/* * linux/drivers/scsi/esas2r/esas2r_disc.c * esas2r device discovery routines * * Copyright (c) 2001-2013 ATTO Technology, Inc. * (mailto:linuxdrivers@attotech.com) */ /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * NO WARRANTY * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is * solely responsible for determining the appropriateness of using and * distributing the Program and assumes all risks associated with its * exercise of rights under this Agreement, including but not limited to * the risks and costs of program errors, damage to or loss of data, * programs or equipment, and unavailability or interruption of operations. * * DISCLAIMER OF LIABILITY * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=*/ #include "esas2r.h" /* Miscellaneous internal discovery routines */ static void esas2r_disc_abort(struct esas2r_adapter *a, struct esas2r_request *rq); static bool esas2r_disc_continue(struct esas2r_adapter *a, struct esas2r_request *rq); static void esas2r_disc_fix_curr_requests(struct esas2r_adapter *a); static u32 esas2r_disc_get_phys_addr(struct esas2r_sg_context *sgc, u64 *addr); static bool esas2r_disc_start_request(struct esas2r_adapter *a, struct esas2r_request *rq); /* Internal discovery routines that process the states */ static bool esas2r_disc_block_dev_scan(struct esas2r_adapter *a, struct esas2r_request *rq); static void esas2r_disc_block_dev_scan_cb(struct esas2r_adapter *a, struct esas2r_request *rq); static bool esas2r_disc_dev_add(struct esas2r_adapter *a, struct esas2r_request *rq); static bool esas2r_disc_dev_remove(struct esas2r_adapter *a, struct esas2r_request *rq); static bool esas2r_disc_part_info(struct esas2r_adapter *a, struct esas2r_request *rq); static void esas2r_disc_part_info_cb(struct esas2r_adapter *a, struct esas2r_request *rq); static bool esas2r_disc_passthru_dev_info(struct esas2r_adapter *a, struct esas2r_request *rq); static void esas2r_disc_passthru_dev_info_cb(struct esas2r_adapter *a, struct esas2r_request *rq); static bool esas2r_disc_passthru_dev_addr(struct esas2r_adapter *a, struct esas2r_request *rq); static void esas2r_disc_passthru_dev_addr_cb(struct esas2r_adapter *a, struct esas2r_request *rq); static bool esas2r_disc_raid_grp_info(struct esas2r_adapter *a, struct esas2r_request *rq); static void esas2r_disc_raid_grp_info_cb(struct esas2r_adapter *a, struct esas2r_request *rq); void esas2r_disc_initialize(struct esas2r_adapter *a) { struct esas2r_sas_nvram *nvr = a->nvram; esas2r_trace_enter(); clear_bit(AF_DISC_IN_PROG, &a->flags); clear_bit(AF2_DEV_SCAN, &a->flags2); clear_bit(AF2_DEV_CNT_OK, &a->flags2); a->disc_start_time = jiffies_to_msecs(jiffies); a->disc_wait_time = nvr->dev_wait_time * 1000; a->disc_wait_cnt = nvr->dev_wait_count; if (a->disc_wait_cnt > ESAS2R_MAX_TARGETS) a->disc_wait_cnt = ESAS2R_MAX_TARGETS; /* * If we are doing chip reset or power management processing, always * wait for devices. use the NVRAM device count if it is greater than * previously discovered devices. */ esas2r_hdebug("starting discovery..."); a->general_req.interrupt_cx = NULL; if (test_bit(AF_CHPRST_DETECTED, &a->flags) || test_bit(AF_POWER_MGT, &a->flags)) { if (a->prev_dev_cnt == 0) { /* Don't bother waiting if there is nothing to wait * for. */ a->disc_wait_time = 0; } else { /* * Set the device wait count to what was previously * found. We don't care if the user only configured * a time because we know the exact count to wait for. * There is no need to honor the user's wishes to * always wait the full time. */ a->disc_wait_cnt = a->prev_dev_cnt; /* * bump the minimum wait time to 15 seconds since the * default is 3 (system boot or the boot driver usually * buys us more time). */ if (a->disc_wait_time < 15000) a->disc_wait_time = 15000; } } esas2r_trace("disc wait count: %d", a->disc_wait_cnt); esas2r_trace("disc wait time: %d", a->disc_wait_time); if (a->disc_wait_time == 0) esas2r_disc_check_complete(a); esas2r_trace_exit(); } void esas2r_disc_start_waiting(struct esas2r_adapter *a) { unsigned long flags; spin_lock_irqsave(&a->mem_lock, flags); if (a->disc_ctx.disc_evt) esas2r_disc_start_port(a); spin_unlock_irqrestore(&a->mem_lock, flags); } void esas2r_disc_check_for_work(struct esas2r_adapter *a) { struct esas2r_request *rq = &a->general_req; /* service any pending interrupts first */ esas2r_polled_interrupt(a); /* * now, interrupt processing may have queued up a discovery event. go * see if we have one to start. we couldn't start it in the ISR since * polled discovery would cause a deadlock. */ esas2r_disc_start_waiting(a); if (rq->interrupt_cx == NULL) return; if (rq->req_stat == RS_STARTED && rq->timeout <= RQ_MAX_TIMEOUT) { /* wait for the current discovery request to complete. */ esas2r_wait_request(a, rq); if (rq->req_stat == RS_TIMEOUT) { esas2r_disc_abort(a, rq); esas2r_local_reset_adapter(a); return; } } if (rq->req_stat == RS_PENDING || rq->req_stat == RS_STARTED) return; esas2r_disc_continue(a, rq); } void esas2r_disc_check_complete(struct esas2r_adapter *a) { unsigned long flags; esas2r_trace_enter(); /* check to see if we should be waiting for devices */ if (a->disc_wait_time) { u32 currtime = jiffies_to_msecs(jiffies); u32 time = currtime - a->disc_start_time; /* * Wait until the device wait time is exhausted or the device * wait count is satisfied. */ if (time < a->disc_wait_time && (esas2r_targ_db_get_tgt_cnt(a) < a->disc_wait_cnt || a->disc_wait_cnt == 0)) { /* After three seconds of waiting, schedule a scan. */ if (time >= 3000 && !test_and_set_bit(AF2_DEV_SCAN, &a->flags2)) { spin_lock_irqsave(&a->mem_lock, flags); esas2r_disc_queue_event(a, DCDE_DEV_SCAN); spin_unlock_irqrestore(&a->mem_lock, flags); } esas2r_trace_exit(); return; } /* * We are done waiting...we think. Adjust the wait time to * consume events after the count is met. */ if (!test_and_set_bit(AF2_DEV_CNT_OK, &a->flags2)) a->disc_wait_time = time + 3000; /* If we haven't done a full scan yet, do it now. */ if (!test_and_set_bit(AF2_DEV_SCAN, &a->flags2)) { spin_lock_irqsave(&a->mem_lock, flags); esas2r_disc_queue_event(a, DCDE_DEV_SCAN); spin_unlock_irqrestore(&a->mem_lock, flags); esas2r_trace_exit(); return; } /* * Now, if there is still time left to consume events, continue * waiting. */ if (time < a->disc_wait_time) { esas2r_trace_exit(); return; } } else { if (!test_and_set_bit(AF2_DEV_SCAN, &a->flags2)) { spin_lock_irqsave(&a->mem_lock, flags); esas2r_disc_queue_event(a, DCDE_DEV_SCAN); spin_unlock_irqrestore(&a->mem_lock, flags); } } /* We want to stop waiting for devices. */ a->disc_wait_time = 0; if (test_bit(AF_DISC_POLLED, &a->flags) && test_bit(AF_DISC_IN_PROG, &a->flags)) { /* * Polled discovery is still pending so continue the active * discovery until it is done. At that point, we will stop * polled discovery and transition to interrupt driven * discovery. */ } else { /* * Done waiting for devices. Note that we get here immediately * after deferred waiting completes because that is interrupt * driven; i.e. There is no transition. */ esas2r_disc_fix_curr_requests(a); clear_bit(AF_DISC_PENDING, &a->flags); /* * We have deferred target state changes until now because we * don't want to report any removals (due to the first arrival) * until the device wait time expires. */ set_bit(AF_PORT_CHANGE, &a->flags); } esas2r_trace_exit(); } void esas2r_disc_queue_event(struct esas2r_adapter *a, u8 disc_evt) { struct esas2r_disc_context *dc = &a->disc_ctx; esas2r_trace_enter(); esas2r_trace("disc_event: %d", disc_evt); /* Initialize the discovery context */ dc->disc_evt |= disc_evt; /* * Don't start discovery before or during polled discovery. if we did, * we would have a deadlock if we are in the ISR already. */ if (!test_bit(AF_CHPRST_PENDING, &a->flags) && !test_bit(AF_DISC_POLLED, &a->flags)) esas2r_disc_start_port(a); esas2r_trace_exit(); } bool esas2r_disc_start_port(struct esas2r_adapter *a) { struct esas2r_request *rq = &a->general_req; struct esas2r_disc_context *dc = &a->disc_ctx; bool ret; esas2r_trace_enter(); if (test_bit(AF_DISC_IN_PROG, &a->flags)) { esas2r_trace_exit(); return false; } /* If there is a discovery waiting, process it. */ if (dc->disc_evt) { if (test_bit(AF_DISC_POLLED, &a->flags) && a->disc_wait_time == 0) { /* * We are doing polled discovery, but we no longer want * to wait for devices. Stop polled discovery and * transition to interrupt driven discovery. */ esas2r_trace_exit(); return false; } } else { /* Discovery is complete. */ esas2r_hdebug("disc done"); set_bit(AF_PORT_CHANGE, &a->flags); esas2r_trace_exit(); return false; } /* Handle the discovery context */ esas2r_trace("disc_evt: %d", dc->disc_evt); set_bit(AF_DISC_IN_PROG, &a->flags); dc->flags = 0; if (test_bit(AF_DISC_POLLED, &a->flags)) dc->flags |= DCF_POLLED; rq->interrupt_cx = dc; rq->req_stat = RS_SUCCESS; /* Decode the event code */ if (dc->disc_evt & DCDE_DEV_SCAN) { dc->disc_evt &= ~DCDE_DEV_SCAN; dc->flags |= DCF_DEV_SCAN; dc->state = DCS_BLOCK_DEV_SCAN; } else if (dc->disc_evt & DCDE_DEV_CHANGE) { dc->disc_evt &= ~DCDE_DEV_CHANGE; dc->flags |= DCF_DEV_CHANGE; dc->state = DCS_DEV_RMV; } /* Continue interrupt driven discovery */ if (!test_bit(AF_DISC_POLLED, &a->flags)) ret = esas2r_disc_continue(a, rq); else ret = true; esas2r_trace_exit(); return ret; } static bool esas2r_disc_continue(struct esas2r_adapter *a, struct esas2r_request *rq) { struct esas2r_disc_context *dc = (struct esas2r_disc_context *)rq->interrupt_cx; bool rslt; /* Device discovery/removal */ while (dc->flags & (DCF_DEV_CHANGE | DCF_DEV_SCAN)) { rslt = false; switch (dc->state) { case DCS_DEV_RMV: rslt = esas2r_disc_dev_remove(a, rq); break; case DCS_DEV_ADD: rslt = esas2r_disc_dev_add(a, rq); break; case DCS_BLOCK_DEV_SCAN: rslt = esas2r_disc_block_dev_scan(a, rq); break; case DCS_RAID_GRP_INFO: rslt = esas2r_disc_raid_grp_info(a, rq); break; case DCS_PART_INFO: rslt = esas2r_disc_part_info(a, rq); break; case DCS_PT_DEV_INFO: rslt = esas2r_disc_passthru_dev_info(a, rq); break; case DCS_PT_DEV_ADDR: rslt = esas2r_disc_passthru_dev_addr(a, rq); break; case DCS_DISC_DONE: dc->flags &= ~(DCF_DEV_CHANGE | DCF_DEV_SCAN); break; default: esas2r_bugon(); dc->state = DCS_DISC_DONE; break; } if (rslt) return true; } /* Discovery is done...for now. */ rq->interrupt_cx = NULL; if (!test_bit(AF_DISC_PENDING, &a->flags)) esas2r_disc_fix_curr_requests(a); clear_bit(AF_DISC_IN_PROG, &a->flags); /* Start the next discovery. */ return esas2r_disc_start_port(a); } static bool esas2r_disc_start_request(struct esas2r_adapter *a, struct esas2r_request *rq) { unsigned long flags; /* Set the timeout to a minimum value. */ if (rq->timeout < ESAS2R_DEFAULT_TMO) rq->timeout = ESAS2R_DEFAULT_TMO; /* * Override the request type to distinguish discovery requests. If we * end up deferring the request, esas2r_disc_local_start_request() * will be called to restart it. */ rq->req_type = RT_DISC_REQ; spin_lock_irqsave(&a->queue_lock, flags); if (!test_bit(AF_CHPRST_PENDING, &a->flags) && !test_bit(AF_FLASHING, &a->flags)) esas2r_disc_local_start_request(a, rq); else list_add_tail(&rq->req_list, &a->defer_list); spin_unlock_irqrestore(&a->queue_lock, flags); return true; } void esas2r_disc_local_start_request(struct esas2r_adapter *a, struct esas2r_request *rq) { esas2r_trace_enter(); list_add_tail(&rq->req_list, &a->active_list); esas2r_start_vda_request(a, rq); esas2r_trace_exit(); return; } static void esas2r_disc_abort(struct esas2r_adapter *a, struct esas2r_request *rq) { struct esas2r_disc_context *dc = (struct esas2r_disc_context *)rq->interrupt_cx; esas2r_trace_enter(); /* abort the current discovery */ dc->state = DCS_DISC_DONE; esas2r_trace_exit(); } static bool esas2r_disc_block_dev_scan(struct esas2r_adapter *a, struct esas2r_request *rq) { struct esas2r_disc_context *dc = (struct esas2r_disc_context *)rq->interrupt_cx; bool rslt; esas2r_trace_enter(); esas2r_rq_init_request(rq, a); esas2r_build_mgt_req(a, rq, VDAMGT_DEV_SCAN, 0, 0, 0, NULL); rq->comp_cb = esas2r_disc_block_dev_scan_cb; rq->timeout = 30000; rq->interrupt_cx = dc; rslt = esas2r_disc_start_request(a, rq); esas2r_trace_exit(); return rslt; } static void esas2r_disc_block_dev_scan_cb(struct esas2r_adapter *a, struct esas2r_request *rq) { struct esas2r_disc_context *dc = (struct esas2r_disc_context *)rq->interrupt_cx; unsigned long flags; esas2r_trace_enter(); spin_lock_irqsave(&a->mem_lock, flags); if (rq->req_stat == RS_SUCCESS) dc->scan_gen = rq->func_rsp.mgt_rsp.scan_generation; dc->state = DCS_RAID_GRP_INFO; dc->raid_grp_ix = 0; esas2r_rq_destroy_request(rq, a); /* continue discovery if it's interrupt driven */ if (!