/* * Support for OmniVision OV2680 1080p HD camera sensor. * * Copyright (c) 2013 Intel Corporation. All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License version * 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../include/linux/atomisp_gmin_platform.h" #include "ov2680.h" static int h_flag = 0; static int v_flag = 0; static enum atomisp_bayer_order ov2680_bayer_order_mapping[] = { atomisp_bayer_order_bggr, atomisp_bayer_order_grbg, atomisp_bayer_order_gbrg, atomisp_bayer_order_rggb, }; /* i2c read/write stuff */ static int ov2680_read_reg(struct i2c_client *client, u16 data_length, u16 reg, u16 *val) { int err; struct i2c_msg msg[2]; unsigned char data[6]; if (!client->adapter) { dev_err(&client->dev, "%s error, no client->adapter\n", __func__); return -ENODEV; } if (data_length != OV2680_8BIT && data_length != OV2680_16BIT && data_length != OV2680_32BIT) { dev_err(&client->dev, "%s error, invalid data length\n", __func__); return -EINVAL; } memset(msg, 0 , sizeof(msg)); msg[0].addr = client->addr; msg[0].flags = 0; msg[0].len = I2C_MSG_LENGTH; msg[0].buf = data; /* high byte goes out first */ data[0] = (u8)(reg >> 8); data[1] = (u8)(reg & 0xff); msg[1].addr = client->addr; msg[1].len = data_length; msg[1].flags = I2C_M_RD; msg[1].buf = data; err = i2c_transfer(client->adapter, msg, 2); if (err != 2) { if (err >= 0) err = -EIO; dev_err(&client->dev, "read from offset 0x%x error %d", reg, err); return err; } *val = 0; /* high byte comes first */ if (data_length == OV2680_8BIT) *val = (u8)data[0]; else if (data_length == OV2680_16BIT) *val = be16_to_cpu(*(u16 *)&data[0]); else *val = be32_to_cpu(*(u32 *)&data[0]); //dev_dbg(&client->dev, "++++i2c read adr%x = %x\n", reg,*val); return 0; } static int ov2680_i2c_write(struct i2c_client *client, u16 len, u8 *data) { struct i2c_msg msg; const int num_msg = 1; int ret; msg.addr = client->addr; msg.flags = 0; msg.len = len; msg.buf = data; ret = i2c_transfer(client->adapter, &msg, 1); //dev_dbg(&client->dev, "+++i2c write reg=%x->%x\n", data[0]*256 +data[1],data[2]); return ret == num_msg ? 0 : -EIO; } static int ov2680_write_reg(struct i2c_client *client, u16 data_length, u16 reg, u16 val) { int ret; unsigned char data[4] = {0}; u16 *wreg = (u16 *)data; const u16 len = data_length + sizeof(u16); /* 16-bit address + data */ if (data_length != OV2680_8BIT && data_length != OV2680_16BIT) { dev_err(&client->dev, "%s error, invalid data_length\n", __func__); return -EINVAL; } /* high byte goes out first */ *wreg = cpu_to_be16(reg); if (data_length == OV2680_8BIT) { data[2] = (u8)(val); } else { /* OV2680_16BIT */ u16 *wdata = (u16 *)&data[2]; *wdata = cpu_to_be16(val); } ret = ov2680_i2c_write(client, len, data); if (ret) dev_err(&client->dev, "write error: wrote 0x%x to offset 0x%x error %d", val, reg, ret); return ret; } /* * ov2680_write_reg_array - Initializes a list of OV2680 registers * @client: i2c driver client structure * @reglist: list of registers to be written * * This function initializes a list of registers. When consecutive addresses * are found in a row on the list, this function creates a buffer and sends * consecutive data in a single i2c_transfer(). * * __ov2680_flush_reg_array, __ov2680_buf_reg_array() and * __ov2680_write_reg_is_consecutive() are internal functions to * ov2680_write_reg_array_fast() and should be not used anywhere else. * */ static int __ov2680_flush_reg_array(struct i2c_client *client, struct ov2680_write_ctrl *ctrl) { u16 size; if (ctrl->index == 0) return 0; size = sizeof(u16) + ctrl->index; /* 16-bit address + data */ ctrl->buffer.addr = cpu_to_be16(ctrl->buffer.addr); ctrl->index = 0; return ov2680_i2c_write(client, size, (u8 *)&ctrl->buffer); } static int __ov2680_buf_reg_array(struct i2c_client *client, struct ov2680_write_ctrl *ctrl, const struct ov2680_reg *next) { int size; u16 *data16; switch (next->type) { case OV2680_8BIT: size = 1; ctrl->buffer.data[ctrl->index] = (u8)next->val; break; case OV2680_16BIT: size = 2; data16 = (u16 *)&ctrl->buffer.data[ctrl->index]; *data16 = cpu_to_be16((u16)next->val); break; default: return -EINVAL; } /* When first item is added, we need to store its starting address */ if (ctrl->index == 0) ctrl->buffer.addr = next->reg; ctrl->index += size; /* * Buffer cannot guarantee free space for u32? Better flush it to avoid * possible lack of memory for next item. */ if (ctrl->index + sizeof(u16) >= OV2680_MAX_WRITE_BUF_SIZE) return __ov2680_flush_reg_array(client, ctrl); return 0; } static int __ov2680_write_reg_is_consecutive(struct i2c_client *client, struct ov2680_write_ctrl *ctrl, const struct ov2680_reg *next) { if (ctrl->index == 0) return 1; return ctrl->buffer.addr + ctrl->index == next->reg; } static int ov2680_write_reg_array(struct i2c_client *client, const struct ov2680_reg *reglist) { const struct ov2680_reg *next = reglist; struct ov2680_write_ctrl ctrl; int err; dev_dbg(&client->dev, "++++write reg array\n"); ctrl.index = 0; for (; next->type != OV2680_TOK_TERM; next++) { switch (next->type & OV2680_TOK_MASK) { case OV2680_TOK_DELAY: err = __ov2680_flush_reg_array(client, &ctrl); if (err) return err; msleep(next->val); break; default: /* * If next address is not consecutive, data needs to be * flushed before proceed. */ dev_dbg(&client->dev, "+++ov2680_write_reg_array reg=%x->%x\n", next->reg,next->val); if (!__ov2680_write_reg_is_consecutive(client, &ctrl, next)) { err = __ov2680_flush_reg_array(client, &ctrl); if (err) return err; } err = __ov2680_buf_reg_array(client, &ctrl, next); if (err) { dev_err(&client->dev, "%s: write error, aborted\n", __func__); return err; } break; } } return __ov2680_flush_reg_array(client, &ctrl); } static int ov2680_g_focal(struct v4l2_subdev *sd, s32 *val) { *val = (OV2680_FOCAL_LENGTH_NUM << 16) | OV2680_FOCAL_LENGTH_DEM; return 0; } static int ov2680_g_fnumber(struct v4l2_subdev *sd, s32 *val) { /*const f number for ov2680*/ *val = (OV2680_F_NUMBER_DEFAULT_NUM << 16) | OV2680_F_NUMBER_DEM; return 0; } static int ov2680_g_fnumber_range(struct v4l2_subdev *sd, s32 *val) { *val = (OV2680_F_NUMBER_DEFAULT_NUM << 24) | (OV2680_F_NUMBER_DEM << 16) | (OV2680_F_NUMBER_DEFAULT_NUM << 8) | OV2680_F_NUMBER_DEM; return 0; } static int ov2680_g_bin_factor_x(struct v4l2_subdev *sd, s32 *val) { struct ov2680_device *dev = to_ov2680_sensor(sd); struct i2c_client *client = v4l2_get_subdevdata(sd); dev_dbg(&client->dev, "++++ov2680_g_bin_factor_x\n"); *val = ov2680_res[dev->fmt_idx].bin_factor_x; return 0; } static int ov2680_g_bin_factor_y(struct v4l2_subdev *sd, s32 *val) { struct ov2680_device *dev = to_ov2680_sensor(sd); struct i2c_client *client = v4l2_get_subdevdata(sd); *val = ov2680_res[dev->fmt_idx].bin_factor_y; dev_dbg(&client->dev, "++++ov2680_g_bin_factor_y\n"); return 0; } static int ov2680_get_intg_factor(struct i2c_client *client, struct camera_mipi_info *info, const struct ov2680_resolution *res) { struct v4l2_subdev *sd = i2c_get_clientdata(client); struct ov2680_device *dev = to_ov2680_sensor(sd); struct atomisp_sensor_mode_data *buf = &info->data; unsigned int pix_clk_freq_hz; u16 reg_val; int ret; dev_dbg(&client->dev, "++++ov2680_get_intg_factor\n"); if (!info) return -EINVAL; /* pixel clock */ pix_clk_freq_hz = res->pix_clk_freq * 1000000; dev->vt_pix_clk_freq_mhz = pix_clk_freq_hz; buf->vt_pix_clk_freq_mhz = pix_clk_freq_hz; /* get integration time */ buf->coarse_integration_time_min = OV2680_COARSE_INTG_TIME_MIN; buf->coarse_integration_time_max_margin = OV2680_COARSE_INTG_TIME_MAX_MARGIN; buf->fine_integration_time_min = OV2680_FINE_INTG_TIME_MIN; buf->fine_integration_time_max_margin = OV2680_FINE_INTG_TIME_MAX_MARGIN; buf->fine_integration_time_def = OV2680_FINE_INTG_TIME_MIN; buf->frame_length_lines = res->lines_per_frame; buf->line_length_pck = res->pixels_per_line; buf->read_mode = res->bin_mode; /* get the cropping and output resolution to ISP for this mode. */ ret = ov2680_read_reg(client, OV2680_16BIT, OV2680_HORIZONTAL_START_H, ®_val); if (ret) return ret; buf->crop_horizontal_start = reg_val; ret = ov2680_read_reg(client, OV2680_16BIT, OV2680_VERTICAL_START_H, ®_val); if (ret) return ret; buf->crop_vertical_start = reg_val; ret = ov2680_read_reg(client, OV2680_16BIT, OV2680_HORIZONTAL_END_H, ®_val); if (ret) return ret; buf->crop_horizontal_end = reg_val; ret = ov2680_read_reg(client, OV2680_16BIT, OV2680_VERTICAL_END_H, ®_val); if (ret) return ret; buf->crop_vertical_end = reg_val; ret = ov2680_read_reg(client, OV2680_16BIT, OV2680_HORIZONTAL_OUTPUT_SIZE_H, ®_val); if (ret) return ret; buf->output_width = reg_val; ret = ov2680_read_reg(client, OV2680_16BIT, OV2680_VERTICAL_OUTPUT_SIZE_H, ®_val); if (ret) return ret; buf->output_height = reg_val; buf->binning_factor_x = res->bin_factor_x ? (res->bin_factor_x * 2) : 1; buf->binning_factor_y = res->bin_factor_y ? (res->bin_factor_y * 2) : 1; return 0; } static long __ov2680_set_exposure(struct v4l2_subdev *sd, int coarse_itg, int gain, int digitgain) { struct i2c_client *client = v4l2_get_subdevdata(sd); struct ov2680_device *dev = to_ov2680_sensor(sd); u16 vts,hts; int ret,exp_val; dev_dbg(&client->dev, "+++++++__ov2680_set_exposure coarse_itg %d, gain %d, digitgain %d++\n", coarse_itg, gain, digitgain); hts = ov2680_res[dev->fmt_idx].pixels_per_line; vts = ov2680_res[dev->fmt_idx].lines_per_frame; /* group hold */ ret = ov2680_write_reg(client, OV2680_8BIT, OV2680_GROUP_ACCESS, 0x00); if (ret) { dev_err(&client->dev, "%s: write %x error, aborted\n", __func__, OV2680_GROUP_ACCESS); return ret; } /* Increase the VTS to match exposure + MARGIN */ if (coarse_itg > vts - OV2680_INTEGRATION_TIME_MARGIN) vts = (u16) coarse_itg + OV2680_INTEGRATION_TIME_MARGIN; ret = ov2680_write_reg(client, OV2680_16BIT, OV2680_TIMING_VTS_H, vts); if (ret) { dev_err(&client->dev, "%s: write %x error, aborted\n", __func__, OV2680_TIMING_VTS_H); return ret; } /* set exposure */ /* Lower four bit should be 0*/ exp_val = coarse_itg << 4; ret = ov2680_write_reg(client, OV2680_8BIT, OV2680_EXPOSURE_L, exp_val & 0xFF); if (ret) { dev_err(&client->dev, "%s: write %x error, aborted\n", __func__, OV2680_EXPOSURE_L); return ret; } ret = ov2680_write_reg(client, OV2680_8BIT, OV2680_EXPOSURE_M, (exp_val >> 8) & 0xFF); if (ret) { dev_err(&client->dev, "%s: write %x error, aborted\n", __func__, OV2680_EXPOSURE_M); return ret; } ret = ov2680_write_reg(client, OV2680_8BIT, OV2680_EXPOSURE_H, (exp_val >> 16) & 0x0F); if (ret) { dev_err(&client->dev, "%s: write %x error, aborted\n", __func__, OV2680_EXPOSURE_H); return ret; } /* Analog gain */ ret = ov2680_write_reg(client, OV2680_16BIT, OV2680_AGC_H, gain); if (ret) { dev_err(&client->dev, "%s: write %x error, aborted\n", __func__, OV2680_AGC_H); return ret; } /* Digital gain */ if (digitgain) { ret = ov2680_write_reg(client, OV2680_16BIT, OV2680_MWB_RED_GAIN_H, digitgain); if (ret) { dev_err(&client->dev, "%s: write %x error, aborted\n", __func__, OV2680_MWB_RED_GAIN_H); return ret; } ret = ov2680_write_reg(client, OV2680_16BIT, OV2680_MWB_GREEN_GAIN_H, digitgain); if (ret) { dev_err(&client->dev, "%s: write %x error, aborted\n", __func__, OV2680_MWB_RED_GAIN_H); return ret; } ret = ov2680_write_reg(client, OV2680_16BIT, OV2680_MWB_BLUE_GAIN_H, digitgain); if (ret) { dev_err(&client->dev, "%s: write %x error, aborted\n", __func__, OV2680_MWB_RED_GAIN_H); return ret; } } /* End group */ ret = ov2680_write_reg(client, OV2680_8BIT, OV2680_GROUP_ACCESS, 0x10); if (ret) return ret; /* Delay launch group */ ret = ov2680_write_reg(client, OV2680_8BIT, OV2680_GROUP_ACCESS, 0xa0); if (ret) return ret; return ret; } static int ov2680_set_exposure(struct v4l2_subdev *sd, int exposure, int gain, int digitgain) { struct ov2680_device *dev = to_ov2680_sensor(sd); int ret; mutex_lock(&dev->input_lock); ret = __ov2680_set_exposure(sd, exposure, gain, digitgain); mutex_unlock(&dev->input_lock); return ret; } static long ov2680_s_exposure(struct v4l2_subdev *sd, struct atomisp_exposure *exposure) { u16 coarse_itg = exposure->integration_time[0]; u16 analog_gain = exposure->gain[0]; u16 digital_gain = exposure->gain[1]; /* we should not accept the invalid value below */ if (analog_gain == 0) { struct i2c_client *client = v4l2_get_subdevdata(sd); v4l2_err(client, "%s: invalid value\n", __func__); return -EINVAL; } // EXPOSURE CONTROL DISABLED FOR INITIAL CHECKIN, TUNING DOESN'T WORK return ov2680_set_exposure(sd, coarse_itg, analog_gain, digital_gain); } static long ov2680_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg) { switch (cmd) { case ATOMISP_IOC_S_EXPOSURE: return ov2680_s_exposure(sd, arg); default: return -EINVAL; } return 0; } /* This returns the exposure time being used. This should only be used * for filling in EXIF data, not for actual image processing. */ static int