/* * This file is part of Nokia H4P bluetooth driver * * Copyright (C) 2005-2008 Nokia Corporation. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA * 02110-1301 USA * * Thanks to all the Nokia people that helped with this driver, * including Ville Tervo and Roger Quadros. * * Power saving functionality was removed from this driver to make * merging easier. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "hci_h4p.h" /* This should be used in function that cannot release clocks */ static void hci_h4p_set_clk(struct hci_h4p_info *info, int *clock, int enable) { unsigned long flags; spin_lock_irqsave(&info->clocks_lock, flags); if (enable && !*clock) { BT_DBG("Enabling %p", clock); clk_prepare_enable(info->uart_fclk); clk_prepare_enable(info->uart_iclk); if (atomic_read(&info->clk_users) == 0) hci_h4p_restore_regs(info); atomic_inc(&info->clk_users); } if (!enable && *clock) { BT_DBG("Disabling %p", clock); if (atomic_dec_and_test(&info->clk_users)) hci_h4p_store_regs(info); clk_disable_unprepare(info->uart_fclk); clk_disable_unprepare(info->uart_iclk); } *clock = enable; spin_unlock_irqrestore(&info->clocks_lock, flags); } static void hci_h4p_lazy_clock_release(unsigned long data) { struct hci_h4p_info *info = (struct hci_h4p_info *)data; unsigned long flags; spin_lock_irqsave(&info->lock, flags); if (!info->tx_enabled) hci_h4p_set_clk(info, &info->tx_clocks_en, 0); spin_unlock_irqrestore(&info->lock, flags); } /* Power management functions */ void hci_h4p_smart_idle(struct hci_h4p_info *info, bool enable) { u8 v; v = hci_h4p_inb(info, UART_OMAP_SYSC); v &= ~(UART_OMAP_SYSC_IDLEMASK); if (enable) v |= UART_OMAP_SYSC_SMART_IDLE; else v |= UART_OMAP_SYSC_NO_IDLE; hci_h4p_outb(info, UART_OMAP_SYSC, v); } static inline void h4p_schedule_pm(struct hci_h4p_info *info) { } static void hci_h4p_disable_tx(struct hci_h4p_info *info) { if (!info->pm_enabled) return; /* Re-enable smart-idle */ hci_h4p_smart_idle(info, 1); gpio_set_value(info->bt_wakeup_gpio, 0); mod_timer(&info->lazy_release, jiffies + msecs_to_jiffies(100)); info->tx_enabled = 0; } void hci_h4p_enable_tx(struct hci_h4p_info *info) { unsigned long flags; if (!info->pm_enabled) return; h4p_schedule_pm(info); spin_lock_irqsave(&info->lock, flags); del_timer(&info->lazy_release); hci_h4p_set_clk(info, &info->tx_clocks_en, 1); info->tx_enabled = 1; gpio_set_value(info->bt_wakeup_gpio, 1); hci_h4p_outb(info, UART_IER, hci_h4p_inb(info, UART_IER) | UART_IER_THRI); /* * Disable smart-idle as UART TX interrupts * are not wake-up capable */ hci_h4p_smart_idle(info, 0); spin_unlock_irqrestore(&info->lock, flags); } static void hci_h4p_disable_rx(struct hci_h4p_info *info) { if (!info->pm_enabled) return; info->rx_enabled = 0; if (hci_h4p_inb(info, UART_LSR) & UART_LSR_DR) return; if (!(hci_h4p_inb(info, UART_LSR) & UART_LSR_TEMT)) return; __hci_h4p_set_auto_ctsrts(info, 0, UART_EFR_RTS); info->autorts = 0; hci_h4p_set_clk(info, &info->rx_clocks_en, 0); } static void hci_h4p_enable_rx(struct hci_h4p_info *info) { if (!info->pm_enabled) return; h4p_schedule_pm(info); hci_h4p_set_clk(info, &info->rx_clocks_en, 1); info->rx_enabled = 1; if (!