(dc->flags & DCF_POLLED)) esas2r_disc_continue(a, rq); spin_unlock_irqrestore(&a->mem_lock, flags); esas2r_trace_exit(); } static bool esas2r_disc_raid_grp_info(struct esas2r_adapter *a, struct esas2r_request *rq) { struct esas2r_disc_context *dc = (struct esas2r_disc_context *)rq->interrupt_cx; bool rslt; struct atto_vda_grp_info *grpinfo; esas2r_trace_enter(); esas2r_trace("raid_group_idx: %d", dc->raid_grp_ix); if (dc->raid_grp_ix >= VDA_MAX_RAID_GROUPS) { dc->state = DCS_DISC_DONE; esas2r_trace_exit(); return false; } esas2r_rq_init_request(rq, a); grpinfo = &rq->vda_rsp_data->mgt_data.data.grp_info; memset(grpinfo, 0, sizeof(struct atto_vda_grp_info)); esas2r_build_mgt_req(a, rq, VDAMGT_GRP_INFO, dc->scan_gen, 0, sizeof(struct atto_vda_grp_info), NULL); grpinfo->grp_index = dc->raid_grp_ix; rq->comp_cb = esas2r_disc_raid_grp_info_cb; rq->interrupt_cx = dc; rslt = esas2r_disc_start_request(a, rq); esas2r_trace_exit(); return rslt; } static void esas2r_disc_raid_grp_info_cb(struct esas2r_adapter *a, struct esas2r_request *rq) { struct esas2r_disc_context *dc = (struct esas2r_disc_context *)rq->interrupt_cx; unsigned long flags; struct atto_vda_grp_info *grpinfo; esas2r_trace_enter(); spin_lock_irqsave(&a->mem_lock, flags); if (rq->req_stat == RS_SCAN_GEN) { dc->scan_gen = rq->func_rsp.mgt_rsp.scan_generation; dc->raid_grp_ix = 0; goto done; } if (rq->req_stat == RS_SUCCESS) { grpinfo = &rq->vda_rsp_data->mgt_data.data.grp_info; if (grpinfo->status != VDA_GRP_STAT_ONLINE && grpinfo->status != VDA_GRP_STAT_DEGRADED) { /* go to the next group. */ dc->raid_grp_ix++; } else { memcpy(&dc->raid_grp_name[0], &grpinfo->grp_name[0], sizeof(grpinfo->grp_name)); dc->interleave = le32_to_cpu(grpinfo->interleave); dc->block_size = le32_to_cpu(grpinfo->block_size); dc->state = DCS_PART_INFO; dc->part_num = 0; } } else { if (!(rq->req_stat == RS_GRP_INVALID)) { esas2r_log(ESAS2R_LOG_WARN, "A request for RAID group info failed - " "returned with %x", rq->req_stat); } dc->dev_ix = 0; dc->state = DCS_PT_DEV_INFO; } done: esas2r_rq_destroy_request(rq, a); /* continue discovery if it's interrupt driven */ if (!(dc->flags & DCF_POLLED)) esas2r_disc_continue(a, rq); spin_unlock_irqrestore(&a->mem_lock, flags); esas2r_trace_exit(); } static bool esas2r_disc_part_info(struct esas2r_adapter *a, struct esas2r_request *rq) { struct esas2r_disc_context *dc = (struct esas2r_disc_context *)rq->interrupt_cx; bool rslt; struct atto_vdapart_info *partinfo; esas2r_trace_enter(); esas2r_trace("part_num: %d", dc->part_num); if (dc->part_num >= VDA_MAX_PARTITIONS) { dc->state = DCS_RAID_GRP_INFO; dc->raid_grp_ix++; esas2r_trace_exit(); return false; } esas2r_rq_init_request(rq, a); partinfo = &rq->vda_rsp_data->mgt_data.data.part_info; memset(partinfo, 0, sizeof(struct atto_vdapart_info)); esas2r_build_mgt_req(a, rq, VDAMGT_PART_INFO, dc->scan_gen, 0, sizeof(struct atto_vdapart_info), NULL); partinfo->part_no = dc->part_num; memcpy(&partinfo->grp_name[0], &dc->raid_grp_name[0], sizeof(partinfo->grp_name)); rq->comp_cb = esas2r_disc_part_info_cb; rq->interrupt_cx = dc; rslt = esas2r_disc_start_request(a, rq); esas2r_trace_exit(); return rslt; } static void esas2r_disc_part_info_cb(struct esas2r_adapter *a, struct esas2r_request *rq) { struct esas2r_disc_context *dc = (struct esas2r_disc_context *)rq->interrupt_cx; unsigned long flags; struct atto_vdapart_info *partinfo; esas2r_trace_enter(); spin_lock_irqsave(&a->mem_lock, flags); if (rq->req_stat == RS_SCAN_GEN) { dc->scan_gen = rq->func_rsp.mgt_rsp.scan_generation; dc->raid_grp_ix = 0; dc->state = DCS_RAID_GRP_INFO; } else if (rq->req_stat == RS_SUCCESS) { partinfo = &rq->vda_rsp_data->mgt_data.data.part_info; dc->part_num = partinfo->part_no; dc->curr_virt_id = le16_to_cpu(partinfo->target_id); esas2r_targ_db_add_raid(a, dc); dc->part_num++; } else { if (!(rq->req_stat == RS_PART_LAST)) { esas2r_log(ESAS2R_LOG_WARN, "A request for RAID group partition info " "failed - status:%d", rq->req_stat); } dc->state = DCS_RAID_GRP_INFO; dc->raid_grp_ix++; } esas2r_rq_destroy_request(rq, a); /* continue discovery if it's interrupt driven */ if (!(dc->flags & DCF_POLLED)) esas2r_disc_continue(a, rq); spin_unlock_irqrestore(&a->mem_lock, flags); esas2r_trace_exit(); } static bool esas2r_disc_passthru_dev_info(struct esas2r_adapter *a, struct esas2r_request *rq) { struct esas2r_disc_context *dc = (struct esas2r_disc_context *)rq->interrupt_cx; bool rslt; struct atto_vda_devinfo *devinfo; esas2r_trace_enter(); esas2r_trace("dev_ix: %d", dc->dev_ix); esas2r_rq_init_request(rq, a); devinfo = &rq->vda_rsp_data->mgt_data.data.dev_info; memset(devinfo, 0, sizeof(struct atto_vda_devinfo)); esas2r_build_mgt_req(a, rq, VDAMGT_DEV_PT_INFO, dc->scan_gen, dc->dev_ix, sizeof(struct atto_vda_devinfo), NULL); rq->comp_cb = esas2r_disc_passthru_dev_info_cb; rq->interrupt_cx = dc; rslt = esas2r_disc_start_request(a, rq); esas2r_trace_exit(); return rslt; } static void esas2r_disc_passthru_dev_info_cb(struct esas2r_adapter *a, struct esas2r_request *rq) { struct esas2r_disc_context *dc = (struct esas2r_disc_context *)rq->interrupt_cx; unsigned long flags; struct atto_vda_devinfo *devinfo; esas2r_trace_enter(); spin_lock_irqsave(&a->mem_lock, flags); if (rq->req_stat == RS_SCAN_GEN) { dc->scan_gen = rq->func_rsp.mgt_rsp.scan_generation; dc->dev_ix = 0; dc->state = DCS_PT_DEV_INFO; } else if (rq->req_stat == RS_SUCCESS) { devinfo = &rq->vda_rsp_data->mgt_data.data.dev_info; dc->dev_ix = le16_to_cpu(rq->func_rsp.mgt_rsp.dev_index); dc->curr_virt_id = le16_to_cpu(devinfo->target_id); if (le16_to_cpu(devinfo->features) & VDADEVFEAT_PHYS_ID) { dc->curr_phys_id = le16_to_cpu(devinfo->phys_target_id); dc->dev_addr_type = ATTO_GDA_AT_PORT; dc->state = DCS_PT_DEV_ADDR; esas2r_trace("curr_virt_id: %d", dc->curr_virt_id); esas2r_trace("curr_phys_id: %d", dc->curr_phys_id); } else { dc->dev_ix++; } } else { if (!(rq->req_stat == RS_DEV_INVALID)) { esas2r_log(ESAS2R_LOG_WARN, "A request for device information failed - " "status:%d", rq->req_stat); } dc->state = DCS_DISC_DONE; } esas2r_rq_destroy_request(rq, a); /* continue discovery if it's interrupt driven */ if (!