ov2680_q_exposure(struct v4l2_subdev *sd, s32 *value) { struct i2c_client *client = v4l2_get_subdevdata(sd); u16 reg_v, reg_v2; int ret; /* get exposure */ ret = ov2680_read_reg(client, OV2680_8BIT, OV2680_EXPOSURE_L, ®_v); if (ret) goto err; ret = ov2680_read_reg(client, OV2680_8BIT, OV2680_EXPOSURE_M, ®_v2); if (ret) goto err; reg_v += reg_v2 << 8; ret = ov2680_read_reg(client, OV2680_8BIT, OV2680_EXPOSURE_H, ®_v2); if (ret) goto err; *value = reg_v + (((u32)reg_v2 << 16)); err: return ret; } static u32 ov2680_translate_bayer_order(enum atomisp_bayer_order code) { switch (code) { case atomisp_bayer_order_rggb: return MEDIA_BUS_FMT_SRGGB10_1X10; case atomisp_bayer_order_grbg: return MEDIA_BUS_FMT_SGRBG10_1X10; case atomisp_bayer_order_bggr: return MEDIA_BUS_FMT_SBGGR10_1X10; case atomisp_bayer_order_gbrg: return MEDIA_BUS_FMT_SGBRG10_1X10; } return 0; } static int ov2680_v_flip(struct v4l2_subdev *sd, s32 value) { struct ov2680_device *dev = to_ov2680_sensor(sd); struct camera_mipi_info *ov2680_info = NULL; struct i2c_client *client = v4l2_get_subdevdata(sd); int ret; u16 val; u8 index; dev_dbg(&client->dev, "@%s: value:%d\n", __func__, value); ret = ov2680_read_reg(client, OV2680_8BIT, OV2680_FLIP_REG, &val); if (ret) return ret; if (value) { val |= OV2680_FLIP_MIRROR_BIT_ENABLE; } else { val &= ~OV2680_FLIP_MIRROR_BIT_ENABLE; } ret = ov2680_write_reg(client, OV2680_8BIT, OV2680_FLIP_REG, val); if (ret) return ret; index = (v_flag>0?OV2680_FLIP_BIT:0) | (h_flag>0?OV2680_MIRROR_BIT:0); ov2680_info = v4l2_get_subdev_hostdata(sd); if (ov2680_info) { ov2680_info->raw_bayer_order = ov2680_bayer_order_mapping[index]; dev->format.code = ov2680_translate_bayer_order( ov2680_info->raw_bayer_order); } return ret; } static int ov2680_h_flip(struct v4l2_subdev *sd, s32 value) { struct ov2680_device *dev = to_ov2680_sensor(sd); struct camera_mipi_info *ov2680_info = NULL; struct i2c_client *client = v4l2_get_subdevdata(sd); int ret; u16 val; u8 index; dev_dbg(&client->dev, "@%s: value:%d\n", __func__, value); ret = ov2680_read_reg(client, OV2680_8BIT, OV2680_MIRROR_REG, &val); if (ret) return ret; if (value) { val |= OV2680_FLIP_MIRROR_BIT_ENABLE; } else { val &= ~OV2680_FLIP_MIRROR_BIT_ENABLE; } ret = ov2680_write_reg(client, OV2680_8BIT, OV2680_MIRROR_REG, val); if (ret) return ret; index = (v_flag>0?OV2680_FLIP_BIT:0) | (h_flag>0?OV2680_MIRROR_BIT:0); ov2680_info = v4l2_get_subdev_hostdata(sd); if (ov2680_info) { ov2680_info->raw_bayer_order = ov2680_bayer_order_mapping[index]; dev->format.code = ov2680_translate_bayer_order( ov2680_info->raw_bayer_order); } return ret; } static int ov2680_s_ctrl(struct v4l2_ctrl *ctrl) { struct ov2680_device *dev = container_of(ctrl->handler, struct ov2680_device, ctrl_handler); struct i2c_client *client = v4l2_get_subdevdata(&dev->sd); int ret = 0; switch (ctrl->id) { case V4L2_CID_VFLIP: dev_dbg(&client->dev, "%s: CID_VFLIP:%d.\n", __func__, ctrl->val); ret = ov2680_v_flip(&dev->sd, ctrl->val); break; case V4L2_CID_HFLIP: dev_dbg(&client->dev, "%s: CID_HFLIP:%d.\n", __func__, ctrl->val); ret = ov2680_h_flip(&dev->sd, ctrl->val); break; default: ret = -EINVAL; } return ret; } static int ov2680_g_volatile_ctrl(struct v4l2_ctrl *ctrl) { struct ov2680_device *dev = container_of(ctrl->handler, struct ov2680_device, ctrl_handler); int ret = 0; switch (ctrl->id) { case V4L2_CID_EXPOSURE_ABSOLUTE: ret = ov2680_q_exposure(&dev->sd, &ctrl->val); break; case V4L2_CID_FOCAL_ABSOLUTE: ret = ov2680_g_focal(&dev->sd, &ctrl->val); break; case V4L2_CID_FNUMBER_ABSOLUTE: ret = ov2680_g_fnumber(&dev->sd, &ctrl->val); break; case V4L2_CID_FNUMBER_RANGE: ret = ov2680_g_fnumber_range(&dev->sd, &ctrl->val); break; case V4L2_CID_BIN_FACTOR_HORZ: ret = ov2680_g_bin_factor_x(&dev->sd, &ctrl->val); break; case V4L2_CID_BIN_FACTOR_VERT: ret = ov2680_g_bin_factor_y(&dev->sd, &ctrl->val); break; default: ret = -EINVAL; } return ret; } static const struct v4l2_ctrl_ops ctrl_ops = { .s_ctrl = ov2680_s_ctrl, .g_volatile_ctrl = ov2680_g_volatile_ctrl }; struct v4l2_ctrl_config ov2680_controls[] = { { .ops = &ctrl_ops, .id = V4L2_CID_EXPOSURE_ABSOLUTE, .type = V4L2_CTRL_TYPE_INTEGER, .name = "exposure", .min = 0x0, .max = 0xffff, .step = 0x01, .def = 0x00, .flags = 0, }, { .ops = &ctrl_ops, .id = V4L2_CID_FOCAL_ABSOLUTE, .type = V4L2_CTRL_TYPE_INTEGER, .name = "focal length", .min = OV2680_FOCAL_LENGTH_DEFAULT, .max = OV2680_FOCAL_LENGTH_DEFAULT, .step = 0x01, .def = OV2680_FOCAL_LENGTH_DEFAULT, .flags = 0, }, { .ops = &ctrl_ops, .id = V4L2_CID_FNUMBER_ABSOLUTE, .type = V4L2_CTRL_TYPE_INTEGER, .name = "f-number", .min = OV2680_F_NUMBER_DEFAULT, .max = OV2680_F_NUMBER_DEFAULT, .step = 0x01, .def = OV2680_F_NUMBER_DEFAULT, .flags = 0, }, { .ops = &ctrl_ops, .id = V4L2_CID_FNUMBER_RANGE, .type = V4L2_CTRL_TYPE_INTEGER, .name = "f-number range", .min = OV2680_F_NUMBER_RANGE, .max = OV2680_F_NUMBER_RANGE, .step = 0x01, .def = OV2680_F_NUMBER_RANGE, .flags = 0, }, { .ops = &ctrl_ops, .id = V4L2_CID_BIN_FACTOR_HORZ, .type = V4L2_CTRL_TYPE_INTEGER, .name = "horizontal binning factor", .min = 0, .max = OV2680_BIN_FACTOR_MAX, .step = 1, .def = 0, .flags = 0, }, { .ops = &ctrl_ops, .id = V4L2_CID_BIN_FACTOR_VERT, .type = V4L2_CTRL_TYPE_INTEGER, .name = "vertical binning factor", .min = 0, .max = OV2680_BIN_FACTOR_MAX, .step = 1, .def = 0, .flags = 0, }, { .ops = &ctrl_ops, .id = V4L2_CID_VFLIP, .type = V4L2_CTRL_TYPE_BOOLEAN, .name = "Flip", .min = 0, .max = 1, .step = 1, .def = 0, }, { .ops = &ctrl_ops, .id = V4L2_CID_HFLIP, .type = V4L2_CTRL_TYPE_BOOLEAN, .name = "Mirror", .min = 0, .max = 1, .step = 1, .def = 0, }, }; static int ov2680_init_registers(struct v4l2_subdev *sd) { struct i2c_client *client = v4l2_get_subdevdata(sd); int ret; ret = ov2680_write_reg(client, OV2680_8BIT, OV2680_SW_RESET, 0x01); ret |= ov2680_write_reg_array(client, ov2680_global_setting); return ret; } static int ov2680_init(struct v4l2_subdev *sd) { struct ov2680_device *dev = to_ov2680_sensor(sd); int ret; mutex_lock(&dev->input_lock); /* restore settings */ ov2680_res = ov2680_res_preview; N_RES = N_RES_PREVIEW; ret = ov2680_init_registers(sd); mutex_unlock(&dev->input_lock); return ret; } static int power_ctrl(struct v4l2_subdev *sd, bool flag) { int ret = 0; struct ov2680_device *dev = to_ov2680_sensor(sd); if (!dev || !dev->platform_data) return -ENODEV; if (flag) { ret |= dev->platform_data->v1p8_ctrl(sd, 1); ret |= dev->platform_data->v2p8_ctrl(sd, 1); usleep_range(10000, 15000); } if (!flag || ret) { ret |= dev->platform_data->v1p8_ctrl(sd, 0); ret |= dev->platform_data->v2p8_ctrl(sd, 0); } return ret; } static int gpio_ctrl(struct v4l2_subdev *sd, bool flag) { int ret; struct ov2680_device *dev = to_ov2680_sensor(sd); if (!dev || !dev->platform_data) return -ENODEV; /* The OV2680 documents only one GPIO input (#XSHUTDN), but * existing integrations often wire two (reset/power_down) * because that is the way other sensors work. There is no * way to tell how it is wired internally, so existing * firmwares expose both and we drive them symmetrically. */ if (flag) { ret = dev->platform_data->gpio0_ctrl(sd, 1); usleep_range(10000, 15000); /* Ignore return from second gpio, it may not be there */ dev->platform_data->gpio1_ctrl(sd, 1); usleep_range(10000, 15000); } else { dev->platform_data->gpio1_ctrl(sd, 0); ret = dev->platform_data->gpio0_ctrl(sd, 0); } return ret; } static int power_up(struct v4l2_subdev *sd) { struct ov2680_device *dev = to_ov2680_sensor(sd); struct i2c_client *client = v4l2_get_subdevdata(sd); int ret; if (!dev->platform_data) { dev_err(&client->dev, "no camera_sensor_platform_data"); return -ENODEV; } /* power control */ ret = power_ctrl(sd, 1); if (ret) goto fail_power; /* according to DS, at least 5ms is needed between DOVDD and PWDN */ usleep_range(5000, 6000); /* gpio ctrl */ ret = gpio_ctrl(sd, 1); if (ret) { ret = gpio_ctrl(sd, 1); if (ret) goto fail_power; } /* flis clock control */ ret = dev->platform_data->flisclk_ctrl(sd, 1); if (ret) goto fail_clk; /* according to DS, 20ms is needed between PWDN and i2c access */ msleep(20); return 0; fail_clk: gpio_ctrl(sd, 0); fail_power: power_ctrl(sd, 0); dev_err(&client->dev, "sensor power-up failed\n"); return ret; } static int power_down(struct v4l2_subdev *sd) { struct ov2680_device *dev = to_ov2680_sensor(sd); struct i2c_client *client = v4l2_get_subdevdata(sd); int ret = 0; h_flag = 0; v_flag = 0; if (!dev->platform_data) { dev_err(&client->dev, "no camera_sensor_platform_data"); return -ENODEV; } ret = dev->platform_data->flisclk_ctrl(sd, 0); if (ret) dev_err(&client->dev, "flisclk failed\n"); /* gpio ctrl */ ret = gpio_ctrl(sd, 0); if (ret) { ret = gpio_ctrl(sd, 0); if (ret) dev_err(&client->dev, "gpio failed 2\n"); } /* power control */ ret = power_ctrl(sd, 0); if (ret) dev_err(&client->dev, "vprog failed.