(hci_h4p_inb(info, UART_LSR) & UART_LSR_TEMT)) return; __hci_h4p_set_auto_ctsrts(info, 1, UART_EFR_RTS); info->autorts = 1; } /* Negotiation functions */ int hci_h4p_send_alive_packet(struct hci_h4p_info *info) { struct hci_h4p_alive_hdr *hdr; struct hci_h4p_alive_pkt *pkt; struct sk_buff *skb; unsigned long flags; int len; BT_DBG("Sending alive packet"); len = H4_TYPE_SIZE + sizeof(*hdr) + sizeof(*pkt); skb = bt_skb_alloc(len, GFP_KERNEL); if (!skb) return -ENOMEM; memset(skb->data, 0x00, len); *skb_put(skb, 1) = H4_ALIVE_PKT; hdr = (struct hci_h4p_alive_hdr *)skb_put(skb, sizeof(*hdr)); hdr->dlen = sizeof(*pkt); pkt = (struct hci_h4p_alive_pkt *)skb_put(skb, sizeof(*pkt)); pkt->mid = H4P_ALIVE_REQ; skb_queue_tail(&info->txq, skb); spin_lock_irqsave(&info->lock, flags); hci_h4p_outb(info, UART_IER, hci_h4p_inb(info, UART_IER) | UART_IER_THRI); spin_unlock_irqrestore(&info->lock, flags); BT_DBG("Alive packet sent"); return 0; } static void hci_h4p_alive_packet(struct hci_h4p_info *info, struct sk_buff *skb) { struct hci_h4p_alive_hdr *hdr; struct hci_h4p_alive_pkt *pkt; BT_DBG("Received alive packet"); hdr = (struct hci_h4p_alive_hdr *)skb->data; if (hdr->dlen != sizeof(*pkt)) { dev_err(info->dev, "Corrupted alive message\n"); info->init_error = -EIO; goto finish_alive; } pkt = (struct hci_h4p_alive_pkt *)skb_pull(skb, sizeof(*hdr)); if (pkt->mid != H4P_ALIVE_RESP) { dev_err(info->dev, "Could not negotiate hci_h4p settings\n"); info->init_error = -EINVAL; } finish_alive: complete(&info->init_completion); kfree_skb(skb); } static int hci_h4p_send_negotiation(struct hci_h4p_info *info) { struct hci_h4p_neg_cmd *neg_cmd; struct hci_h4p_neg_hdr *neg_hdr; struct sk_buff *skb; unsigned long flags; int err, len; u16 sysclk; BT_DBG("Sending negotiation.."); switch (info->bt_sysclk) { case 1: sysclk = 12000; break; case 2: sysclk = 38400; break; default: return -EINVAL; } len = sizeof(*neg_cmd) + sizeof(*neg_hdr) + H4_TYPE_SIZE; skb = bt_skb_alloc(len, GFP_KERNEL); if (!skb) return -ENOMEM; memset(skb->data, 0x00, len); *skb_put(skb, 1) = H4_NEG_PKT; neg_hdr = (struct hci_h4p_neg_hdr *)skb_put(skb, sizeof(*neg_hdr)); neg_cmd = (struct hci_h4p_neg_cmd *)skb_put(skb, sizeof(*neg_cmd)); neg_hdr->dlen = sizeof(*neg_cmd); neg_cmd->ack = H4P_NEG_REQ; neg_cmd->baud = cpu_to_le16(BT_BAUDRATE_DIVIDER/MAX_BAUD_RATE); neg_cmd->proto = H4P_PROTO_BYTE; neg_cmd->sys_clk = cpu_to_le16(sysclk); hci_h4p_change_speed(info, INIT_SPEED); hci_h4p_set_rts(info, 1); info->init_error = 0; init_completion(&info->init_completion); skb_queue_tail(&info->txq, skb); spin_lock_irqsave(&info->lock, flags); hci_h4p_outb(info, UART_IER, hci_h4p_inb(info, UART_IER) | UART_IER_THRI); spin_unlock_irqrestore(&info->lock, flags); if (!wait_for_completion_interruptible_timeout(&info->init_completion, msecs_to_jiffies(1000))) return -ETIMEDOUT; if (info->init_error < 0) return info->init_error; /* Change to operational settings */ hci_h4p_set_auto_ctsrts(info, 0, UART_EFR_RTS); hci_h4p_set_rts(info, 0); hci_h4p_change_speed(info, MAX_BAUD_RATE); err = hci_h4p_wait_for_cts(info, 1, 100); if (err < 0) return err; hci_h4p_set_auto_ctsrts(info, 1, UART_EFR_RTS); init_completion(&info->init_completion); err = hci_h4p_send_alive_packet(info); if (err < 0) return err; if (!wait_for_completion_interruptible_timeout(&info->init_completion, msecs_to_jiffies(1000))) return -ETIMEDOUT; if (info->init_error < 0) return info->init_error; BT_DBG("Negotiation successful"); return 0; } static void hci_h4p_negotiation_packet(struct hci_h4p_info *info, struct sk_buff *skb) { struct hci_h4p_neg_hdr *hdr; struct hci_h4p_neg_evt *evt; hdr = (struct hci_h4p_neg_hdr *)skb->data; if (hdr->dlen != sizeof(*evt)) { info->init_error = -EIO; goto finish_neg; } evt = (struct hci_h4p_neg_evt *)skb_pull(skb, sizeof(*hdr)); if (evt->ack != H4P_NEG_ACK) { dev_err(info->dev, "Could not negotiate hci_h4p settings\n"); info->init_error = -EINVAL; } info->man_id = evt->man_id; info->ver_id = evt->ver_id; finish_neg: complete(&info->init_completion); kfree_skb(skb); } /* H4 packet handling functions */ static int hci_h4p_get_hdr_len(struct hci_h4p_info *info, u8 pkt_type) { long retval; switch (pkt_type) { case H4_EVT_PKT: retval = HCI_EVENT_HDR_SIZE; break; case H4_ACL_PKT: retval = HCI_ACL_HDR_SIZE; break; case H4_SCO_PKT: retval = HCI_SCO_HDR_SIZE; break; case H4_NEG_PKT: retval = H4P_NEG_HDR_SIZE; break; case H4_ALIVE_PKT: retval = H4P_ALIVE_HDR_SIZE; break; case H4_RADIO_PKT: retval = H4_RADIO_HDR_SIZE; break; default: dev_err(info->dev, "Unknown H4 packet type 0x%.2x\n", pkt_type); retval = -1; break; } return retval; } static unsigned int hci_h4p_get_data_len(struct hci_h4p_info *info, struct sk_buff *skb) { long retval = -1; struct hci_acl_hdr *acl_hdr; struct hci_sco_hdr *sco_hdr; struct hci_event_hdr *evt_hdr; struct hci_h4p_neg_hdr *neg_hdr; struct hci_h4p_alive_hdr *alive_hdr; struct hci_h4p_radio_hdr *radio_hdr; switch (bt_cb(skb)->pkt_type) { case H4_EVT_PKT: evt_hdr = (struct hci_event_hdr *)skb->data; retval = evt_hdr->plen; break; case H4_ACL_PKT: acl_hdr = (struct hci_acl_hdr *)skb->data; retval = le16_to_cpu(acl_hdr->dlen); break; case H4_SCO_PKT: sco_hdr = (struct hci_sco_hdr *)skb->data; retval = sco_hdr->dlen; break; case H4_RADIO_PKT: radio_hdr = (struct hci_h4p_radio_hdr *)skb->data; retval = radio_hdr->dlen; break; case H4_NEG_PKT: neg_hdr = (struct hci_h4p_neg_hdr *)skb->data; retval = neg_hdr->dlen; break; case H4_ALIVE_PKT: alive_hdr = (struct hci_h4p_alive_hdr *)skb->data; retval = alive_hdr->dlen; break; } return retval; } static inline void hci_h4p_recv_frame(struct hci_h4p_info *info, struct sk_buff *skb) { if (unlikely(!test_bit(HCI_RUNNING, &info->hdev->flags))) { switch (bt_cb(skb)->pkt_type) { case H4_NEG_PKT: hci_h4p_negotiation_packet(info, skb); info->rx_state = WAIT_FOR_PKT_TYPE; return; case H4_ALIVE_PKT: hci_h4p_alive_packet(info, skb); info->rx_state = WAIT_FOR_PKT_TYPE; return; } if (!test_bit(HCI_UP, &info->hdev->flags)) { BT_DBG("fw_event"); hci_h4p_parse_fw_event(info, skb); return; } } hci_recv_frame(info->hdev, skb); BT_DBG("Frame sent to upper layer"); } static inline void hci_h4p_handle_byte(struct hci_h4p_info *info, u8 byte) { switch (info->rx_state) { case WAIT_FOR_PKT_TYPE: bt_cb(info->rx_skb)->pkt_type = byte; info->rx_count = hci_h4p_get_hdr_len(info, byte); if (info->rx_count < 0) { info->hdev->stat.err_rx++; kfree_skb(info->rx_skb); info->rx_skb = NULL; } else { info->rx_state = WAIT_FOR_HEADER; } break; case WAIT_FOR_HEADER: info->rx_count--; *skb_put(info->rx_skb, 1) = byte; if (info->rx_count != 0) break; info->rx_count = hci_h4p_get_data_len(info, info->rx_skb); if (info->rx_count > skb_tailroom(info->rx_skb)) { dev_err(info->dev, "frame too long\n"); info->garbage_bytes = info->rx_count - skb_tailroom(info->rx_skb); kfree_skb(info->rx_skb); info->rx_skb = NULL; break; } info->rx_state = WAIT_FOR_DATA; break; case WAIT_FOR_DATA: info->rx_count--; *skb_put(info->rx_skb, 1) = byte; break; default: WARN_ON(1); break; } if (info->rx_count == 0) { /* H4+ devices should always send word aligned packets */ if (!