// SPDX-License-Identifier: GPL-2.0+ /* * f_uac1.c -- USB Audio Class 1.0 Function (using u_audio API) * * Copyright (C) 2016 Ruslan Bilovol * * This driver doesn't expect any real Audio codec to be present * on the device - the audio streams are simply sinked to and * sourced from a virtual ALSA sound card created. * * This file is based on f_uac1.c which is * Copyright (C) 2008 Bryan Wu * Copyright (C) 2008 Analog Devices, Inc */ #include #include #include "u_audio.h" #include "u_uac1.h" /* UAC1 spec: 3.7.2.3 Audio Channel Cluster Format */ #define UAC1_CHANNEL_MASK 0x0FFF #define USB_OUT_FU_ID (out_feature_unit_desc->bUnitID) #define USB_IN_FU_ID (in_feature_unit_desc->bUnitID) #define EPIN_EN(_opts) ((_opts)->p_chmask != 0) #define EPOUT_EN(_opts) ((_opts)->c_chmask != 0) #define FUIN_EN(_opts) ((_opts)->p_mute_present \ || (_opts)->p_volume_present) #define FUOUT_EN(_opts) ((_opts)->c_mute_present \ || (_opts)->c_volume_present) struct f_uac1 { struct g_audio g_audio; u8 ac_intf, as_in_intf, as_out_intf; u8 ac_alt, as_in_alt, as_out_alt; /* needed for get_alt() */ struct usb_ctrlrequest setup_cr; /* will be used in data stage */ /* Interrupt IN endpoint of AC interface */ struct usb_ep *int_ep; atomic_t int_count; }; static inline struct f_uac1 *func_to_uac1(struct usb_function *f) { return container_of(f, struct f_uac1, g_audio.func); } static inline struct f_uac1_opts *g_audio_to_uac1_opts(struct g_audio *audio) { return container_of(audio->func.fi, struct f_uac1_opts, func_inst); } /* * DESCRIPTORS ... most are static, but strings and full * configuration descriptors are built on demand. */ /* * We have three interfaces - one AudioControl and two AudioStreaming * * The driver implements a simple UAC_1 topology. * USB-OUT -> IT_1 -> OT_2 -> ALSA_Capture * ALSA_Playback -> IT_3 -> OT_4 -> USB-IN */ /* B.3.1 Standard AC Interface Descriptor */ static struct usb_interface_descriptor ac_interface_desc = { .bLength = USB_DT_INTERFACE_SIZE, .bDescriptorType = USB_DT_INTERFACE, /* .bNumEndpoints = DYNAMIC */ .bInterfaceClass = USB_CLASS_AUDIO, .bInterfaceSubClass = USB_SUBCLASS_AUDIOCONTROL, }; /* B.3.2 Class-Specific AC Interface Descriptor */ static struct uac1_ac_header_descriptor *ac_header_desc; static struct uac_input_terminal_descriptor usb_out_it_desc = { .bLength = UAC_DT_INPUT_TERMINAL_SIZE, .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubtype = UAC_INPUT_TERMINAL, /* .bTerminalID = DYNAMIC */ .wTerminalType = cpu_to_le16(UAC_TERMINAL_STREAMING), .bAssocTerminal = 0, .wChannelConfig = cpu_to_le16(0x3), }; static struct uac1_output_terminal_descriptor io_out_ot_desc = { .bLength = UAC_DT_OUTPUT_TERMINAL_SIZE, .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubtype = UAC_OUTPUT_TERMINAL, /* .bTerminalID = DYNAMIC */ .wTerminalType = cpu_to_le16(UAC_OUTPUT_TERMINAL_SPEAKER), .bAssocTerminal = 0, /* .bSourceID = DYNAMIC */ }; static struct uac_input_terminal_descriptor io_in_it_desc = { .bLength = UAC_DT_INPUT_TERMINAL_SIZE, .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubtype = UAC_INPUT_TERMINAL, /* .bTerminalID = DYNAMIC */ .wTerminalType = cpu_to_le16(UAC_INPUT_TERMINAL_MICROPHONE), .bAssocTerminal = 0, .wChannelConfig = cpu_to_le16(0x3), }; static struct uac1_output_terminal_descriptor usb_in_ot_desc = { .bLength = UAC_DT_OUTPUT_TERMINAL_SIZE, .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubtype = UAC_OUTPUT_TERMINAL, /* .bTerminalID = DYNAMIC */ .wTerminalType = cpu_to_le16(UAC_TERMINAL_STREAMING), .bAssocTerminal = 0, /* .bSourceID = DYNAMIC */ }; static struct uac_feature_unit_descriptor *in_feature_unit_desc; static struct uac_feature_unit_descriptor *out_feature_unit_desc; /* AC IN Interrupt Endpoint */ static struct usb_endpoint_descriptor ac_int_ep_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_IN, .bmAttributes = USB_ENDPOINT_XFER_INT, .wMaxPacketSize = cpu_to_le16(2), .bInterval = 4, }; /* B.4.1 Standard AS Interface Descriptor */ static struct usb_interface_descriptor as_out_interface_alt_0_desc = { .bLength = USB_DT_INTERFACE_SIZE, .bDescriptorType = USB_DT_INTERFACE, .bAlternateSetting = 0, .bNumEndpoints = 0, .bInterfaceClass = USB_CLASS_AUDIO, .bInterfaceSubClass = USB_SUBCLASS_AUDIOSTREAMING, }; static struct usb_interface_descriptor as_out_interface_alt_1_desc = { .bLength = USB_DT_INTERFACE_SIZE, .bDescriptorType = USB_DT_INTERFACE, .bAlternateSetting = 1, .bNumEndpoints = 1, .bInterfaceClass = USB_CLASS_AUDIO, .bInterfaceSubClass = USB_SUBCLASS_AUDIOSTREAMING, }; static struct usb_interface_descriptor as_in_interface_alt_0_desc = { .bLength = USB_DT_INTERFACE_SIZE, .bDescriptorType = USB_DT_INTERFACE, .bAlternateSetting = 0, .bNumEndpoints = 0, .bInterfaceClass = USB_CLASS_AUDIO, .bInterfaceSubClass = USB_SUBCLASS_AUDIOSTREAMING, }; static struct usb_interface_descriptor as_in_interface_alt_1_desc = { .bLength = USB_DT_INTERFACE_SIZE, .bDescriptorType = USB_DT_INTERFACE, .bAlternateSetting = 1, .bNumEndpoints = 1, .bInterfaceClass = USB_CLASS_AUDIO, .bInterfaceSubClass = USB_SUBCLASS_AUDIOSTREAMING, }; /* B.4.2 Class-Specific AS Interface Descriptor */ static struct uac1_as_header_descriptor as_out_header_desc = { .bLength = UAC_DT_AS_HEADER_SIZE, .