(dc->flags & DCF_POLLED)) esas2r_disc_continue(a, rq); spin_unlock_irqrestore(&a->mem_lock, flags); esas2r_trace_exit(); } static bool esas2r_disc_passthru_dev_addr(struct esas2r_adapter *a, struct esas2r_request *rq) { struct esas2r_disc_context *dc = (struct esas2r_disc_context *)rq->interrupt_cx; bool rslt; struct atto_ioctl *hi; struct esas2r_sg_context sgc; esas2r_trace_enter(); esas2r_rq_init_request(rq, a); /* format the request. */ sgc.cur_offset = NULL; sgc.get_phys_addr = (PGETPHYSADDR)esas2r_disc_get_phys_addr; sgc.length = offsetof(struct atto_ioctl, data) + sizeof(struct atto_hba_get_device_address); esas2r_sgc_init(&sgc, a, rq, rq->vrq->ioctl.sge); esas2r_build_ioctl_req(a, rq, sgc.length, VDA_IOCTL_HBA); if (!esas2r_build_sg_list(a, rq, &sgc)) { esas2r_rq_destroy_request(rq, a); esas2r_trace_exit(); return false; } rq->comp_cb = esas2r_disc_passthru_dev_addr_cb; rq->interrupt_cx = dc; /* format the IOCTL data. */ hi = (struct atto_ioctl *)a->disc_buffer; memset(a->disc_buffer, 0, ESAS2R_DISC_BUF_LEN); hi->version = ATTO_VER_GET_DEV_ADDR0; hi->function = ATTO_FUNC_GET_DEV_ADDR; hi->flags = HBAF_TUNNEL; hi->data.get_dev_addr.target_id = le32_to_cpu(dc->curr_phys_id); hi->data.get_dev_addr.addr_type = dc->dev_addr_type; /* start it up. */ rslt = esas2r_disc_start_request(a, rq); esas2r_trace_exit(); return rslt; } static void esas2r_disc_passthru_dev_addr_cb(struct esas2r_adapter *a, struct esas2r_request *rq) { struct esas2r_disc_context *dc = (struct esas2r_disc_context *)rq->interrupt_cx; struct esas2r_target *t = NULL; unsigned long flags; struct atto_ioctl *hi; u16 addrlen; esas2r_trace_enter(); spin_lock_irqsave(&a->mem_lock, flags); hi = (struct atto_ioctl *)a->disc_buffer; if (rq->req_stat == RS_SUCCESS && hi->status == ATTO_STS_SUCCESS) { addrlen = le16_to_cpu(hi->data.get_dev_addr.addr_len); if (dc->dev_addr_type == ATTO_GDA_AT_PORT) { if (addrlen == sizeof(u64)) memcpy(&dc->sas_addr, &hi->data.get_dev_addr.address[0], addrlen); else memset(&dc->sas_addr, 0, sizeof(dc->sas_addr)); /* Get the unique identifier. */ dc->dev_addr_type = ATTO_GDA_AT_UNIQUE; goto next_dev_addr; } else { /* Add the pass through target. */ if (HIBYTE(addrlen) == 0) { t = esas2r_targ_db_add_pthru(a, dc, &hi->data. get_dev_addr. address[0], (u8)hi->data. get_dev_addr. addr_len); if (t) memcpy(&t->sas_addr, &dc->sas_addr, sizeof(t->sas_addr)); } else { /* getting the back end data failed */ esas2r_log(ESAS2R_LOG_WARN, "an error occurred retrieving the " "back end data (%s:%d)", __func__, __LINE__); } } } else { /* getting the back end data failed */ esas2r_log(ESAS2R_LOG_WARN, "an error occurred retrieving the back end data - " "rq->req_stat:%d hi->status:%d", rq->req_stat, hi->status); } /* proceed to the next device. */ if (dc->flags & DCF_DEV_SCAN) { dc->dev_ix++; dc->state = DCS_PT_DEV_INFO; } else if (dc->flags & DCF_DEV_CHANGE) { dc->curr_targ++; dc->state = DCS_DEV_ADD; } else { esas2r_bugon(); } next_dev_addr: esas2r_rq_destroy_request(rq, a); /* continue discovery if it's interrupt driven */ if (!