err(dev, "%s: init_chrdev failed rc=%d\n", __func__, rc); goto out_remove; } cfg->init_state = INIT_STATE_CDEV; if (wq_has_sleeper(&cfg->reset_waitq)) { cfg->state = STATE_PROBED; wake_up_all(&cfg->reset_waitq); } else cfg->state = STATE_NORMAL; out: dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); return rc; out_remove: cfg->state = STATE_PROBED; cxlflash_remove(pdev); goto out; } /** * cxlflash_pci_error_detected() - called when a PCI error is detected * @pdev: PCI device struct. * @state: PCI channel state. * * When an EEH occurs during an active reset, wait until the reset is * complete and then take action based upon the device state. * * Return: PCI_ERS_RESULT_NEED_RESET or PCI_ERS_RESULT_DISCONNECT */ static pci_ers_result_t cxlflash_pci_error_detected(struct pci_dev *pdev, pci_channel_state_t state) { int rc = 0; struct cxlflash_cfg *cfg = pci_get_drvdata(pdev); struct device *dev = &cfg->dev->dev; dev_dbg(dev, "%s: pdev=%p state=%u\n", __func__, pdev, state); switch (state) { case pci_channel_io_frozen: wait_event(cfg->reset_waitq, cfg->state != STATE_RESET && cfg->state != STATE_PROBING); if (cfg->state == STATE_FAILTERM) return PCI_ERS_RESULT_DISCONNECT; cfg->state = STATE_RESET; scsi_block_requests(cfg->host); drain_ioctls(cfg); rc = cxlflash_mark_contexts_error(cfg); if (unlikely(rc)) dev_err(dev, "%s: Failed to mark user contexts rc=%d\n", __func__, rc); term_afu(cfg); return PCI_ERS_RESULT_NEED_RESET; case pci_channel_io_perm_failure: cfg->state = STATE_FAILTERM; wake_up_all(&cfg->reset_waitq); scsi_unblock_requests(cfg->host); return PCI_ERS_RESULT_DISCONNECT; default: break; } return PCI_ERS_RESULT_NEED_RESET; } /** * cxlflash_pci_slot_reset() - called when PCI slot has been reset * @pdev: PCI device struct. * * This routine is called by the pci error recovery code after the PCI * slot has been reset, just before we should resume normal operations. * * Return: PCI_ERS_RESULT_RECOVERED or PCI_ERS_RESULT_DISCONNECT */ static pci_ers_result_t cxlflash_pci_slot_reset(struct pci_dev *pdev) { int rc = 0; struct cxlflash_cfg *cfg = pci_get_drvdata(pdev); struct device *dev = &cfg->dev->dev; dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev); rc = init_afu(cfg); if (unlikely(rc)) { dev_err(dev, "%s: EEH recovery failed rc=%d\n", __func__, rc); return PCI_ERS_RESULT_DISCONNECT; } return PCI_ERS_RESULT_RECOVERED; } /** * cxlflash_pci_resume() - called when normal operation can resume * @pdev: PCI device struct */ static void cxlflash_pci_resume(struct pci_dev *pdev) { struct cxlflash_cfg *cfg = pci_get_drvdata(pdev); struct device *dev = &cfg->dev->dev; dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev); cfg->state = STATE_NORMAL; wake_up_all(&cfg->reset_waitq); scsi_unblock_requests(cfg->host); } /** * cxlflash_devnode() - provides devtmpfs for devices in the cxlflash class * @dev: Character device. * @mode: Mode that can be used to verify access. * * Return: Allocated string describing the devtmpfs structure. */ static char *cxlflash_devnode(struct device *dev, umode_t *mode) { return kasprintf(GFP_KERNEL, "cxlflash/%s", dev_name(dev)); } /** * cxlflash_class_init() - create character device class * * Return: 0 on success, -errno on failure */ static int cxlflash_class_init(void) { dev_t devno; int rc = 0; rc = alloc_chrdev_region(&devno, 0, CXLFLASH_MAX_ADAPTERS, "cxlflash"); if (unlikely(rc)) { pr_err("%s: alloc_chrdev_region failed rc=%d\n", __func__, rc); goto out; } cxlflash_major = MAJOR(devno); cxlflash_class = class_create(THIS_MODULE, "cxlflash"); if (IS_ERR(cxlflash_class)) { rc = PTR_ERR(cxlflash_class); pr_err("%s: class_create failed rc=%d\n", __func__, rc); goto err; } cxlflash_class->devnode = cxlflash_devnode; out: pr_debug("%s: returning rc=%d\n", __func__, rc); return rc; err: unregister_chrdev_region(devno, CXLFLASH_MAX_ADAPTERS); goto out; } /** * cxlflash_class_exit() - destroy character device class */ static void cxlflash_class_exit(void) { dev_t devno = MKDEV(cxlflash_major, 0); class_destroy(cxlflash_class); unregister_chrdev_region(devno, CXLFLASH_MAX_ADAPTERS); } static const struct pci_error_handlers cxlflash_err_handler = { .error_detected = cxlflash_pci_error_detected, .slot_reset = cxlflash_pci_slot_reset, .resume = cxlflash_pci_resume, }; /* * PCI device structure */ static struct pci_driver cxlflash_driver = { .name = CXLFLASH_NAME, .id_table = cxlflash_pci_table, .probe = cxlflash_probe, .remove = cxlflash_remove, .shutdown = cxlflash_remove, .err_handler = &cxlflash_err_handler, }; /** * init_cxlflash() - module entry point * * Return: 0 on success, -errno on failure */ static int __init init_cxlflash(void) { int rc; check_sizes(); cxlflash_list_init(); rc = cxlflash_class_init(); if (unlikely(rc)) goto out; rc = pci_register_driver(&cxlflash_driver); if (unlikely(rc)) goto err; out: pr_debug("%s: returning rc=%d\n", __func__, rc); return rc; err: cxlflash_class_exit(); goto out; } /** * exit_cxlflash() - module exit point */ static void __exit exit_cxlflash(void) { cxlflash_term_global_luns(); cxlflash_free_errpage(); pci_unregister_driver(&cxlflash_driver); cxlflash_class_exit(); } module_init(init_cxlflash); module_exit(exit_cxlflash);