// SPDX-License-Identifier: GPL-2.0+ /* * u_audio.c -- interface to USB gadget "ALSA sound card" utilities * * Copyright (C) 2016 * Author: Ruslan Bilovol * * Sound card implementation was cut-and-pasted with changes * from f_uac2.c and has: * Copyright (C) 2011 * Yadwinder Singh (yadi.brar01@gmail.com) * Jaswinder Singh (jaswinder.singh@linaro.org) */ #include #include #include #include #include #include #include #include #include "u_audio.h" #define BUFF_SIZE_MAX (PAGE_SIZE * 16) #define PRD_SIZE_MAX PAGE_SIZE #define MIN_PERIODS 4 enum { UAC_FBACK_CTRL, UAC_P_PITCH_CTRL, UAC_MUTE_CTRL, UAC_VOLUME_CTRL, }; /* Runtime data params for one stream */ struct uac_rtd_params { struct snd_uac_chip *uac; /* parent chip */ bool ep_enabled; /* if the ep is enabled */ struct snd_pcm_substream *ss; /* Ring buffer */ ssize_t hw_ptr; void *rbuf; unsigned int pitch; /* Stream pitch ratio to 1000000 */ unsigned int max_psize; /* MaxPacketSize of endpoint */ struct usb_request **reqs; struct usb_request *req_fback; /* Feedback endpoint request */ bool fb_ep_enabled; /* if the ep is enabled */ /* Volume/Mute controls and their state */ int fu_id; /* Feature Unit ID */ struct snd_kcontrol *snd_kctl_volume; struct snd_kcontrol *snd_kctl_mute; s16 volume_min, volume_max, volume_res; s16 volume; int mute; spinlock_t lock; /* lock for control transfers */ }; struct snd_uac_chip { struct g_audio *audio_dev; struct uac_rtd_params p_prm; struct uac_rtd_params c_prm; struct snd_card *card; struct snd_pcm *pcm; /* pre-calculated values for playback iso completion */ unsigned long long p_residue_mil; unsigned int p_interval; unsigned int p_framesize; }; static const struct snd_pcm_hardware uac_pcm_hardware = { .info = SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME, .rates = SNDRV_PCM_RATE_CONTINUOUS, .periods_max = BUFF_SIZE_MAX / PRD_SIZE_MAX, .buffer_bytes_max = BUFF_SIZE_MAX, .period_bytes_max = PRD_SIZE_MAX, .periods_min = MIN_PERIODS, }; static void u_audio_set_fback_frequency(enum usb_device_speed speed, struct usb_ep *out_ep, unsigned long long freq, unsigned int pitch, void *buf) { u32 ff = 0; const struct usb_endpoint_descriptor *ep_desc; /* * Because the pitch base is 1000000, the final divider here * will be 1000 * 1000000 = 1953125 << 9 * * Instead of dealing with big numbers lets fold this 9 left shift */ if (speed == USB_SPEED_FULL) { /* * Full-speed feedback endpoints report frequency * in samples/frame * Format is encoded in Q10.10 left-justified in the 24 bits, * so that it has a Q10.14 format. * * ff = (freq << 14) / 1000 */ freq <<= 5; } else { /* * High-speed feedback endpoints report frequency * in samples/microframe. * Format is encoded in Q12.13 fitted into four bytes so that * the binary point is located between the second and the third * byte fromat (that is Q16.16) * * ff = (freq << 16) / 8000 * * Win10 and OSX UAC2 drivers require number of samples per packet * in order to honor the feedback value. * Linux snd-usb-audio detects the applied bit-shift automatically. */ ep_desc = out_ep->desc; freq <<= 4 + (ep_desc->bInterval - 1); } ff = DIV_ROUND_CLOSEST_ULL((freq * pitch), 1953125); *(__le32 *)buf = cpu_to_le32(ff); } static void u_audio_iso_complete(struct usb_ep *ep, struct usb_request *req) { unsigned int pending; unsigned int hw_ptr; int status = req->status; struct snd_pcm_substream *substream; struct snd_pcm_runtime *runtime; struct uac_rtd_params *prm = req->context; struct snd_uac_chip *uac = prm->uac; struct g_audio *audio_dev = uac->audio_dev; struct