\n"); return ret; } static int ov2680_s_power(struct v4l2_subdev *sd, int on) { int ret; if (on == 0){ ret = power_down(sd); } else { ret = power_up(sd); if (!ret) return ov2680_init(sd); } return ret; } /* * distance - calculate the distance * @res: resolution * @w: width * @h: height * * Get the gap between resolution and w/h. * res->width/height smaller than w/h wouldn't be considered. * Returns the value of gap or -1 if fail. */ #define LARGEST_ALLOWED_RATIO_MISMATCH 600 static int distance(struct ov2680_resolution *res, u32 w, u32 h) { unsigned int w_ratio = (res->width << 13) / w; unsigned int h_ratio; int match; if (h == 0) return -1; h_ratio = (res->height << 13) / h; if (h_ratio == 0) return -1; match = abs(((w_ratio << 13) / h_ratio) - ((int)8192)); if ((w_ratio < (int)8192) || (h_ratio < (int)8192) || (match > LARGEST_ALLOWED_RATIO_MISMATCH)) return -1; return w_ratio + h_ratio; } /* Return the nearest higher resolution index */ static int nearest_resolution_index(int w, int h) { int i; int idx = -1; int dist; int min_dist = INT_MAX; struct ov2680_resolution *tmp_res = NULL; for (i = 0; i < N_RES; i++) { tmp_res = &ov2680_res[i]; dist = distance(tmp_res, w, h); if (dist == -1) continue; if (dist < min_dist) { min_dist = dist; idx = i; } } return idx; } static int get_resolution_index(int w, int h) { int i; for (i = 0; i < N_RES; i++) { if (w != ov2680_res[i].width) continue; if (h != ov2680_res[i].height) continue; return i; } return -1; } static int ov2680_set_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_pad_config *cfg, struct v4l2_subdev_format *format) { struct v4l2_mbus_framefmt *fmt = &format->format; struct ov2680_device *dev = to_ov2680_sensor(sd); struct i2c_client *client = v4l2_get_subdevdata(sd); struct camera_mipi_info *ov2680_info = NULL; int ret = 0; int idx = 0; dev_dbg(&client->dev, "+++++ov2680_s_mbus_fmt+++++l\n"); if (format->pad) return -EINVAL; if (!fmt) return -EINVAL; ov2680_info = v4l2_get_subdev_hostdata(sd); if (!ov2680_info) return -EINVAL; mutex_lock(&dev->input_lock); idx = nearest_resolution_index(fmt->width, fmt->height); if (idx == -1) { /* return the largest resolution */ fmt->width = ov2680_res[N_RES - 1].width; fmt->height = ov2680_res[N_RES - 1].height; } else { fmt->width = ov2680_res[idx].width; fmt->height = ov2680_res[idx].height; } fmt->code = MEDIA_BUS_FMT_SBGGR10_1X10; if (format->which == V4L2_SUBDEV_FORMAT_TRY) { cfg->try_fmt = *fmt; mutex_unlock(&dev->input_lock); return 0; } dev->fmt_idx = get_resolution_index(fmt->width, fmt->height); dev_dbg(&client->dev, "+++++get_resolution_index=%d+++++l\n", dev->fmt_idx); if (dev->fmt_idx == -1) { dev_err(&client->dev, "get resolution fail\n"); mutex_unlock(&dev->input_lock); return -EINVAL; } v4l2_info(client, "__s_mbus_fmt i=%d, w=%d, h=%d\n", dev->fmt_idx, fmt->width, fmt->height); dev_dbg(&client->dev, "__s_mbus_fmt i=%d, w=%d, h=%d\n", dev->fmt_idx, fmt->width, fmt->height); ret = ov2680_write_reg_array(client, ov2680_res[dev->fmt_idx].regs); if (ret) dev_err(&client->dev, "ov2680 write resolution register err\n"); ret = ov2680_get_intg_factor(client, ov2680_info, &ov2680_res[dev->fmt_idx]); if (ret) { dev_err(&client->dev, "failed to get integration_factor\n"); goto err; } /*recall flip functions to avoid flip registers * were overridden by default setting */ if (h_flag) ov2680_h_flip(sd, h_flag); if (v_flag) ov2680_v_flip(sd, v_flag); v4l2_info(client, "\n%s idx %d \n", __func__, dev->fmt_idx); /*ret = startup(sd); * if (ret) * dev_err(&client->dev, "ov2680 startup err\n"); */ err: mutex_unlock(&dev->input_lock); return ret; } static int ov2680_get_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_pad_config *cfg, struct v4l2_subdev_format *format) { struct v4l2_mbus_framefmt *fmt = &format->format; struct ov2680_device *dev = to_ov2680_sensor(sd); if (format->pad) return -EINVAL; if (!fmt) return -EINVAL; fmt->width = ov2680_res[dev->fmt_idx].width; fmt->height = ov2680_res[dev->fmt_idx].height; fmt->code = MEDIA_BUS_FMT_SBGGR10_1X10; return 0; } static int ov2680_detect(struct i2c_client *client) { struct i2c_adapter *adapter = client->adapter; u16 high, low; int ret; u16 id; u8 revision; if (!i2c_check_functionality(adapter, I2C_FUNC_I2C)) return -ENODEV; ret = ov2680_read_reg(client, OV2680_8BIT, OV2680_SC_CMMN_CHIP_ID_H, &high); if (ret) { dev_err(&client->dev, "sensor_id_high = 0x%x\n", high); return -ENODEV; } ret = ov2680_read_reg(client, OV2680_8BIT, OV2680_SC_CMMN_CHIP_ID_L, &low); id = ((((u16) high) << 8) | (u16) low); if (id != OV2680_ID) { dev_err(&client->dev, "sensor ID error 0x%x\n", id); return -ENODEV; } ret = ov2680_read_reg(client, OV2680_8BIT, OV2680_SC_CMMN_SUB_ID, &high); revision = (u8) high & 0x0f; dev_info(&client->dev, "sensor_revision id = 0x%x\n", id); return 0; } static int ov2680_s_stream(struct v4l2_subdev *sd, int enable) { struct ov2680_device *dev = to_ov2680_sensor(sd); struct i2c_client *client = v4l2_get_subdevdata(sd); int ret; mutex_lock(&dev->input_lock); if(enable ) dev_dbg(&client->dev, "ov2680_s_stream one \n"); else dev_dbg(&client->dev, "ov2680_s_stream off \n"); ret = ov2680_write_reg(client, OV2680_8BIT, OV2680_SW_STREAM, enable ? OV2680_START_STREAMING : OV2680_STOP_STREAMING); #if 0 /* restore settings */ ov2680_res = ov2680_res_preview; N_RES = N_RES_PREVIEW; #endif //otp valid at stream on state //if(!dev->otp_data) // dev->otp_data = ov2680_otp_read(sd); mutex_unlock(&dev->input_lock); return ret; } static int ov2680_s_config(struct v4l2_subdev *sd, int irq, void *platform_data) { struct ov2680_device *dev = to_ov2680_sensor(sd); struct i2c_client *client = v4l2_get_subdevdata(sd); int ret = 0; if (!platform_data) return -ENODEV; dev->platform_data = (struct camera_sensor_platform_data *)platform_data; mutex_lock(&dev->input_lock); /* power off the module, then power on it in future * as first power on by board may not fulfill the * power on sequqence needed by the module */ ret = power_down(sd); if (ret) { dev_err(&client->dev, "ov2680 power-off err.\n"); goto fail_power_off; } ret = power_up(sd); if (ret) { dev_err(&client->dev, "ov2680 power-up err.\n"); goto fail_power_on; } ret = dev->platform_data->csi_cfg(sd, 1); if (ret) goto fail_csi_cfg; /* config & detect sensor */ ret = ov2680_detect(client); if (ret) { dev_err(&client->dev, "ov2680_detect err s_config.\n"); goto fail_csi_cfg; } /* turn off sensor, after probed */ ret = power_down(sd); if (ret) { dev_err(&client->dev, "ov2680 power-off err.\n"); goto fail_csi_cfg; } mutex_unlock(&dev->input_lock); return 0; fail_csi_cfg: dev->platform_data->csi_cfg(sd, 0); fail_power_on: power_down(sd); dev_err(&client->dev, "sensor power-gating failed\n"); fail_power_off: mutex_unlock(&dev->input_lock); return ret; } static int ov2680_g_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *param) { struct ov2680_device *dev = to_ov2680_sensor(sd); struct i2c_client *client = v4l2_get_subdevdata(sd); if (!param) return -EINVAL; if (param->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) { dev_err(&client->dev, "unsupported buffer type.\n"); return -EINVAL; } memset(param, 0, sizeof(*param)); param->type = V4L2_BUF_TYPE_VIDEO_CAPTURE; if (dev->fmt_idx >= 0 && dev->fmt_idx < N_RES) { param->parm.capture.capability = V4L2_CAP_TIMEPERFRAME; param->parm.capture.timeperframe.numerator = 1; param->parm.capture.capturemode = dev->run_mode; param->parm.capture.timeperframe.denominator = ov2680_res[dev->fmt_idx].fps; } return 0; } static int ov2680_s_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *param) { struct ov2680_device *dev = to_ov2680_sensor(sd); struct i2c_client *client = v4l2_get_subdevdata(sd); dev->run_mode = param->parm.capture.capturemode; v4l2_info(client, "\n%s:run_mode :%x\n", __func__, dev->run_mode); mutex_lock(&dev->input_lock); switch (dev->run_mode) { case CI_MODE_VIDEO: ov2680_res = ov2680_res_video; N_RES = N_RES_VIDEO; break; case CI_MODE_STILL_CAPTURE: ov2680_res = ov2680_res_still; N_RES = N_RES_STILL; break; default: ov2680_res = ov2680_res_preview; N_RES = N_RES_PREVIEW; } mutex_unlock(&dev->input_lock); return 0; } static int ov2680_g_frame_interval(struct v4l2_subdev *sd, struct v4l2_subdev_frame_interval *interval) { struct