(dc->flags & DCF_POLLED)) esas2r_disc_continue(a, rq); spin_unlock_irqrestore(&a->mem_lock, flags); esas2r_trace_exit(); } static u32 esas2r_disc_get_phys_addr(struct esas2r_sg_context *sgc, u64 *addr) { struct esas2r_adapter *a = sgc->adapter; if (sgc->length > ESAS2R_DISC_BUF_LEN) esas2r_bugon(); *addr = a->uncached_phys + (u64)((u8 *)a->disc_buffer - a->uncached); return sgc->length; } static bool esas2r_disc_dev_remove(struct esas2r_adapter *a, struct esas2r_request *rq) { struct esas2r_disc_context *dc = (struct esas2r_disc_context *)rq->interrupt_cx; struct esas2r_target *t; struct esas2r_target *t2; esas2r_trace_enter(); /* process removals. */ for (t = a->targetdb; t < a->targetdb_end; t++) { if (t->new_target_state != TS_NOT_PRESENT) continue; t->new_target_state = TS_INVALID; /* remove the right target! */ t2 = esas2r_targ_db_find_by_virt_id(a, esas2r_targ_get_id(t, a)); if (t2) esas2r_targ_db_remove(a, t2); } /* removals complete. process arrivals. */ dc->state = DCS_DEV_ADD; dc->curr_targ = a->targetdb; esas2r_trace_exit(); return false; } static bool esas2r_disc_dev_add(struct esas2r_adapter *a, struct esas2r_request *rq) { struct esas2r_disc_context *dc = (struct esas2r_disc_context *)rq->interrupt_cx; struct esas2r_target *t = dc->curr_targ; if (t >= a->targetdb_end) { /* done processing state changes. */ dc->state = DCS_DISC_DONE; } else if (t->new_target_state == TS_PRESENT) { struct atto_vda_ae_lu *luevt = &t->lu_event; esas2r_trace_enter(); /* clear this now in case more events come in. */ t->new_target_state = TS_INVALID; /* setup the discovery context for adding this device. */ dc->curr_virt_id = esas2r_targ_get_id(t, a); if ((luevt->hdr.bylength >= offsetof(struct atto_vda_ae_lu, id) + sizeof(struct atto_vda_ae_lu_tgt_lun_raid)) && !(luevt->dwevent & VDAAE_LU_PASSTHROUGH)) { dc->block_size = luevt->id.tgtlun_raid.dwblock_size; dc->interleave = luevt->id.tgtlun_raid.dwinterleave; } else { dc->block_size = 0; dc->interleave = 0; } /* determine the device type being added. */ if (luevt->dwevent & VDAAE_LU_PASSTHROUGH) { if (luevt->dwevent & VDAAE_LU_PHYS_ID) { dc->state = DCS_PT_DEV_ADDR; dc->dev_addr_type = ATTO_GDA_AT_PORT; dc->curr_phys_id = luevt->wphys_target_id; } else { esas2r_log(ESAS2R_LOG_WARN, "luevt->dwevent does not have the " "VDAAE_LU_PHYS_ID bit set (%s:%d)", __func__, __LINE__); } } else { dc->raid_grp_name[0] = 0; esas2r_targ_db_add_raid(a, dc); } esas2r_trace("curr_virt_id: %d", dc->curr_virt_id); esas2r_trace("curr_phys_id: %d", dc->curr_phys_id); esas2r_trace("dwevent: %d", luevt->dwevent); esas2r_trace_exit(); } if (dc->state == DCS_DEV_ADD) { /* go to the next device. */ dc->curr_targ++; } return false; } /* * When discovery is done, find all requests on defer queue and * test if they need to be modified. If a target is no longer present * then complete the request with RS_SEL. Otherwise, update the * target_id since after a hibernate it can be a different value. * VDA does not make passthrough target IDs persistent. */ static void esas2r_disc_fix_curr_requests(struct esas2r_adapter *a) { unsigned long flags; struct esas2r_target *t; struct esas2r_request *rq; struct list_head *element; /* update virt_targ_id in any outstanding esas2r_requests */ spin_lock_irqsave(&a->queue_lock, flags); list_for_each(element, &a->defer_list) { rq = list_entry(element, struct esas2r_request, req_list); if (rq->vrq->scsi.function == VDA_FUNC_SCSI) { t = a->targetdb + rq->target_id; if (t->target_state == TS_PRESENT) rq->vrq->scsi.target_id = le16_to_cpu( t->virt_targ_id); else rq->req_stat = RS_SEL; } } spin_unlock_irqrestore(&a->queue_lock, flags); }