uac_params *params = &audio_dev->params; unsigned int frames, p_pktsize; unsigned long long pitched_rate_mil, p_pktsize_residue_mil, residue_frames_mil, div_result; /* i/f shutting down */ if (!prm->ep_enabled) { usb_ep_free_request(ep, req); return; } if (req->status == -ESHUTDOWN) return; /* * We can't really do much about bad xfers. * Afterall, the ISOCH xfers could fail legitimately. */ if (status) pr_debug("%s: iso_complete status(%d) %d/%d\n", __func__, status, req->actual, req->length); substream = prm->ss; /* Do nothing if ALSA isn't active */ if (!substream) goto exit; snd_pcm_stream_lock(substream); runtime = substream->runtime; if (!runtime || !snd_pcm_running(substream)) { snd_pcm_stream_unlock(substream); goto exit; } if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { /* * For each IN packet, take the quotient of the current data * rate and the endpoint's interval as the base packet size. * If there is a residue from this division, add it to the * residue accumulator. */ unsigned long long p_interval_mil = uac->p_interval * 1000000ULL; pitched_rate_mil = (unsigned long long) params->p_srate * prm->pitch; div_result = pitched_rate_mil; do_div(div_result, uac->p_interval); do_div(div_result, 1000000); frames = (unsigned int) div_result; pr_debug("p_srate %d, pitch %d, interval_mil %llu, frames %d\n", params->p_srate, prm->pitch, p_interval_mil, frames); p_pktsize = min_t(unsigned int, uac->p_framesize * frames, ep->maxpacket); if (p_pktsize < ep->maxpacket) { residue_frames_mil = pitched_rate_mil - frames * p_interval_mil; p_pktsize_residue_mil = uac->p_framesize * residue_frames_mil; } else p_pktsize_residue_mil = 0; req->length = p_pktsize; uac->p_residue_mil += p_pktsize_residue_mil; /* * Whenever there are more bytes in the accumulator p_residue_mil than we * need to add one more sample frame, increase this packet's * size and decrease the accumulator. */ div_result = uac->p_residue_mil; do_div(div_result, uac->p_interval); do_div(div_result, 1000000); if ((unsigned int) div_result >= uac->p_framesize) { req->length += uac->p_framesize; uac->p_residue_mil -= uac->p_framesize * p_interval_mil; pr_debug("increased req length to %d\n", req->length); } pr_debug("remains uac->p_residue_mil %llu\n", uac->p_residue_mil); req->actual = req->length; } hw_ptr = prm->hw_ptr; /* Pack USB load in ALSA ring buffer */ pending = runtime->dma_bytes - hw_ptr; if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { if (unlikely(pending < req->actual)) { memcpy(req->buf, runtime->dma_area + hw_ptr, pending); memcpy(req->buf + pending, runtime->dma_area, req->actual - pending); } else { memcpy(req->buf, runtime->dma_area + hw_ptr, req->actual); } } else { if (unlikely(pending < req->actual)) { memcpy(runtime->dma_area + hw_ptr, req->buf, pending); memcpy(runtime->dma_area, req->buf + pending, req->actual - pending); } else { memcpy(runtime->dma_area + hw_ptr, req->buf, req->actual); } } /* update hw_ptr after data is copied to memory */ prm->hw_ptr = (hw_ptr + req->actual) % runtime->dma_bytes; hw_ptr = prm->hw_ptr; snd_pcm_stream_unlock(substream); if ((hw_ptr % snd_pcm_lib_period_bytes(substream)) < req->actual) snd_pcm_period_elapsed(substream); exit: if (usb_ep_queue(ep, req, GFP_ATOMIC)) dev_err(uac->card->dev, "%d Error!