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubtype = UAC_AS_GENERAL, /* .bTerminalLink = DYNAMIC */ .bDelay = 1, .wFormatTag = cpu_to_le16(UAC_FORMAT_TYPE_I_PCM), }; static struct uac1_as_header_descriptor as_in_header_desc = { .bLength = UAC_DT_AS_HEADER_SIZE, .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubtype = UAC_AS_GENERAL, /* .bTerminalLink = DYNAMIC */ .bDelay = 1, .wFormatTag = cpu_to_le16(UAC_FORMAT_TYPE_I_PCM), }; DECLARE_UAC_FORMAT_TYPE_I_DISCRETE_DESC(1); static struct uac_format_type_i_discrete_descriptor_1 as_out_type_i_desc = { .bLength = UAC_FORMAT_TYPE_I_DISCRETE_DESC_SIZE(1), .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubtype = UAC_FORMAT_TYPE, .bFormatType = UAC_FORMAT_TYPE_I, .bSubframeSize = 2, .bBitResolution = 16, .bSamFreqType = 1, }; /* Standard ISO OUT Endpoint Descriptor */ static struct usb_endpoint_descriptor as_out_ep_desc = { .bLength = USB_DT_ENDPOINT_AUDIO_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_OUT, .bmAttributes = USB_ENDPOINT_SYNC_ADAPTIVE | USB_ENDPOINT_XFER_ISOC, .wMaxPacketSize = cpu_to_le16(UAC1_OUT_EP_MAX_PACKET_SIZE), .bInterval = 4, }; /* Class-specific AS ISO OUT Endpoint Descriptor */ static struct uac_iso_endpoint_descriptor as_iso_out_desc = { .bLength = UAC_ISO_ENDPOINT_DESC_SIZE, .bDescriptorType = USB_DT_CS_ENDPOINT, .bDescriptorSubtype = UAC_EP_GENERAL, .bmAttributes = 1, .bLockDelayUnits = 1, .wLockDelay = cpu_to_le16(1), }; static struct uac_format_type_i_discrete_descriptor_1 as_in_type_i_desc = { .bLength = UAC_FORMAT_TYPE_I_DISCRETE_DESC_SIZE(1), .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubtype = UAC_FORMAT_TYPE, .bFormatType = UAC_FORMAT_TYPE_I, .bSubframeSize = 2, .bBitResolution = 16, .bSamFreqType = 1, }; /* Standard ISO OUT Endpoint Descriptor */ static struct usb_endpoint_descriptor as_in_ep_desc = { .bLength = USB_DT_ENDPOINT_AUDIO_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_IN, .bmAttributes = USB_ENDPOINT_SYNC_ASYNC | USB_ENDPOINT_XFER_ISOC, .wMaxPacketSize = cpu_to_le16(UAC1_OUT_EP_MAX_PACKET_SIZE), .bInterval = 4, }; /* Class-specific AS ISO OUT Endpoint Descriptor */ static struct uac_iso_endpoint_descriptor as_iso_in_desc = { .bLength = UAC_ISO_ENDPOINT_DESC_SIZE, .bDescriptorType = USB_DT_CS_ENDPOINT, .bDescriptorSubtype = UAC_EP_GENERAL, .bmAttributes = 1, .bLockDelayUnits = 0, .wLockDelay = 0, }; static struct usb_descriptor_header *f_audio_desc[] = { (struct usb_descriptor_header *)&ac_interface_desc, (struct usb_descriptor_header *)&ac_header_desc, (struct usb_descriptor_header *)&usb_out_it_desc, (struct usb_descriptor_header *)&io_out_ot_desc, (struct usb_descriptor_header *)&out_feature_unit_desc, (struct usb_descriptor_header *)&io_in_it_desc, (struct usb_descriptor_header *)&usb_in_ot_desc, (struct usb_descriptor_header *)&in_feature_unit_desc, (struct usb_descriptor_header *)&ac_int_ep_desc, (struct usb_descriptor_header *)&as_out_interface_alt_0_desc, (struct usb_descriptor_header *)&as_out_interface_alt_1_desc, (struct usb_descriptor_header *)&as_out_header_desc, (struct usb_descriptor_header *)&as_out_type_i_desc, (struct usb_descriptor_header *)&as_out_ep_desc, (struct usb_descriptor_header *)&as_iso_out_desc, (struct usb_descriptor_header *)&as_in_interface_alt_0_desc, (struct usb_descriptor_header *)&as_in_interface_alt_1_desc, (struct usb_descriptor_header *)&as_in_header_desc, (struct usb_descriptor_header *)&as_in_type_i_desc, (struct usb_descriptor_header *)&as_in_ep_desc, (struct usb_descriptor_header *)&as_iso_in_desc, NULL, }; enum { STR_AC_IF, STR_USB_OUT_IT, STR_USB_OUT_IT_CH_NAMES, STR_IO_OUT_OT, STR_IO_IN_IT, STR_IO_IN_IT_CH_NAMES, STR_USB_IN_OT, STR_FU_IN, STR_FU_OUT, STR_AS_OUT_IF_ALT0, STR_AS_OUT_IF_ALT1, STR_AS_IN_IF_ALT0, STR_AS_IN_IF_ALT1, }; static struct usb_string strings_uac1[] = { [STR_AC_IF].s = "AC Interface", [STR_USB_OUT_IT].s = "Playback Input terminal", [STR_USB_OUT_IT_CH_NAMES].s = "Playback Channels", [STR_IO_OUT_OT].s = "Playback Output terminal", [STR_IO_IN_IT].s = "Capture Input terminal", [STR_IO_IN_IT_CH_NAMES].s = "Capture Channels", [STR_USB_IN_OT].s = "Capture Output terminal", [STR_FU_IN].s = "Capture Volume", [STR_FU_OUT].s = "Playback Volume", [STR_AS_OUT_IF_ALT0].s = "Playback Inactive", [STR_AS_OUT_IF_ALT1].s = "Playback Active", [STR_AS_IN_IF_ALT0].s = "Capture Inactive", [STR_AS_IN_IF_ALT1].s = "Capture Active", { }, }; static struct usb_gadget_strings str_uac1 = { .language = 0x0409, /* en-us */ .strings = strings_uac1, }; static struct usb_gadget_strings *uac1_strings[] = { &str_uac1, NULL, }; /* * This function is an ALSA sound card following USB Audio Class Spec 1.0. */ static void audio_notify_complete(struct usb_ep *_ep, struct usb_request *req) { struct g_audio *audio = req->context; struct f_uac1 *uac1 = func_to_uac1(&audio->func); atomic_dec(&uac1->int_count); kfree(req->buf); usb_ep_free_request(_ep, req); } static int audio_notify(struct g_audio *audio, int unit_id, int cs) { struct f_uac1 *uac1 = func_to_uac1(&audio->func); struct usb_request *req; struct uac1_status_word *msg; int ret; if (!uac1->int_ep->enabled) return 0; if (atomic_inc_return(&uac1->int_count) > UAC1_DEF_INT_REQ_NUM) { atomic_dec(&uac1->int_count); return 0; } req = usb_ep_alloc_request(uac1->int_ep, GFP_ATOMIC); if (req == NULL) { ret = -ENOMEM; goto err_dec_int_count; } msg = kmalloc(sizeof(*msg), GFP_ATOMIC); if (msg == NULL) { ret = -ENOMEM; goto err_free_request; } msg->bStatusType = UAC1_STATUS_TYPE_IRQ_PENDING | UAC1_STATUS_TYPE_ORIG_AUDIO_CONTROL_IF; msg->bOriginator = unit_id; req->length = sizeof(*msg); req->buf = msg; req->context = audio; req->complete = audio_notify_complete; ret = usb_ep_queue(uac1->int_ep, req, GFP_ATOMIC); if (ret) goto err_free_msg; return 0; err_free_msg: kfree(msg); err_free_request: usb_ep_free_request(uac1->int_ep, req); err_dec_int_count: atomic_dec(&uac1->int_count); return ret; } static int in_rq_cur(struct usb_function *fn, const struct usb_ctrlrequest *cr) { struct usb_request *req = fn->config->cdev->req; struct g_audio *audio = func_to_g_audio(fn); struct f_uac1_opts *opts = g_audio_to_uac1_opts(audio); u16 w_length = le16_to_cpu(cr->wLength); u16 w_index = le16_to_cpu(cr->wIndex); u16 w_value = le16_to_cpu(cr->wValue); u8 entity_id = (w_index >> 8) & 0xff; u8 control_selector = w_value >> 8; int value = -EOPNOTSUPP; if ((FUIN_EN(opts) && (entity_id == USB_IN_FU_ID)) || (FUOUT_EN(opts) && (entity_id == USB_OUT_FU_ID))) { unsigned int is_playback = 0; if (FUIN_EN(opts) && (entity_id == USB_IN_FU_ID)) is_playback = 1; if (control_selector == UAC_FU_MUTE) { unsigned int mute; u_audio_get_mute(audio, is_playback, &mute); *(u8 *)req->buf = mute; value = min_t(unsigned int, w_length, 1); } else if (control_selector == UAC_FU_VOLUME) { __le16 c; s16 volume; u_audio_get_volume(audio, is_playback, &volume); c = cpu_to_le16(volume); value = min_t(unsigned int, w_length, sizeof(c)); memcpy(req->buf, &c, value); } else { dev_err(&audio->gadget->dev, "%s:%d control_selector=%d TODO!\n", __func__, __LINE__, control_selector); } } else { dev_err(&audio->gadget->dev, "%s:%d entity_id=%d control_selector=%d TODO!\n", __func__, __LINE__, entity_id, control_selector); } return value; } static int in_rq_min(struct usb_function *fn, const struct usb_ctrlrequest *cr) { struct usb_request *req = fn->config->cdev->req; struct g_audio *audio = func_to_g_audio(fn); struct f_uac1_opts *opts = g_audio_to_uac1_opts(audio); u16 w_length = le16_to_cpu(cr->wLength); u16 w_index = le16_to_cpu(cr->wIndex); u16 w_value = le16_to_cpu(cr->wValue); u8 entity_id = (w_index >> 8) & 0xff; u8 control_selector = w_value >> 8; int value = -EOPNOTSUPP; if ((FUIN_EN(opts) && (entity_id == USB_IN_FU_ID)) || (FUOUT_EN(opts) && (entity_id == USB_OUT_FU_ID))) { unsigned int is_playback = 0; if (FUIN_EN(opts) && (entity_id == USB_IN_FU_ID)) is_playback = 1; if (control_selector == UAC_FU_VOLUME) { __le16 r; s16 min_db; if (is_playback) min_db = opts->p_volume_min; else min_db = opts->c_volume_min; r = cpu_to_le16(min_db); value = min_t(unsigned int, w_length, sizeof(r)); memcpy(req->buf, &r, value); } else { dev_err(&audio->gadget->dev, "%s:%d control_selector=%d TODO!\n", __func__, __LINE__, control_selector); } } else { dev_err(&audio->gadget->dev, "%s:%d entity_id=%d control_selector=%d TODO!\n", __func__, __LINE__, entity_id, control_selector); } return value; } static int in_rq_max(struct usb_function *fn, const struct usb_ctrlrequest *cr) { struct usb_request *req = fn->config->cdev->req; struct g_audio *audio = func_to_g_audio(fn); struct f_uac1_opts *opts = g_audio_to_uac1_opts(audio); u16 w_length = le16_to_cpu(cr->wLength); u16 w_index = le16_to_cpu(cr->wIndex); u16 w_value = le16_to_cpu(cr->wValue); u8 entity_id = (w_index >> 8) & 0xff; u8 control_selector = w_value >> 8; int value = -EOPNOTSUPP; if ((FUIN_EN(opts) && (entity_id == USB_IN_FU_ID)) || (FUOUT_EN(opts) && (entity_id == USB_OUT_FU_ID))) { unsigned int is_playback = 0; if (FUIN_EN(opts) && (entity_id == USB_IN_FU_ID)) is_playback = 1; if (control_selector == UAC_FU_VOLUME) { __le16 r; s16 max_db; if (is_playback) max_db = opts->p_volume_max; else max_db = opts->c_volume_max; r = cpu_to_le16(max_db); value = min_t(unsigned int, w_length, sizeof(r)); memcpy(req->buf, &r, value); } else { dev_err(&audio->gadget->dev, "%s:%d control_selector=%d TODO!\n", __func__, __LINE__, control_selector); } } else { dev_err(&audio->gadget->dev, "%s:%d entity_id=%d control_selector=%d TODO!\n", __func__, __LINE__, entity_id, control_selector); } return value; } static int in_rq_res(struct usb_function *fn, const struct usb_ctrlrequest *cr) { struct usb_request *req = fn->config->cdev->req; struct g_audio *audio = func_to_g_audio(fn); struct f_uac1_opts *opts = g_audio_to_uac1_opts(audio); u16 w_length = le16_to_cpu(cr->wLength); u16 w_index = le16_to_cpu(cr->wIndex); u16 w_value = le16_to_cpu(cr->wValue); u8 entity_id = (w_index >> 8) & 0xff; u8 control_selector = w_value >> 8; int value = -EOPNOTSUPP; if ((FUIN_EN(opts) && (entity_id == USB_IN_FU_ID)) || (FUOUT_EN(opts) && (entity_id == USB_OUT_FU_ID))) { unsigned int is_playback = 0; if (FUIN_EN(opts) && (entity_id == USB_IN_FU_ID)) is_playback = 1; if (control_selector == UAC_FU_VOLUME) { __le16 r; s16 res_db; if (is_playback) res_db = opts->p_volume_res; else res_db = opts->c_volume_res; r = cpu_to_le16(res_db); value = min_t(unsigned int, w_length, sizeof(r)); memcpy(req->buf, &r, value); } else { dev_err(&audio->gadget->dev, "%s:%d control_selector=%d TODO!