(info->rx_skb->len % 2)) info->garbage_bytes++; hci_h4p_recv_frame(info, info->rx_skb); info->rx_skb = NULL; } } static void hci_h4p_rx_tasklet(unsigned long data) { u8 byte; struct hci_h4p_info *info = (struct hci_h4p_info *)data; BT_DBG("tasklet woke up"); BT_DBG("rx_tasklet woke up"); while (hci_h4p_inb(info, UART_LSR) & UART_LSR_DR) { byte = hci_h4p_inb(info, UART_RX); if (info->garbage_bytes) { info->garbage_bytes--; continue; } if (info->rx_skb == NULL) { info->rx_skb = bt_skb_alloc(HCI_MAX_FRAME_SIZE, GFP_ATOMIC | GFP_DMA); if (!info->rx_skb) { dev_err(info->dev, "No memory for new packet\n"); goto finish_rx; } info->rx_state = WAIT_FOR_PKT_TYPE; info->rx_skb->dev = (void *)info->hdev; } info->hdev->stat.byte_rx++; hci_h4p_handle_byte(info, byte); } if (!info->rx_enabled) { if (hci_h4p_inb(info, UART_LSR) & UART_LSR_TEMT && info->autorts) { __hci_h4p_set_auto_ctsrts(info, 0 , UART_EFR_RTS); info->autorts = 0; } /* Flush posted write to avoid spurious interrupts */ hci_h4p_inb(info, UART_OMAP_SCR); hci_h4p_set_clk(info, &info->rx_clocks_en, 0); } finish_rx: BT_DBG("rx_ended"); } static void hci_h4p_tx_tasklet(unsigned long data) { unsigned int sent = 0; struct sk_buff *skb; struct hci_h4p_info *info = (struct hci_h4p_info *)data; BT_DBG("tasklet woke up"); BT_DBG("tx_tasklet woke up"); if (info->autorts != info->rx_enabled) { if (hci_h4p_inb(info, UART_LSR) & UART_LSR_TEMT) { if (info->autorts && !info->rx_enabled) { __hci_h4p_set_auto_ctsrts(info, 0, UART_EFR_RTS); info->autorts = 0; } if (!info->autorts && info->rx_enabled) { __hci_h4p_set_auto_ctsrts(info, 1, UART_EFR_RTS); info->autorts = 1; } } else { hci_h4p_outb(info, UART_OMAP_SCR, hci_h4p_inb(info, UART_OMAP_SCR) | UART_OMAP_SCR_EMPTY_THR); goto finish_tx; } } skb = skb_dequeue(&info->txq); if (!skb) { /* No data in buffer */ BT_DBG("skb ready"); if (hci_h4p_inb(info, UART_LSR) & UART_LSR_TEMT) { hci_h4p_outb(info, UART_IER, hci_h4p_inb(info, UART_IER) & ~UART_IER_THRI); hci_h4p_inb(info, UART_OMAP_SCR); hci_h4p_disable_tx(info); return; } hci_h4p_outb(info, UART_OMAP_SCR, hci_h4p_inb(info, UART_OMAP_SCR) | UART_OMAP_SCR_EMPTY_THR); goto finish_tx; } /* Copy data to tx fifo */ while (!(hci_h4p_inb(info, UART_OMAP_SSR) & UART_OMAP_SSR_TXFULL) && (sent < skb->len)) { hci_h4p_outb(info, UART_TX, skb->data[sent]); sent++; } info->hdev->stat.byte_tx += sent; if (skb->len == sent) { kfree_skb(skb); } else { skb_pull(skb, sent); skb_queue_head(&info->txq, skb); } hci_h4p_outb(info, UART_OMAP_SCR, hci_h4p_inb(info, UART_OMAP_SCR) & ~UART_OMAP_SCR_EMPTY_THR); hci_h4p_outb(info, UART_IER, hci_h4p_inb(info, UART_IER) | UART_IER_THRI); finish_tx: /* Flush posted write to avoid spurious interrupts */ hci_h4p_inb(info, UART_OMAP_SCR); } static irqreturn_t hci_h4p_interrupt(int irq, void *data) { struct hci_h4p_info *info = (struct hci_h4p_info *)data; u8 iir, msr; int ret; ret = IRQ_NONE; iir = hci_h4p_inb(info, UART_IIR); if (iir & UART_IIR_NO_INT) return IRQ_HANDLED; BT_DBG("In interrupt handler iir 0x%.2x", iir); iir &= UART_IIR_ID; if (iir == UART_IIR_MSI) { msr = hci_h4p_inb(info, UART_MSR); ret = IRQ_HANDLED; } if (iir == UART_IIR_RLSI) { hci_h4p_inb(info, UART_RX); hci_h4p_inb(info, UART_LSR); ret = IRQ_HANDLED; } if (iir == UART_IIR_RDI) { hci_h4p_rx_tasklet((unsigned long)data); ret = IRQ_HANDLED; } if (iir == UART_IIR_THRI) { hci_h4p_tx_tasklet((unsigned long)data); ret = IRQ_HANDLED; } return ret; } static irqreturn_t hci_h4p_wakeup_interrupt(int irq, void *dev_inst) { struct hci_h4p_info *info = dev_inst; int should_wakeup; struct hci_dev *hdev; if (!info->hdev) return IRQ_HANDLED; should_wakeup = gpio_get_value(info->host_wakeup_gpio); hdev = info->hdev; if (!test_bit(HCI_RUNNING, &hdev->flags)) { if (should_wakeup == 1) complete_all(&info->test_completion); return IRQ_HANDLED; } BT_DBG("gpio interrupt %d", should_wakeup); /* Check if wee have missed some interrupts */ if (info->rx_enabled == should_wakeup) return IRQ_HANDLED; if (should_wakeup) hci_h4p_enable_rx(info); else hci_h4p_disable_rx(info); return IRQ_HANDLED; } static inline void hci_h4p_set_pm_limits(struct hci_h4p_info *info, bool set) { struct hci_h4p_platform_data *bt_plat_data = info->dev->platform_data; const char *sset = set ? "set" : "clear"; if (unlikely(!bt_plat_data || !bt_plat_data->set_pm_limits)) return; if (set != !!test_bit(H4P_ACTIVE_MODE, &info->pm_flags)) { bt_plat_data->set_pm_limits(info->dev, set); if (set) set_bit(H4P_ACTIVE_MODE, &info->pm_flags); else clear_bit(H4P_ACTIVE_MODE, &info->pm_flags); BT_DBG("Change pm constraints to: %s", sset); return; } BT_DBG("pm constraints remains: %s", sset); } static int hci_h4p_reset(struct hci_h4p_info *info) { int err; err = hci_h4p_reset_uart(info); if (err < 0) { dev_err(info->dev, "Uart reset failed\n"); return err; } hci_h4p_init_uart(info); hci_h4p_set_rts(info, 0); gpio_set_value(info->reset_gpio, 0); gpio_set_value(info->bt_wakeup_gpio, 1); msleep(10); if (gpio_get_value(info->host_wakeup_gpio) == 1) { dev_err(info->dev, "host_wakeup_gpio not low\n"); return -EPROTO; } init_completion(&info->test_completion); gpio_set_value(info->reset_gpio, 1); if (!wait_for_completion_interruptible_timeout(&info->test_completion, msecs_to_jiffies(100))) { dev_err(info->dev, "wakeup test timed out\n"); complete_all(&info->test_completion); return -EPROTO; } err = hci_h4p_wait_for_cts(info, 1, 100); if (err < 0) { dev_err(info->dev, "No cts from bt chip\n"); return err; } hci_h4p_set_rts(info, 1); return 0; } /* hci callback functions */ static int hci_h4p_hci_flush(struct hci_dev *hdev) { struct hci_h4p_info *info = hci_get_drvdata(hdev); skb_queue_purge(&info->txq); return 0; } static int hci_h4p_bt_wakeup_test(struct hci_h4p_info *info) { /* * Test Sequence: * Host de-asserts the BT_WAKE_UP line. * Host polls the UART_CTS line, waiting for it to be de-asserted. * Host asserts the BT_WAKE_UP line. * Host polls the UART_CTS line, waiting for it to be asserted. * Host de-asserts the BT_WAKE_UP line (allow the Bluetooth device to * sleep). * Host polls the UART_CTS line, waiting for it to be de-asserted. */ int err; int ret = -ECOMM; if (!info) return -EINVAL; /* Disable wakeup interrupts */ disable_irq(gpio_to_irq(info->host_wakeup_gpio)); gpio_set_value(info->bt_wakeup_gpio, 0); err = hci_h4p_wait_for_cts(info, 0, 100); if (err) { dev_warn(info->dev, "bt_wakeup_test: fail: CTS low timed out: %d\n", err); goto out; } gpio_set_value(info->bt_wakeup_gpio, 1); err = hci_h4p_wait_for_cts(info, 1, 100); if (err) { dev_warn(info->dev, "bt_wakeup_test: fail: CTS high timed out: %d\n", err); goto out; } gpio_set_value(info->bt_wakeup_gpio, 0); err = hci_h4p_wait_for_cts(info, 0, 100); if (err) { dev_warn(info->dev, "bt_wakeup_test: fail: CTS re-low timed out: %d\n", err); goto out; } ret = 0; out: /* Re-enable wakeup interrupts */ enable_irq(gpio_to_irq(info->host_wakeup_gpio)); return ret; } static int hci_h4p_hci_open(struct hci_dev *hdev) { struct hci_h4p_info *info; int err, retries = 0; struct sk_buff_head fw_queue; unsigned long flags; info = hci_get_drvdata(hdev); if (test_bit(HCI_RUNNING, &hdev->flags)) return 0; /* TI1271 has HW bug and boot up might fail. Retry up to three times */ again: info->rx_enabled = 1; info->rx_state = WAIT_FOR_PKT_TYPE; info->rx_count = 0; info->garbage_bytes = 0; info->rx_skb = NULL; info->pm_enabled = 0; init_completion(&info->fw_completion); hci_h4p_set_clk(info, &info->tx_clocks_en, 1); hci_h4p_set_clk(info, &info->rx_clocks_en, 1); skb_queue_head_init(&fw_queue); err = hci_h4p_reset(info); if (err < 0) goto err_clean; hci_h4p_set_auto_ctsrts(info, 1, UART_EFR_CTS | UART_EFR_RTS); info->autorts = 1; err = hci_h4p_send_negotiation(info); err = hci_h4p_read_fw(info, &fw_queue); if (err < 0) { dev_err(info->dev, "Cannot read firmware\n"); goto err_clean; } err = hci_h4p_send_fw(info, &fw_queue); if (err < 0) { dev_err(info->dev, "Sending firmware failed.\n"); goto err_clean; } info->pm_enabled = 1; err = hci_h4p_bt_wakeup_test(info); if (err < 0) { dev_err(info->dev, "BT wakeup test failed.\n"); goto err_clean; } spin_lock_irqsave(&info->lock, flags); info->rx_enabled = gpio_get_value(info->host_wakeup_gpio); hci_h4p_set_clk(info, &info->rx_clocks_en, info->rx_enabled); spin_unlock_irqrestore(&info->lock, flags); hci_h4p_set_clk(info, &info->tx_clocks_en, 0); kfree_skb(info->alive_cmd_skb); info->alive_cmd_skb = NULL; set_bit(HCI_RUNNING, &hdev->flags); BT_DBG("hci up and running"); return 0; err_clean: hci_h4p_hci_flush(hdev); hci_h4p_reset_uart(info); del_timer_sync(&info->lazy_release); hci_h4p_set_clk(info, &info->tx_clocks_en, 0); hci_h4p_set_clk(info, &info->rx_clocks_en, 0); gpio_set_value(info->reset_gpio, 0); gpio_set_value(info->bt_wakeup_gpio, 0); skb_queue_purge(&fw_queue); kfree_skb(info->alive_cmd_skb); info->alive_cmd_skb = NULL; kfree_skb(info->rx_skb); info->rx_skb = NULL; if (retries++ < 3) { dev_err(info->dev, "FW loading try %d fail. Retry.