\n", __LINE__); } static void u_audio_iso_fback_complete(struct usb_ep *ep, struct usb_request *req) { struct uac_rtd_params *prm = req->context; struct snd_uac_chip *uac = prm->uac; struct g_audio *audio_dev = uac->audio_dev; struct uac_params *params = &audio_dev->params; int status = req->status; /* i/f shutting down */ if (!prm->fb_ep_enabled) { kfree(req->buf); usb_ep_free_request(ep, req); return; } if (req->status == -ESHUTDOWN) return; /* * We can't really do much about bad xfers. * Afterall, the ISOCH xfers could fail legitimately. */ if (status) pr_debug("%s: iso_complete status(%d) %d/%d\n", __func__, status, req->actual, req->length); u_audio_set_fback_frequency(audio_dev->gadget->speed, audio_dev->out_ep, params->c_srate, prm->pitch, req->buf); if (usb_ep_queue(ep, req, GFP_ATOMIC)) dev_err(uac->card->dev, "%d Error!\n", __LINE__); } static int uac_pcm_trigger(struct snd_pcm_substream *substream, int cmd) { struct snd_uac_chip *uac = snd_pcm_substream_chip(substream); struct uac_rtd_params *prm; struct g_audio *audio_dev; struct uac_params *params; int err = 0; audio_dev = uac->audio_dev; params = &audio_dev->params; if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) prm = &uac->p_prm; else prm = &uac->c_prm; /* Reset */ prm->hw_ptr = 0; switch (cmd) { case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_RESUME: prm->ss = substream; break; case SNDRV_PCM_TRIGGER_STOP: case SNDRV_PCM_TRIGGER_SUSPEND: prm->ss = NULL; break; default: err = -EINVAL; } /* Clear buffer after Play stops */ if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK && !prm->ss) memset(prm->rbuf, 0, prm->max_psize * params->req_number); return err; } static snd_pcm_uframes_t uac_pcm_pointer(struct snd_pcm_substream *substream) { struct snd_uac_chip *uac = snd_pcm_substream_chip(substream); struct uac_rtd_params *prm; if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) prm = &uac->p_prm; else prm = &uac->c_prm; return bytes_to_frames(substream->runtime, prm->hw_ptr); } static u64 uac_ssize_to_fmt(int ssize) { u64 ret; switch (ssize) { case 3: ret = SNDRV_PCM_FMTBIT_S24_3LE; break; case 4: ret = SNDRV_PCM_FMTBIT_S32_LE; break; default: ret = SNDRV_PCM_FMTBIT_S16_LE; break; } return ret; } static int uac_pcm_open(struct snd_pcm_substream *substream) { struct snd_uac_chip *uac = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct g_audio *audio_dev; struct uac_params *params; int p_ssize, c_ssize; int p_srate, c_srate; int p_chmask, c_chmask; audio_dev = uac->audio_dev; params = &audio_dev->params; p_ssize = params->p_ssize; c_ssize = params->c_ssize; p_srate = params->p_srate; c_srate = params->c_srate; p_chmask = params->p_chmask; c_chmask = params->c_chmask; uac->p_residue_mil = 0; runtime->hw = uac_pcm_hardware; if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { runtime->hw.rate_min = p_srate; runtime->hw.formats = uac_ssize_to_fmt(p_ssize); runtime->hw.channels_min = num_channels(p_chmask); runtime->hw.period_bytes_min = 2 * uac->p_prm.max_psize / runtime->hw.periods_min; } else { runtime->hw.rate_min = c_srate; runtime->hw.formats = uac_ssize_to_fmt(c_ssize); runtime->hw.channels_min = num_channels(c_chmask); runtime->hw.period_bytes_min = 2 * uac->c_prm.max_psize / runtime->hw.periods_min; } runtime->hw.rate_max = runtime->hw.rate_min; runtime->hw.channels_max = runtime->hw.channels_min; snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS); return 0; } /* ALSA cries without these function pointers */ static int uac_pcm_null(struct snd_pcm_substream *substream) { return 0; } static const struct snd_pcm_ops uac_pcm_ops = { .open = uac_pcm_open, .close = uac_pcm_null, .trigger = uac_pcm_trigger, .pointer = uac_pcm_pointer, .prepare = uac_pcm_null, }; static inline void free_ep(struct uac_rtd_params *prm, struct usb_ep *ep) { struct snd_uac_chip *uac = prm->uac; struct g_audio *audio_dev; struct uac_params *params; int i; if (!prm->ep_enabled) return; audio_dev = uac->audio_dev; params = &audio_dev->params; for (i = 0; i < params->req_number; i++) { if (prm->reqs[i]) { if (usb_ep_dequeue(ep, prm->reqs[i])) usb_ep_free_request(ep, prm->reqs[i]); /* * If usb_ep_dequeue() cannot successfully dequeue the * request, the request will be freed by the completion * callback. */ prm->reqs[i] = NULL; } } prm->ep_enabled = false; if (usb_ep_disable(ep)) dev_err(uac->card->dev, "%s:%d Error!\n", __func__, __LINE__); } static inline void free_ep_fback(struct uac_rtd_params *prm, struct usb_ep *ep) { struct snd_uac_chip *uac = prm->uac; if (!prm->fb_ep_enabled) return; if (prm->req_fback) { if (usb_ep_dequeue(ep, prm->req_fback)) { kfree(prm->req_fback->buf); usb_ep_free_request(ep, prm->req_fback); } prm->req_fback = NULL; } prm->fb_ep_enabled = false; if (usb_ep_disable(ep)) dev_err(uac->card->dev, "%s:%d Error!\n", __func__, __LINE__); } int u_audio_start_capture(struct g_audio *audio_dev) { struct snd_uac_chip *uac = audio_dev->uac; struct usb_gadget *gadget = audio_dev->gadget; struct device *dev = &gadget->dev; struct usb_request *req, *req_fback; struct usb_ep *ep, *ep_fback; struct uac_rtd_params *prm; struct uac_params *params = &audio_dev->params; int req_len, i; ep = audio_dev->out_ep; prm = &uac->c_prm; config_ep_by_speed(gadget, &audio_dev->func, ep); req_len = ep->maxpacket; prm->ep_enabled = true; usb_ep_enable(ep); for (i = 0; i < params->req_number; i++) { if (!prm->reqs[i]) { req = usb_ep_alloc_request(ep, GFP_ATOMIC); if (req == NULL) return -ENOMEM; prm->reqs[i] = req; req->zero = 0; req->context = prm; req->length = req_len; req->complete = u_audio_iso_complete; req->buf = prm->rbuf + i * ep->maxpacket; } if (usb_ep_queue(ep, prm->reqs[i], GFP_ATOMIC)) dev_err(dev, "%s:%d Error!\n", __func__, __LINE__); } ep_fback = audio_dev->in_ep_fback; if (!ep_fback) return 0; /* Setup feedback endpoint */ config_ep_by_speed(gadget, &audio_dev->func, ep_fback); prm->fb_ep_enabled = true; usb_ep_enable(ep_fback); req_len = ep_fback->maxpacket; req_fback = usb_ep_alloc_request(ep_fback, GFP_ATOMIC); if (req_fback == NULL) return -ENOMEM; prm->req_fback = req_fback; req_fback->zero = 0; req_fback->context = prm; req_fback->length = req_len; req_fback->complete = u_audio_iso_fback_complete; req_fback->buf = kzalloc(req_len, GFP_ATOMIC); if (!req_fback->buf) return -ENOMEM; /* * Configure the feedback endpoint's reported frequency. * Always start with original frequency since its deviation can't * be meauserd at start of playback */ prm->pitch = 1000000; u_audio_set_fback_frequency(audio_dev->gadget->speed, ep, params->c_srate, prm->pitch, req_fback->buf); if (usb_ep_queue(ep_fback, req_fback, GFP_ATOMIC)) dev_err(dev, "%s:%d Error!\n", __func__, __LINE__); return 0; } EXPORT_SYMBOL_GPL(u_audio_start_capture); void u_audio_stop_capture(struct g_audio *audio_dev) { struct snd_uac_chip *uac = audio_dev->uac; if (audio_dev->in_ep_fback) free_ep_fback(&uac->c_prm, audio_dev->in_ep_fback); free_ep(&uac->c_prm, audio_dev->out_ep); } EXPORT_SYMBOL_GPL(u_audio_stop_capture); int u_audio_start_playback(struct g_audio *audio_dev) { struct snd_uac_chip *uac = audio_dev->uac; struct usb_gadget *gadget = audio_dev->gadget; struct device *dev = &gadget->dev; struct usb_request *req; struct usb_ep *ep; struct uac_rtd_params *prm; struct uac_params *params = &audio_dev->params; unsigned