\n", __func__, __LINE__, control_selector); } } else { dev_err(&audio->gadget->dev, "%s:%d entity_id=%d control_selector=%d TODO!\n", __func__, __LINE__, entity_id, control_selector); } return value; } static void out_rq_cur_complete(struct usb_ep *ep, struct usb_request *req) { struct g_audio *audio = req->context; struct usb_composite_dev *cdev = audio->func.config->cdev; struct f_uac1_opts *opts = g_audio_to_uac1_opts(audio); struct f_uac1 *uac1 = func_to_uac1(&audio->func); struct usb_ctrlrequest *cr = &uac1->setup_cr; u16 w_index = le16_to_cpu(cr->wIndex); u16 w_value = le16_to_cpu(cr->wValue); u8 entity_id = (w_index >> 8) & 0xff; u8 control_selector = w_value >> 8; if (req->status != 0) { dev_dbg(&cdev->gadget->dev, "completion err %d\n", req->status); return; } if ((FUIN_EN(opts) && (entity_id == USB_IN_FU_ID)) || (FUOUT_EN(opts) && (entity_id == USB_OUT_FU_ID))) { unsigned int is_playback = 0; if (FUIN_EN(opts) && (entity_id == USB_IN_FU_ID)) is_playback = 1; if (control_selector == UAC_FU_MUTE) { u8 mute = *(u8 *)req->buf; u_audio_set_mute(audio, is_playback, mute); return; } else if (control_selector == UAC_FU_VOLUME) { __le16 *c = req->buf; s16 volume; volume = le16_to_cpu(*c); u_audio_set_volume(audio, is_playback, volume); return; } else { dev_err(&audio->gadget->dev, "%s:%d control_selector=%d TODO!\n", __func__, __LINE__, control_selector); usb_ep_set_halt(ep); } } else { dev_err(&audio->gadget->dev, "%s:%d entity_id=%d control_selector=%d TODO!\n", __func__, __LINE__, entity_id, control_selector); usb_ep_set_halt(ep); } } static int out_rq_cur(struct usb_function *fn, const struct usb_ctrlrequest *cr) { struct usb_request *req = fn->config->cdev->req; struct g_audio *audio = func_to_g_audio(fn); struct f_uac1_opts *opts = g_audio_to_uac1_opts(audio); struct f_uac1 *uac1 = func_to_uac1(&audio->func); u16 w_length = le16_to_cpu(cr->wLength); u16 w_index = le16_to_cpu(cr->wIndex); u16 w_value = le16_to_cpu(cr->wValue); u8 entity_id = (w_index >> 8) & 0xff; u8 control_selector = w_value >> 8; if ((FUIN_EN(opts) && (entity_id == USB_IN_FU_ID)) || (FUOUT_EN(opts) && (entity_id == USB_OUT_FU_ID))) { memcpy(&uac1->setup_cr, cr, sizeof(*cr)); req->context = audio; req->complete = out_rq_cur_complete; return w_length; } else { dev_err(&audio->gadget->dev, "%s:%d entity_id=%d control_selector=%d TODO!\n", __func__, __LINE__, entity_id, control_selector); } return -EOPNOTSUPP; } static int ac_rq_in(struct usb_function *f, const struct usb_ctrlrequest *ctrl) { struct usb_composite_dev *cdev = f->config->cdev; int value = -EOPNOTSUPP; u8 ep = ((le16_to_cpu(ctrl->wIndex) >> 8) & 0xFF); u16 len = le16_to_cpu(ctrl->wLength); u16 w_value = le16_to_cpu(ctrl->wValue); DBG(cdev, "bRequest 0x%x, w_value 0x%04x, len %d, endpoint %d\n", ctrl->bRequest, w_value, len, ep); switch (ctrl->bRequest) { case UAC_GET_CUR: return in_rq_cur(f, ctrl); case UAC_GET_MIN: return in_rq_min(f, ctrl); case UAC_GET_MAX: return in_rq_max(f, ctrl); case UAC_GET_RES: return in_rq_res(f, ctrl); case UAC_GET_MEM: break; case UAC_GET_STAT: value = len; break; default: break; } return value; } static int audio_set_endpoint_req(struct usb_function *f, const struct usb_ctrlrequest *ctrl) { struct usb_composite_dev *cdev = f->config->cdev; int value = -EOPNOTSUPP; u16 ep = le16_to_cpu(ctrl->wIndex); u16 len = le16_to_cpu(ctrl->wLength); u16 w_value = le16_to_cpu(ctrl->wValue); DBG(cdev, "bRequest 0x%x, w_value 0x%04x, len %d, endpoint %d\n", ctrl->bRequest, w_value, len, ep); switch (ctrl->bRequest) { case UAC_SET_CUR: value = len; break; case UAC_SET_MIN: break; case UAC_SET_MAX: break; case UAC_SET_RES: break; case UAC_SET_MEM: break; default: break; } return value; } static int audio_get_endpoint_req(struct usb_function *f, const struct usb_ctrlrequest *ctrl) { struct usb_composite_dev *cdev = f->config->cdev; int value = -EOPNOTSUPP; u8 ep = ((le16_to_cpu(ctrl->wIndex) >> 8) & 0xFF); u16 len = le16_to_cpu(ctrl->wLength); u16 w_value = le16_to_cpu(ctrl->wValue); DBG(cdev, "bRequest 0x%x, w_value 0x%04x, len %d, endpoint %d\n", ctrl->bRequest, w_value, len, ep); switch (ctrl->bRequest) { case UAC_GET_CUR: case UAC_GET_MIN: case UAC_GET_MAX: case UAC_GET_RES: value = len; break; case UAC_GET_MEM: break; default: break; } return value; } static int f_audio_setup(struct usb_function *f, const struct usb_ctrlrequest *ctrl) { struct usb_composite_dev *cdev = f->config->cdev; struct usb_request *req = cdev->req; int value = -EOPNOTSUPP; u16 w_index = le16_to_cpu(ctrl->wIndex); u16 w_value = le16_to_cpu(ctrl->wValue); u16 w_length = le16_to_cpu(ctrl->wLength); /* composite driver infrastructure handles everything; interface * activation uses set_alt(). */ switch (ctrl->bRequestType) { case USB_DIR_OUT | USB_TYPE_CLASS | USB_RECIP_ENDPOINT: value = audio_set_endpoint_req(f, ctrl); break; case USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_ENDPOINT: value = audio_get_endpoint_req(f, ctrl); break; case USB_DIR_OUT | USB_TYPE_CLASS | USB_RECIP_INTERFACE: if (ctrl->bRequest == UAC_SET_CUR) value = out_rq_cur(f, ctrl); break; case USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_INTERFACE: value = ac_rq_in(f, ctrl); break; default: ERROR(cdev, "invalid control req%02x.