\n", retries); goto again; } return err; } static int hci_h4p_hci_close(struct hci_dev *hdev) { struct hci_h4p_info *info = hci_get_drvdata(hdev); if (!test_and_clear_bit(HCI_RUNNING, &hdev->flags)) return 0; hci_h4p_hci_flush(hdev); hci_h4p_set_clk(info, &info->tx_clocks_en, 1); hci_h4p_set_clk(info, &info->rx_clocks_en, 1); hci_h4p_reset_uart(info); del_timer_sync(&info->lazy_release); hci_h4p_set_clk(info, &info->tx_clocks_en, 0); hci_h4p_set_clk(info, &info->rx_clocks_en, 0); gpio_set_value(info->reset_gpio, 0); gpio_set_value(info->bt_wakeup_gpio, 0); kfree_skb(info->rx_skb); return 0; } static int hci_h4p_hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb) { struct hci_h4p_info *info; int err = 0; BT_DBG("dev %p, skb %p", hdev, skb); info = hci_get_drvdata(hdev); if (!test_bit(HCI_RUNNING, &hdev->flags)) { dev_warn(info->dev, "Frame for non-running device\n"); return -EIO; } switch (bt_cb(skb)->pkt_type) { case HCI_COMMAND_PKT: hdev->stat.cmd_tx++; break; case HCI_ACLDATA_PKT: hdev->stat.acl_tx++; break; case HCI_SCODATA_PKT: hdev->stat.sco_tx++; break; } /* Push frame type to skb */ *skb_push(skb, 1) = (bt_cb(skb)->pkt_type); /* We should allways send word aligned data to h4+ devices */ if (skb->len % 2) { err = skb_pad(skb, 1); if (!err) *skb_put(skb, 1) = 0x00; } if (err) return err; skb_queue_tail(&info->txq, skb); hci_h4p_enable_tx(info); return 0; } static ssize_t hci_h4p_store_bdaddr(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct hci_h4p_info *info = dev_get_drvdata(dev); unsigned int bdaddr[6]; int ret, i; ret = sscanf(buf, "%2x:%2x:%2x:%2x:%2x:%2x\n", &bdaddr[0], &bdaddr[1], &bdaddr[2], &bdaddr[3], &bdaddr[4], &bdaddr[5]); if (ret != 6) return -EINVAL; for (i = 0; i < 6; i++) { if (bdaddr[i] > 0xff) return -EINVAL; info->bd_addr[i] = bdaddr[i] & 0xff; } return count; } static ssize_t hci_h4p_show_bdaddr(struct device *dev, struct device_attribute *attr, char *buf) { struct hci_h4p_info *info = dev_get_drvdata(dev); return sprintf(buf, "%pMR\n", info->bd_addr); } static DEVICE_ATTR(bdaddr, S_IRUGO | S_IWUSR, hci_h4p_show_bdaddr, hci_h4p_store_bdaddr); static int hci_h4p_sysfs_create_files(struct device *dev) { return device_create_file(dev, &dev_attr_bdaddr); } static void hci_h4p_sysfs_remove_files(struct device *dev) { device_remove_file(dev, &dev_attr_bdaddr); } static int hci_h4p_register_hdev(struct hci_h4p_info *info) { struct hci_dev *hdev; /* Initialize and register HCI device */ hdev = hci_alloc_dev(); if (!hdev) { dev_err(info->dev, "Can't allocate memory for device\n"); return -ENOMEM; } info->hdev = hdev; hdev->bus = HCI_UART; hci_set_drvdata(hdev, info); hdev->open = hci_h4p_hci_open; hdev->close = hci_h4p_hci_close; hdev->flush = hci_h4p_hci_flush; hdev->send = hci_h4p_hci_send_frame; set_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks); SET_HCIDEV_DEV(hdev, info->dev); if (hci_h4p_sysfs_create_files(info->dev) < 0) { dev_err(info->dev, "failed to create sysfs files\n"); goto free; } if (hci_register_dev(hdev) >= 0) return 0; dev_err(info->dev, "hci_register failed %s.\n", hdev->name); hci_h4p_sysfs_remove_files(info->dev); free: hci_free_dev(info->hdev); return -ENODEV; } static int hci_h4p_probe(struct platform_device *pdev) { struct hci_h4p_platform_data *bt_plat_data; struct hci_h4p_info *info; int err; dev_info(&pdev->dev, "Registering HCI H4P device\n"); info = devm_kzalloc(&pdev->dev, sizeof(struct hci_h4p_info), GFP_KERNEL); if (!info) return -ENOMEM; info->dev = &pdev->dev; info->tx_enabled = 1; info->rx_enabled = 1; spin_lock_init(&info->lock); spin_lock_init(&info->clocks_lock); skb_queue_head_init(&info->txq); if (pdev->dev.platform_data == NULL) { dev_err(&pdev->dev, "Could not get Bluetooth config data\n"); return -ENODATA; } bt_plat_data = pdev->dev.platform_data; info->chip_type = bt_plat_data->chip_type; info->bt_wakeup_gpio = bt_plat_data->bt_wakeup_gpio; info->host_wakeup_gpio = bt_plat_data->host_wakeup_gpio; info->reset_gpio = bt_plat_data->reset_gpio; info->reset_gpio_shared = bt_plat_data->reset_gpio_shared; info->bt_sysclk = bt_plat_data->bt_sysclk; BT_DBG("RESET gpio: %d", info->reset_gpio); BT_DBG("BTWU gpio: %d", info->bt_wakeup_gpio); BT_DBG("HOSTWU gpio: %d", info->host_wakeup_gpio); BT_DBG("sysclk: %d", info->bt_sysclk); init_completion(&info->test_completion); complete_all(&info->test_completion); if (!info->reset_gpio_shared) { err = devm_gpio_request_one(&pdev->dev, info->reset_gpio, GPIOF_OUT_INIT_LOW, "bt_reset"); if (err < 0) { dev_err(&pdev->dev, "Cannot get GPIO line %d\n", info->reset_gpio); return err; } } err = devm_gpio_request_one(&pdev->dev, info->bt_wakeup_gpio, GPIOF_OUT_INIT_LOW, "bt_wakeup"); if (err < 0) { dev_err(info->dev, "Cannot get GPIO line 0x%d", info->bt_wakeup_gpio); return err; } err = devm_gpio_request_one(&pdev->dev, info->host_wakeup_gpio, GPIOF_DIR_IN, "host_wakeup"); if (err < 0) { dev_err(info->dev, "Cannot get GPIO line %d", info->host_wakeup_gpio); return err; } info->irq = bt_plat_data->uart_irq; info->uart_base = devm_ioremap(&pdev->dev, bt_plat_data->uart_base, SZ_2K); info->uart_iclk = devm_clk_get(&pdev->dev, bt_plat_data->uart_iclk); info->uart_fclk = devm_clk_get(&pdev->dev, bt_plat_data->uart_fclk); err = devm_request_irq(&pdev->dev, info->irq, hci_h4p_interrupt, IRQF_DISABLED, "hci_h4p", info); if (err < 0) { dev_err(info->dev, "hci_h4p: unable to get IRQ %d\n", info->irq); return err; } err = devm_request_irq(&pdev->dev, gpio_to_irq(info->host_wakeup_gpio), hci_h4p_wakeup_interrupt, IRQF_TRIGGER_FALLING | IRQF_TRIGGER_RISING | IRQF_DISABLED, "hci_h4p_wkup", info); if (err < 0) { dev_err(info->dev, "hci_h4p: unable to get wakeup IRQ %d\n", gpio_to_irq(info->host_wakeup_gpio)); return err; } err = irq_set_irq_wake(gpio_to_irq(info->host_wakeup_gpio), 1); if (err < 0) { dev_err(info->dev, "hci_h4p: unable to set wakeup for IRQ %d\n", gpio_to_irq(info->host_wakeup_gpio)); return err; } init_timer_deferrable(&info->lazy_release); info->lazy_release.function = hci_h4p_lazy_clock_release; info->lazy_release.data = (unsigned long)info; hci_h4p_set_clk(info, &info->tx_clocks_en, 1); err = hci_h4p_reset_uart(info); if (err < 0) return err; gpio_set_value(info->reset_gpio, 0); hci_h4p_set_clk(info, &info->tx_clocks_en, 0); platform_set_drvdata(pdev, info); if (hci_h4p_register_hdev(info) < 0) { dev_err(info->dev, "failed to register hci_h4p hci device\n"); return -EINVAL; } return 0; } static int hci_h4p_remove(struct platform_device *pdev) { struct hci_h4p_info *info; info = platform_get_drvdata(pdev); hci_h4p_sysfs_remove_files(info->dev); hci_h4p_hci_close(info->hdev); hci_unregister_dev(info->hdev); hci_free_dev(info->hdev); return 0; } static struct platform_driver hci_h4p_driver = { .probe = hci_h4p_probe, .remove = hci_h4p_remove, .driver = { .name = "hci_h4p", }, }; module_platform_driver(hci_h4p_driver); MODULE_ALIAS("platform:hci_h4p"); MODULE_DESCRIPTION("Bluetooth h4 driver with nokia extensions"); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Ville Tervo");