int factor; const struct usb_endpoint_descriptor *ep_desc; int req_len, i; unsigned int p_pktsize; ep = audio_dev->in_ep; prm = &uac->p_prm; config_ep_by_speed(gadget, &audio_dev->func, ep); ep_desc = ep->desc; /* * Always start with original frequency */ prm->pitch = 1000000; /* pre-calculate the playback endpoint's interval */ if (gadget->speed == USB_SPEED_FULL) factor = 1000; else factor = 8000; /* pre-compute some values for iso_complete() */ uac->p_framesize = params->p_ssize * num_channels(params->p_chmask); uac->p_interval = factor / (1 << (ep_desc->bInterval - 1)); p_pktsize = min_t(unsigned int, uac->p_framesize * (params->p_srate / uac->p_interval), ep->maxpacket); req_len = p_pktsize; uac->p_residue_mil = 0; prm->ep_enabled = true; usb_ep_enable(ep); for (i = 0; i < params->req_number; i++) { if (!prm->reqs[i]) { req = usb_ep_alloc_request(ep, GFP_ATOMIC); if (req == NULL) return -ENOMEM; prm->reqs[i] = req; req->zero = 0; req->context = prm; req->length = req_len; req->complete = u_audio_iso_complete; req->buf = prm->rbuf + i * ep->maxpacket; } if (usb_ep_queue(ep, prm->reqs[i], GFP_ATOMIC)) dev_err(dev, "%s:%d Error!\n", __func__, __LINE__); } return 0; } EXPORT_SYMBOL_GPL(u_audio_start_playback); void u_audio_stop_playback(struct g_audio *audio_dev) { struct snd_uac_chip *uac = audio_dev->uac; free_ep(&uac->p_prm, audio_dev->in_ep); } EXPORT_SYMBOL_GPL(u_audio_stop_playback); int u_audio_get_volume(struct g_audio *audio_dev, int playback, s16 *val) { struct snd_uac_chip *uac = audio_dev->uac; struct uac_rtd_params *prm; unsigned long flags; if (playback) prm = &uac->p_prm; else prm = &uac->c_prm; spin_lock_irqsave(&prm->lock, flags); *val = prm->volume; spin_unlock_irqrestore(&prm->lock, flags); return 0; } EXPORT_SYMBOL_GPL(u_audio_get_volume); int u_audio_set_volume(struct g_audio *audio_dev, int playback, s16 val) { struct snd_uac_chip *uac = audio_dev->uac; struct uac_rtd_params *prm; unsigned long flags; int change = 0; if (playback) prm = &uac->p_prm; else prm = &uac->c_prm; spin_lock_irqsave(&prm->lock, flags); val = clamp(val, prm->volume_min, prm->volume_max); if (prm->volume != val) { prm->volume = val; change = 1; } spin_unlock_irqrestore(&prm->lock, flags); if (change) snd_ctl_notify(uac->card, SNDRV_CTL_EVENT_MASK_VALUE, &prm->snd_kctl_volume->id); return 0; } EXPORT_SYMBOL_GPL(u_audio_set_volume); int u_audio_get_mute(struct g_audio *audio_dev, int playback, int *val) { struct snd_uac_chip *uac = audio_dev->uac; struct uac_rtd_params *prm; unsigned long flags; if (playback) prm = &uac->p_prm; else prm = &uac->c_prm; spin_lock_irqsave(&prm->lock, flags); *val = prm->mute; spin_unlock_irqrestore(&prm->lock, flags); return 0; } EXPORT_SYMBOL_GPL(u_audio_get_mute); int u_audio_set_mute(struct g_audio *audio_dev, int playback, int val) { struct snd_uac_chip *uac = audio_dev->uac; struct uac_rtd_params *prm; unsigned long flags; int change = 0; int mute; if (playback) prm = &uac->p_prm; else prm = &uac->c_prm; mute = val ? 1 : 0; spin_lock_irqsave(&prm->lock, flags); if (prm->mute != mute) { prm->mute = mute; change = 1; } spin_unlock_irqrestore(&prm->lock, flags); if (change) snd_ctl_notify(uac->card, SNDRV_CTL_EVENT_MASK_VALUE, &prm->snd_kctl_mute->id); return 0; } EXPORT_SYMBOL_GPL(u_audio_set_mute); static int u_audio_pitch_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct uac_rtd_params *prm = snd_kcontrol_chip(kcontrol); struct snd_uac_chip *uac = prm->uac; struct g_audio *audio_dev = uac->audio_dev; struct uac_params *params = &audio_dev->params; unsigned int pitch_min, pitch_max; pitch_min = (1000 - FBACK_SLOW_MAX) * 1000; pitch_max = (1000 + params->fb_max) * 1000; uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; uinfo->value.integer.min = pitch_min; uinfo->value.integer.max = pitch_max; uinfo->value.integer.step = 1; return 0; } static int u_audio_pitch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct uac_rtd_params *prm = snd_kcontrol_chip(kcontrol); ucontrol->value.integer.value[0] = prm->pitch; return 0; } static int u_audio_pitch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct uac_rtd_params *prm = snd_kcontrol_chip(kcontrol); struct snd_uac_chip *uac = prm->uac; struct g_audio *audio_dev = uac->audio_dev; struct uac_params *params = &audio_dev->params; unsigned int val; unsigned int pitch_min, pitch_max; int change = 0; pitch_min = (1000 - FBACK_SLOW_MAX) * 1000; pitch_max = (1000 + params->fb_max) * 1000; val = ucontrol->value.integer.value[0]; if (val < pitch_min) val = pitch_min; if (val > pitch_max) val = pitch_max; if (prm->pitch != val) { prm->pitch = val; change = 1; } return change; } static int u_audio_mute_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; uinfo->count = 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = 1; uinfo->value.integer.step = 1; return 0; } static int u_audio_mute_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct uac_rtd_params *prm = snd_kcontrol_chip(kcontrol); unsigned long flags; spin_lock_irqsave(&prm->lock, flags); ucontrol->value.integer.value[0] = !prm->mute; spin_unlock_irqrestore(&prm->lock, flags); return 0; } static int u_audio_mute_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct uac_rtd_params *prm = snd_kcontrol_chip(kcontrol); struct snd_uac_chip *uac = prm->uac; struct g_audio *audio_dev = uac->audio_dev; unsigned int val; unsigned long flags; int change = 0; val = !ucontrol->value.integer.value[0]; spin_lock_irqsave(&prm->lock, flags); if (val != prm->mute) { prm->mute = val; change = 1; } spin_unlock_irqrestore(&prm->lock, flags); if (change && audio_dev->notify) audio_dev->notify(audio_dev, prm->fu_id, UAC_FU_MUTE); return change; } /* * TLV callback for mixer volume controls */ static int u_audio_volume_tlv(struct snd_kcontrol *kcontrol, int op_flag, unsigned int size, unsigned int __user *_tlv) { struct uac_rtd_params *prm = snd_kcontrol_chip(kcontrol); DECLARE_TLV_DB_MINMAX(scale, 0, 0); if (size < sizeof(scale)) return -ENOMEM; /* UAC volume resolution is 1/256 dB, TLV is 1/100 dB */ scale[2] = (prm->volume_min * 100) / 256; scale[3] = (prm->volume_max * 100) / 256; if (copy_to_user(_tlv, scale, sizeof(scale))) return -EFAULT; return 0; } static int u_audio_volume_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct uac_rtd_params *prm = snd_kcontrol_chip(kcontrol); uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = (prm->volume_max - prm->volume_min + prm->volume_res - 1) / prm->volume_res; uinfo->value.integer.step = 1; return 0; } static int u_audio_volume_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct uac_rtd_params *prm = snd_kcontrol_chip(kcontrol); unsigned long flags; spin_lock_irqsave(&prm->lock, flags); ucontrol->value.integer.value[0] = (prm->volume - prm->volume_min) / prm->volume_res; spin_unlock_irqrestore(&prm->lock, flags); return 0; } static int u_audio_volume_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct uac_rtd_params *prm = snd_kcontrol_chip(kcontrol); struct snd_uac_chip *uac = prm->uac; struct g_audio *audio_dev = uac->audio_dev; unsigned int