ov2680_device *dev = to_ov2680_sensor(sd); interval->interval.numerator = 1; interval->interval.denominator = ov2680_res[dev->fmt_idx].fps; return 0; } static int ov2680_enum_mbus_code(struct v4l2_subdev *sd, struct v4l2_subdev_pad_config *cfg, struct v4l2_subdev_mbus_code_enum *code) { if (code->index >= MAX_FMTS) return -EINVAL; code->code = MEDIA_BUS_FMT_SBGGR10_1X10; return 0; } static int ov2680_enum_frame_size(struct v4l2_subdev *sd, struct v4l2_subdev_pad_config *cfg, struct v4l2_subdev_frame_size_enum *fse) { int index = fse->index; if (index >= N_RES) return -EINVAL; fse->min_width = ov2680_res[index].width; fse->min_height = ov2680_res[index].height; fse->max_width = ov2680_res[index].width; fse->max_height = ov2680_res[index].height; return 0; } static int ov2680_g_skip_frames(struct v4l2_subdev *sd, u32 *frames) { struct ov2680_device *dev = to_ov2680_sensor(sd); mutex_lock(&dev->input_lock); *frames = ov2680_res[dev->fmt_idx].skip_frames; mutex_unlock(&dev->input_lock); return 0; } static const struct v4l2_subdev_video_ops ov2680_video_ops = { .s_stream = ov2680_s_stream, .g_parm = ov2680_g_parm, .s_parm = ov2680_s_parm, .g_frame_interval = ov2680_g_frame_interval, }; static const struct v4l2_subdev_sensor_ops ov2680_sensor_ops = { .g_skip_frames = ov2680_g_skip_frames, }; static const struct v4l2_subdev_core_ops ov2680_core_ops = { .s_power = ov2680_s_power, .ioctl = ov2680_ioctl, }; static const struct v4l2_subdev_pad_ops ov2680_pad_ops = { .enum_mbus_code = ov2680_enum_mbus_code, .enum_frame_size = ov2680_enum_frame_size, .get_fmt = ov2680_get_fmt, .set_fmt = ov2680_set_fmt, }; static const struct v4l2_subdev_ops ov2680_ops = { .core = &ov2680_core_ops, .video = &ov2680_video_ops, .pad = &ov2680_pad_ops, .sensor = &ov2680_sensor_ops, }; static int ov2680_remove(struct i2c_client *client) { struct v4l2_subdev *sd = i2c_get_clientdata(client); struct ov2680_device *dev = to_ov2680_sensor(sd); dev_dbg(&client->dev, "ov2680_remove...\n"); dev->platform_data->csi_cfg(sd, 0); v4l2_device_unregister_subdev(sd); media_entity_cleanup(&dev->sd.entity); v4l2_ctrl_handler_free(&dev->ctrl_handler); kfree(dev); return 0; } static int ov2680_probe(struct i2c_client *client) { struct ov2680_device *dev; int ret; void *pdata; unsigned int i; dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) return -ENOMEM; mutex_init(&dev->input_lock); dev->fmt_idx = 0; v4l2_i2c_subdev_init(&(dev->sd), client, &ov2680_ops); if (ACPI_COMPANION(&client->dev)) pdata = gmin_camera_platform_data(&dev->sd, ATOMISP_INPUT_FORMAT_RAW_10, atomisp_bayer_order_bggr); else pdata = client->dev.platform_data; if (!pdata) { ret = -EINVAL; goto out_free; } ret = ov2680_s_config(&dev->sd, client->irq, pdata); if (ret) goto out_free; ret = atomisp_register_i2c_module(&dev->sd, pdata, RAW_CAMERA); if (ret) goto out_free; dev->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE; dev->pad.flags = MEDIA_PAD_FL_SOURCE; dev->format.code = MEDIA_BUS_FMT_SBGGR10_1X10; dev->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR; ret = v4l2_ctrl_handler_init(&dev->ctrl_handler, ARRAY_SIZE(ov2680_controls)); if (ret) { ov2680_remove(client); return ret; } for (i = 0; i < ARRAY_SIZE(ov2680_controls); i++) v4l2_ctrl_new_custom(&dev->ctrl_handler, &ov2680_controls[i], NULL); if (dev->ctrl_handler.error) { ov2680_remove(client); return dev->ctrl_handler.error; } /* Use same lock for controls as for everything else. */ dev->ctrl_handler.lock = &dev->input_lock; dev->sd.ctrl_handler = &dev->ctrl_handler; ret = media_entity_pads_init(&dev->sd.entity, 1, &dev->pad); if (ret) { ov2680_remove(client); dev_dbg(&client->dev, "+++ remove ov2680 \n"); } return ret; out_free: dev_dbg(&client->dev, "+++ out free \n"); v4l2_device_unregister_subdev(&dev->sd); kfree(dev); return ret; } static const struct acpi_device_id ov2680_acpi_match[] = { {"XXOV2680"}, {"OVTI2680"}, {}, }; MODULE_DEVICE_TABLE(acpi, ov2680_acpi_match); static struct i2c_driver ov2680_driver = { .driver = { .name = "ov2680", .acpi_match_table = ov2680_acpi_match, }, .probe_new = ov2680_probe, .remove = ov2680_remove, }; module_i2c_driver(ov2680_driver); MODULE_AUTHOR("Jacky Wang "); MODULE_DESCRIPTION("A low-level driver for OmniVision 2680 sensors"); MODULE_LICENSE("GPL");