%02x v%04x i%04x l%d\n", ctrl->bRequestType, ctrl->bRequest, w_value, w_index, w_length); } /* respond with data transfer or status phase? */ if (value >= 0) { DBG(cdev, "audio req%02x.%02x v%04x i%04x l%d\n", ctrl->bRequestType, ctrl->bRequest, w_value, w_index, w_length); req->zero = 0; req->length = value; value = usb_ep_queue(cdev->gadget->ep0, req, GFP_ATOMIC); if (value < 0) ERROR(cdev, "audio response on err %d\n", value); } /* device either stalls (value < 0) or reports success */ return value; } static int f_audio_set_alt(struct usb_function *f, unsigned intf, unsigned alt) { struct usb_composite_dev *cdev = f->config->cdev; struct usb_gadget *gadget = cdev->gadget; struct device *dev = &gadget->dev; struct g_audio *audio = func_to_g_audio(f); struct f_uac1 *uac1 = func_to_uac1(f); int ret = 0; /* No i/f has more than 2 alt settings */ if (alt > 1) { dev_err(dev, "%s:%d Error!\n", __func__, __LINE__); return -EINVAL; } if (intf == uac1->ac_intf) { /* Control I/f has only 1 AltSetting - 0 */ if (alt) { dev_err(dev, "%s:%d Error!\n", __func__, __LINE__); return -EINVAL; } /* restart interrupt endpoint */ if (uac1->int_ep) { usb_ep_disable(uac1->int_ep); config_ep_by_speed(gadget, &audio->func, uac1->int_ep); usb_ep_enable(uac1->int_ep); } return 0; } if (intf == uac1->as_out_intf) { uac1->as_out_alt = alt; if (alt) ret = u_audio_start_capture(&uac1->g_audio); else u_audio_stop_capture(&uac1->g_audio); } else if (intf == uac1->as_in_intf) { uac1->as_in_alt = alt; if (alt) ret = u_audio_start_playback(&uac1->g_audio); else u_audio_stop_playback(&uac1->g_audio); } else { dev_err(dev, "%s:%d Error!\n", __func__, __LINE__); return -EINVAL; } return ret; } static int f_audio_get_alt(struct usb_function *f, unsigned intf) { struct usb_composite_dev *cdev = f->config->cdev; struct usb_gadget *gadget = cdev->gadget; struct device *dev = &gadget->dev; struct f_uac1 *uac1 = func_to_uac1(f); if (intf == uac1->ac_intf) return uac1->ac_alt; else if (intf == uac1->as_out_intf) return uac1->as_out_alt; else if (intf == uac1->as_in_intf) return uac1->as_in_alt; else dev_err(dev, "%s:%d Invalid Interface %d!\n", __func__, __LINE__, intf); return -EINVAL; } static void f_audio_disable(struct usb_function *f) { struct f_uac1 *uac1 = func_to_uac1(f); uac1->as_out_alt = 0; uac1->as_in_alt = 0; u_audio_stop_playback(&uac1->g_audio); u_audio_stop_capture(&uac1->g_audio); if (uac1->int_ep) usb_ep_disable(uac1->int_ep); } /*-------------------------------------------------------------------------*/ static struct uac_feature_unit_descriptor *build_fu_desc(int chmask) { struct uac_feature_unit_descriptor *fu_desc; int channels = num_channels(chmask); int fu_desc_size = UAC_DT_FEATURE_UNIT_SIZE(channels); fu_desc = kzalloc(fu_desc_size, GFP_KERNEL); if (!fu_desc) return NULL; fu_desc->bLength = fu_desc_size; fu_desc->bDescriptorType = USB_DT_CS_INTERFACE; fu_desc->bDescriptorSubtype = UAC_FEATURE_UNIT; fu_desc->bControlSize = 2; /* bUnitID, bSourceID and bmaControls will be defined later */ return fu_desc; } /* B.3.2 Class-Specific AC Interface Descriptor */ static struct uac1_ac_header_descriptor *build_ac_header_desc(struct f_uac1_opts *opts) { struct uac1_ac_header_descriptor *ac_desc; int ac_header_desc_size; int num_ifaces = 0; if (EPOUT_EN(opts)) num_ifaces++; if (EPIN_EN(opts)) num_ifaces++; ac_header_desc_size = UAC_DT_AC_HEADER_SIZE(num_ifaces); ac_desc = kzalloc(ac_header_desc_size, GFP_KERNEL); if (!ac_desc) return NULL; ac_desc->bLength = ac_header_desc_size; ac_desc->bDescriptorType = USB_DT_CS_INTERFACE; ac_desc->bDescriptorSubtype = UAC_HEADER; ac_desc->bcdADC = cpu_to_le16(0x0100); ac_desc->bInCollection = num_ifaces; /* wTotalLength and baInterfaceNr will be defined later */ return ac_desc; } /* Use macro to overcome line length limitation */ #define USBDHDR(p) (struct usb_descriptor_header *)(p) static void setup_descriptor(struct f_uac1_opts *opts) { /* patch descriptors */ int i = 1; /* ID's start with 1 */ if (EPOUT_EN(opts)) usb_out_it_desc.bTerminalID = i++; if (EPIN_EN(opts)) io_in_it_desc.bTerminalID = i++; if (EPOUT_EN(opts)) io_out_ot_desc.bTerminalID = i++; if (EPIN_EN(opts)) usb_in_ot_desc.bTerminalID = i++; if (FUOUT_EN(opts)) out_feature_unit_desc->bUnitID = i++; if (FUIN_EN(opts)) in_feature_unit_desc->bUnitID = i++; if (FUIN_EN(opts)) { usb_in_ot_desc.bSourceID = in_feature_unit_desc->bUnitID; in_feature_unit_desc->bSourceID = io_in_it_desc.bTerminalID; } else { usb_in_ot_desc.bSourceID = io_in_it_desc.bTerminalID; } if (FUOUT_EN(opts)) { io_out_ot_desc.bSourceID = out_feature_unit_desc->bUnitID; out_feature_unit_desc->bSourceID = usb_out_it_desc.bTerminalID; } else { io_out_ot_desc.bSourceID = usb_out_it_desc.bTerminalID; } as_out_header_desc.bTerminalLink = usb_out_it_desc.bTerminalID; as_in_header_desc.bTerminalLink = usb_in_ot_desc.bTerminalID; ac_header_desc->wTotalLength = cpu_to_le16(ac_header_desc->bLength); if (EPIN_EN(opts)) { u16 len = le16_to_cpu(ac_header_desc->wTotalLength); len += sizeof(usb_in_ot_desc); len += sizeof(io_in_it_desc); if (FUIN_EN(opts)) len += in_feature_unit_desc->bLength; ac_header_desc->wTotalLength = cpu_to_le16(len); } if (EPOUT_EN(opts)) { u16 len = le16_to_cpu(ac_header_desc->wTotalLength); len += sizeof(usb_out_it_desc); len += sizeof(io_out_ot_desc); if (FUOUT_EN(opts)) len += out_feature_unit_desc->bLength; ac_header_desc->wTotalLength = cpu_to_le16(len); } i = 0; f_audio_desc[i++] = USBDHDR(&ac_interface_desc); f_audio_desc[i++] = USBDHDR(ac_header_desc); if (EPOUT_EN(opts)) { f_audio_desc[i++] = USBDHDR(&usb_out_it_desc); f_audio_desc[i++] = USBDHDR(&io_out_ot_desc); if (FUOUT_EN(opts)) f_audio_desc[i++] = USBDHDR(out_feature_unit_desc); } if (EPIN_EN(opts)) { f_audio_desc[i++] = USBDHDR(&io_in_it_desc); f_audio_desc[i++] = USBDHDR(&usb_in_ot_desc); if (FUIN_EN(opts)) f_audio_desc[i++] = USBDHDR(in_feature_unit_desc); } if (FUOUT_EN(opts) || FUIN_EN(opts)) f_audio_desc[i++] = USBDHDR(&ac_int_ep_desc); if (EPOUT_EN(opts)) { f_audio_desc[i++] = USBDHDR(&as_out_interface_alt_0_desc); f_audio_desc[i++] = USBDHDR(&as_out_interface_alt_1_desc); f_audio_desc[i++] = USBDHDR(&as_out_header_desc); f_audio_desc[i++] = USBDHDR(&as_out_type_i_desc); f_audio_desc[i++] = USBDHDR(&as_out_ep_desc); f_audio_desc[i++] = USBDHDR(&as_iso_out_desc); } if (EPIN_EN(opts)) { f_audio_desc[i++] = USBDHDR(&as_in_interface_alt_0_desc); f_audio_desc[i++] = USBDHDR(&as_in_interface_alt_1_desc); f_audio_desc[i++] = USBDHDR(&as_in_header_desc); f_audio_desc[i++] = USBDHDR(&as_in_type_i_desc); f_audio_desc[i++] = USBDHDR(&as_in_ep_desc); f_audio_desc[i++] = USBDHDR(&as_iso_in_desc); } f_audio_desc[i] = NULL; } static int f_audio_validate_opts(struct g_audio *audio, struct device *dev) { struct f_uac1_opts *opts = g_audio_to_uac1_opts(audio); if (!opts->p_chmask && !opts->c_chmask) { dev_err(dev, "Error: no playback and capture channels\n"); return -EINVAL; } else if (opts->p_chmask & ~UAC1_CHANNEL_MASK) { dev_err(dev, "Error: unsupported playback channels mask\n"); return -EINVAL; } else if (opts->c_chmask & ~UAC1_CHANNEL_MASK) { dev_err(dev, "Error: unsupported capture channels mask\n"); return -EINVAL; } else if ((opts->p_ssize < 1) || (opts->p_ssize > 4)) { dev_err(dev, "Error: incorrect playback sample size\n"); return -EINVAL; } else if ((opts->c_ssize < 1) || (opts->c_ssize > 4)) { dev_err(dev, "Error: incorrect capture sample size\n"); return -EINVAL; } else if (!opts->p_srate) { dev_err(dev, "Error: incorrect playback sampling rate\n"); return -EINVAL; } else if (!opts->c_srate) { dev_err(dev, "Error: incorrect capture sampling rate\n"); return -EINVAL; } if (opts->p_volume_max <= opts->p_volume_min) { dev_err(dev, "Error: incorrect playback volume max/min\n"); return -EINVAL; } else if (opts->c_volume_max <= opts->c_volume_min) { dev_err(dev, "Error: incorrect capture volume max/min\n"); return -EINVAL; } else if (opts->p_volume_res <= 0) { dev_err(dev, "Error: negative/zero playback volume resolution\n"); return -EINVAL; } else if (opts->c_volume_res <= 0) { dev_err(dev, "Error: negative/zero capture volume resolution\n"); return -EINVAL; } if ((opts->p_volume_max - opts->p_volume_min) % opts->p_volume_res) { dev_err(dev, "Error: incorrect playback volume resolution\n"); return -EINVAL; } else if ((opts->c_volume_max - opts->c_volume_min) % opts->c_volume_res) { dev_err(dev, "Error: incorrect capture volume resolution\n"); return -EINVAL; } return 0; } /* audio function driver setup/binding */ static int f_audio_bind(struct usb_configuration *c, struct usb_function *f) { struct usb_composite_dev *cdev = c->cdev; struct usb_gadget *gadget = cdev->gadget; struct device *dev = &gadget->dev; struct f_uac1 *uac1 = func_to_uac1(f); struct g_audio *audio = func_to_g_audio(f); struct f_uac1_opts *audio_opts; struct usb_ep *ep = NULL; struct usb_string *us; u8 *sam_freq; int rate; int ba_iface_id; int status; status = f_audio_validate_opts(audio, dev); if (status) return status; audio_opts = container_of(f->fi, struct f_uac1_opts, func_inst); us = usb_gstrings_attach(cdev, uac1_strings, ARRAY_SIZE(strings_uac1)); if (IS_ERR(us)) return PTR_ERR(us); ac_header_desc = build_ac_header_desc(audio_opts); if (!ac_header_desc) return -ENOMEM; if (FUOUT_EN(audio_opts)) { out_feature_unit_desc = build_fu_desc(audio_opts->c_chmask); if (!out_feature_unit_desc) { status = -ENOMEM; goto fail; } } if (FUIN_EN(audio_opts)) { in_feature_unit_desc = build_fu_desc(audio_opts->p_chmask); if (!in_feature_unit_desc) { status = -ENOMEM; goto err_free_fu; } } ac_interface_desc.iInterface = us[STR_AC_IF].id; usb_out_it_desc.iTerminal = us[STR_USB_OUT_IT].id; usb_out_it_desc.iChannelNames = us[STR_USB_OUT_IT_CH_NAMES].id; io_out_ot_desc.iTerminal = us[STR_IO_OUT_OT].id; as_out_interface_alt_0_desc.iInterface = us[STR_AS_OUT_IF_ALT0].id; as_out_interface_alt_1_desc.iInterface = us[STR_AS_OUT_IF_ALT1].id; io_in_it_desc.iTerminal = us[STR_IO_IN_IT].id; io_in_it_desc.iChannelNames = us[STR_IO_IN_IT_CH_NAMES].id; usb_in_ot_desc.iTerminal = us[STR_USB_IN_OT].id; as_in_interface_alt_0_desc.iInterface = us[STR_AS_IN_IF_ALT0].id; as_in_interface_alt_1_desc.iInterface = us[STR_AS_IN_IF_ALT1].id; if (FUOUT_EN(audio_opts)) { u8 *i_feature; i_feature = (u8 *)out_feature_unit_desc + out_feature_unit_desc->bLength - 1; *i_feature = us[STR_FU_OUT].id; } if (FUIN_EN(audio_opts)) { u8 *i_feature; i_feature = (u8 *)in_feature_unit_desc + in_feature_unit_desc->bLength - 1; *i_feature = us[STR_FU_IN].id; } /* Set channel numbers */ usb_out_it_desc.bNrChannels = num_channels(audio_opts->c_chmask); usb_out_it_desc.wChannelConfig = cpu_to_le16(audio_opts->c_chmask); as_out_type_i_desc.bNrChannels = num_channels(audio_opts->c_chmask); as_out_type_i_desc.bSubframeSize = audio_opts->c_ssize; as_out_type_i_desc.bBitResolution = audio_opts->c_ssize * 8; io_in_it_desc.bNrChannels = num_channels(audio_opts->p_chmask); io_in_it_desc.wChannelConfig = cpu_to_le16(audio_opts->p_chmask); as_in_type_i_desc.bNrChannels = num_channels(audio_opts->p_chmask); as_in_type_i_desc.bSubframeSize = audio_opts->p_ssize; as_in_type_i_desc.bBitResolution = audio_opts->p_ssize * 8; if (FUOUT_EN(audio_opts)) { __le16 *bma = (__le16 *)&out_feature_unit_desc->bmaControls[0]; u32 control = 0; if (audio_opts->c_mute_present) control |= UAC_FU_MUTE; if (audio_opts->c_volume_present) control |= UAC_FU_VOLUME; *bma = cpu_to_le16(control); } if (FUIN_EN(audio_opts)) { __le16 *bma = (__le16 *)&in_feature_unit_desc->bmaControls[0]; u32 control = 0; if (audio_opts->p_mute_present) control |= UAC_FU_MUTE; if (audio_opts->p_volume_present) control |= UAC_FU_VOLUME; *bma = cpu_to_le16(control); } /* Set sample rates */ rate = audio_opts->c_srate; sam_freq = as_out_type_i_desc.tSamFreq[0]; memcpy(sam_freq, &rate, 3); rate = audio_opts->p_srate; sam_freq = as_in_type_i_desc.tSamFreq[0]; memcpy(sam_freq, &rate, 3); /* allocate instance-specific interface IDs, and patch descriptors */ status = usb_interface_id(c, f); if (status < 0) goto err_free_fu; ac_interface_desc.bInterfaceNumber = status; uac1->ac_intf = status; uac1->ac_alt = 0; ba_iface_id = 0; if (EPOUT_EN(audio_opts)) { status = usb_interface_id(c, f); if (status < 0) goto err_free_fu; as_out_interface_alt_0_desc.bInterfaceNumber = status; as_out_interface_alt_1_desc.bInterfaceNumber = status; ac_header_desc->baInterfaceNr[ba_iface_id++] = status; uac1->as_out_intf = status; uac1->as_out_alt = 0; } if (EPIN_EN(audio_opts)) { status = usb_interface_id(c, f); if (status < 0) goto err_free_fu; as_in_interface_alt_0_desc.bInterfaceNumber = status; as_in_interface_alt_1_desc.bInterfaceNumber = status; ac_header_desc->baInterfaceNr[ba_iface_id++] = status; uac1->as_in_intf = status; uac1->as_in_alt = 0; } audio->gadget = gadget; status = -ENODEV; ac_interface_desc.bNumEndpoints = 0; /* allocate AC interrupt endpoint */ if (FUOUT_EN(audio_opts) || FUIN_EN(audio_opts)) { ep = usb_ep_autoconfig(cdev->gadget, &ac_int_ep_desc); if (!ep) goto err_free_fu; uac1->int_ep = ep; uac1->int_ep->desc = &ac_int_ep_desc; ac_interface_desc.bNumEndpoints = 1; } /* allocate instance-specific endpoints */ if (EPOUT_EN(audio_opts)) { ep = usb_ep_autoconfig(cdev->gadget, &as_out_ep_desc); if (!ep) goto err_free_fu; audio->out_ep = ep; audio->out_ep->desc = &as_out_ep_desc; } if (EPIN_EN(audio_opts)) { ep = usb_ep_autoconfig(cdev->gadget, &as_in_ep_desc); if (!ep) goto err_free_fu; audio->in_ep = ep; audio->in_ep->desc = &as_in_ep_desc; } setup_descriptor(audio_opts); /* copy descriptors, and track endpoint copies */ status = usb_assign_descriptors(f, f_audio_desc, f_audio_desc, NULL, NULL); if (status) goto err_free_fu; audio->out_ep_maxpsize = le16_to_cpu(as_out_ep_desc.wMaxPacketSize); audio->in_ep_maxpsize = le16_to_cpu(as_in_ep_desc.wMaxPacketSize); audio->params.c_chmask = audio_opts->c_chmask; audio->params.c_srate = audio_opts->c_srate; audio->params.c_ssize = audio_opts->c_ssize; if (FUIN_EN(audio_opts)) { audio->params.p_fu.id = USB_IN_FU_ID; audio->params.p_fu.mute_present = audio_opts->p_mute_present; audio->params.p_fu.volume_present = audio_opts->p_volume_present; audio->params.p_fu.volume_min = audio_opts->p_volume_min; audio->params.p_fu.volume_max = audio_opts->p_volume_max; audio->params.p_fu.volume_res = audio_opts->p_volume_res; } audio->params.p_chmask = audio_opts->p_chmask; audio->params.p_srate = audio_opts->p_srate; audio->params.p_ssize = audio_opts->p_ssize; if (FUOUT_EN(audio_opts)) { audio->params.c_fu.id = USB_OUT_FU_ID; audio->params.c_fu.mute_present = audio_opts->c_mute_present; audio->params.c_fu.volume_present = audio_opts->c_volume_present; audio->params.c_fu.volume_min = audio_opts->c_volume_min; audio->params.c_fu.volume_max = audio_opts->c_volume_max; audio->params.c_fu.volume_res = audio_opts->c_volume_res; } audio->params.req_number = audio_opts->req_number; audio->params.fb_max = FBACK_FAST_MAX; if (FUOUT_EN(audio_opts) || FUIN_EN(audio_opts)) audio->notify = audio_notify; status = g_audio_setup(audio, "UAC1_PCM", "UAC1_Gadget"); if (status) goto err_card_register; return 0; err_card_register: usb_free_all_descriptors(f); err_free_fu: kfree(out_feature_unit_desc); out_feature_unit_desc = NULL; kfree(in_feature_unit_desc); in_feature_unit_desc = NULL; fail: kfree(ac_header_desc); ac_header_desc = NULL; return status; } /*-------------------------------------------------------------------------*/ static inline struct f_uac1_opts *to_f_uac1_opts(struct config_item *item) { return container_of(to_config_group(item), struct f_uac1_opts, func_inst.group); } static void f_uac1_attr_release(struct config_item *item) { struct f_uac1_opts *opts = to_f_uac1_opts(item); usb_put_function_instance(&opts->func_inst); } static struct configfs_item_operations f_uac1_item_ops = { .release = f_uac1_attr_release, }; #define uac1_kstrtou32 kstrtou32 #define uac1_kstrtos16 kstrtos16 #define uac1_kstrtobool(s, base, res) kstrtobool((s), (res)) static const char *u32_fmt = "%u\n"; static const char *s16_fmt = "%hd\n"; static const char *bool_fmt = "%u\n"; #define UAC1_ATTRIBUTE(type, name) \ static ssize_t f_uac1_opts_##name##_show( \ struct config_item *item, \ char *page) \ { \ struct f_uac1_opts *opts = to_f_uac1_opts(item); \ int result; \ \ mutex_lock(&opts->lock); \ result = sprintf(page, type##_fmt, opts->name); \ mutex_unlock(&opts->lock); \ \ return result; \ } \ \ static ssize_t f_uac1_opts_##name##_store( \ struct config_item *item, \ const char *page, size_t len) \ { \ struct f_uac1_opts *opts = to_f_uac1_opts(item); \ int ret; \ type num; \ \ mutex_lock(&opts->lock); \ if (opts->refcnt) { \ ret = -EBUSY; \ goto end; \ } \ \ ret = uac1_kstrto##type(page, 0, &num); \ if (ret) \ goto end; \ \ opts->name = num; \ ret = len; \ \ end: \ mutex_unlock(&opts->lock); \ return ret; \ } \ \ CONFIGFS_ATTR(f_uac1_opts_, name) UAC1_ATTRIBUTE(u32, c_chmask); UAC1_ATTRIBUTE(u32, c_srate); UAC1_ATTRIBUTE(u32, c_ssize); UAC1_ATTRIBUTE(u32, p_chmask); UAC1_ATTRIBUTE(u32, p_srate); UAC1_ATTRIBUTE(u32, p_ssize); UAC1_ATTRIBUTE(u32, req_number); UAC1_ATTRIBUTE(bool, p_mute_present); UAC1_ATTRIBUTE(bool, p_volume_present); UAC1_ATTRIBUTE(s16, p_volume_min); UAC1_ATTRIBUTE(s16, p_volume_max); UAC1_ATTRIBUTE(s16, p_volume_res); UAC1_ATTRIBUTE(bool, c_mute_present); UAC1_ATTRIBUTE(bool, c_volume_present); UAC1_ATTRIBUTE(s16, c_volume_min); UAC1_ATTRIBUTE(s16, c_volume_max); UAC1_ATTRIBUTE(s16, c_volume_res); static struct configfs_attribute *f_uac1_attrs[] = { &f_uac1_opts_attr_c_chmask, &f_uac1_opts_attr_c_srate, &f_uac1_opts_attr_c_ssize, &f_uac1_opts_attr_p_chmask, &f_uac1_opts_attr_p_srate, &f_uac1_opts_attr_p_ssize, &f_uac1_opts_attr_req_number, &f_uac1_opts_attr_p_mute_present, &f_uac1_opts_attr_p_volume_present, &f_uac1_opts_attr_p_volume_min, &f_uac1_opts_attr_p_volume_max, &f_uac1_opts_attr_p_volume_res, &f_uac1_opts_attr_c_mute_present, &f_uac1_opts_attr_c_volume_present, &f_uac1_opts_attr_c_volume_min, &f_uac1_opts_attr_c_volume_max, &f_uac1_opts_attr_c_volume_res, NULL, }; static const struct config_item_type f_uac1_func_type = { .ct_item_ops = &f_uac1_item_ops, .ct_attrs = f_uac1_attrs, .ct_owner = THIS_MODULE, }; static void f_audio_free_inst(struct usb_function_instance *f) { struct f_uac1_opts *opts; opts = container_of(f, struct f_uac1_opts, func_inst); kfree(opts); } static struct usb_function_instance *f_audio_alloc_inst(void) { struct f_uac1_opts *opts; opts = kzalloc(sizeof(*opts), GFP_KERNEL); if (!opts) return ERR_PTR(-ENOMEM); mutex_init(&opts->lock); opts->func_inst.free_func_inst = f_audio_free_inst; config_group_init_type_name(&opts->func_inst.group, "", &f_uac1_func_type); opts->c_chmask = UAC1_DEF_CCHMASK; opts->c_srate = UAC1_DEF_CSRATE; opts->c_ssize = UAC1_DEF_CSSIZE; opts->p_chmask = UAC1_DEF_PCHMASK; opts->p_srate = UAC1_DEF_PSRATE; opts->p_ssize = UAC1_DEF_PSSIZE; opts->p_mute_present = UAC1_DEF_MUTE_PRESENT; opts->p_volume_present = UAC1_DEF_VOLUME_PRESENT; opts->p_volume_min = UAC1_DEF_MIN_DB; opts->p_volume_max = UAC1_DEF_MAX_DB; opts->p_volume_res = UAC1_DEF_RES_DB; opts->c_mute_present = UAC1_DEF_MUTE_PRESENT; opts->c_volume_present = UAC1_DEF_VOLUME_PRESENT; opts->c_volume_min = UAC1_DEF_MIN_DB; opts->c_volume_max = UAC1_DEF_MAX_DB; opts->c_volume_res = UAC1_DEF_RES_DB; opts->req_number = UAC1_DEF_REQ_NUM; return &opts->func_inst; } static void f_audio_free(struct usb_function *f) { struct g_audio *audio; struct f_uac1_opts *opts; audio = func_to_g_audio(f); opts = container_of(f->fi, struct f_uac1_opts, func_inst); kfree(audio); mutex_lock(&opts->lock); --opts->refcnt; mutex_unlock(&opts->lock); } static void f_audio_unbind(struct usb_configuration *c, struct usb_function *f) { struct g_audio *audio = func_to_g_audio(f); g_audio_cleanup(audio); usb_free_all_descriptors(f); kfree(out_feature_unit_desc); out_feature_unit_desc = NULL; kfree(in_feature_unit_desc); in_feature_unit_desc = NULL; kfree(ac_header_desc); ac_header_desc = NULL; audio->gadget = NULL; } static struct usb_function *f_audio_alloc(struct usb_function_instance *fi) { struct f_uac1 *uac1; struct f_uac1_opts *opts; /* allocate and initialize one new instance */ uac1 = kzalloc(sizeof(*uac1), GFP_KERNEL); if (!uac1) return ERR_PTR(-ENOMEM); opts = container_of(fi, struct f_uac1_opts, func_inst); mutex_lock(&opts->lock); ++opts->refcnt; mutex_unlock(&opts->lock); uac1->g_audio.func.name = "uac1_func"; uac1->g_audio.func.bind = f_audio_bind; uac1->g_audio.func.unbind = f_audio_unbind; uac1->g_audio.func.set_alt = f_audio_set_alt; uac1->g_audio.func.get_alt = f_audio_get_alt; uac1->g_audio.func.setup = f_audio_setup; uac1->g_audio.func.disable = f_audio_disable; uac1->g_audio.func.free_func = f_audio_free; return &uac1->g_audio.func; } DECLARE_USB_FUNCTION_INIT(uac1, f_audio_alloc_inst, f_audio_alloc); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Ruslan Bilovol");