val; s16 volume; unsigned long flags; int change = 0; val = ucontrol->value.integer.value[0]; spin_lock_irqsave(&prm->lock, flags); volume = (val * prm->volume_res) + prm->volume_min; volume = clamp(volume, prm->volume_min, prm->volume_max); if (volume != prm->volume) { prm->volume = volume; change = 1; } spin_unlock_irqrestore(&prm->lock, flags); if (change && audio_dev->notify) audio_dev->notify(audio_dev, prm->fu_id, UAC_FU_VOLUME); return change; } static struct snd_kcontrol_new u_audio_controls[] = { [UAC_FBACK_CTRL] { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = "Capture Pitch 1000000", .info = u_audio_pitch_info, .get = u_audio_pitch_get, .put = u_audio_pitch_put, }, [UAC_P_PITCH_CTRL] { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = "Playback Pitch 1000000", .info = u_audio_pitch_info, .get = u_audio_pitch_get, .put = u_audio_pitch_put, }, [UAC_MUTE_CTRL] { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "", /* will be filled later */ .info = u_audio_mute_info, .get = u_audio_mute_get, .put = u_audio_mute_put, }, [UAC_VOLUME_CTRL] { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "", /* will be filled later */ .info = u_audio_volume_info, .get = u_audio_volume_get, .put = u_audio_volume_put, }, }; int g_audio_setup(struct g_audio *g_audio, const char *pcm_name, const char *card_name) { struct snd_uac_chip *uac; struct snd_card *card; struct snd_pcm *pcm; struct snd_kcontrol *kctl; struct uac_params *params; int p_chmask, c_chmask; int i, err; if (!g_audio) return -EINVAL; uac = kzalloc(sizeof(*uac), GFP_KERNEL); if (!uac) return -ENOMEM; g_audio->uac = uac; uac->audio_dev = g_audio; params = &g_audio->params; p_chmask = params->p_chmask; c_chmask = params->c_chmask; if (c_chmask) { struct uac_rtd_params *prm = &uac->c_prm; spin_lock_init(&prm->lock); uac->c_prm.uac = uac; prm->max_psize = g_audio->out_ep_maxpsize; prm->reqs = kcalloc(params->req_number, sizeof(struct usb_request *), GFP_KERNEL); if (!prm->reqs) { err = -ENOMEM; goto fail; } prm->rbuf = kcalloc(params->req_number, prm->max_psize, GFP_KERNEL); if (!prm->rbuf) { prm->max_psize = 0; err = -ENOMEM; goto fail; } } if (p_chmask) { struct uac_rtd_params *prm = &uac->p_prm; spin_lock_init(&prm->lock); uac->p_prm.uac = uac; prm->max_psize = g_audio->in_ep_maxpsize; prm->reqs = kcalloc(params->req_number, sizeof(struct usb_request *), GFP_KERNEL); if (!prm->reqs) { err = -ENOMEM; goto fail; } prm->rbuf = kcalloc(params->req_number, prm->max_psize, GFP_KERNEL); if (!prm->rbuf) { prm->max_psize = 0; err = -ENOMEM; goto fail; } } /* Choose any slot, with no id */ err = snd_card_new(&g_audio->gadget->dev, -1, NULL, THIS_MODULE, 0, &card); if (err < 0) goto fail; uac->card = card; /* * Create first PCM device * Create a substream only for non-zero channel streams */ err = snd_pcm_new(uac->card, pcm_name, 0, p_chmask ? 1 : 0, c_chmask ? 1 : 0, &pcm); if (err < 0) goto snd_fail; strscpy(pcm->name, pcm_name, sizeof(pcm->name)); pcm->private_data = uac; uac->pcm = pcm; snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &uac_pcm_ops); snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &uac_pcm_ops); /* * Create mixer and controls * Create only if it's required on USB side */ if ((c_chmask && g_audio->in_ep_fback) || (p_chmask && params->p_fu.id) || (c_chmask && params->c_fu.id)) strscpy(card->mixername, card_name, sizeof(card->driver)); if (c_chmask && g_audio->in_ep_fback) { kctl = snd_ctl_new1(&u_audio_controls[UAC_FBACK_CTRL], &uac->c_prm); if (!kctl) { err = -ENOMEM; goto snd_fail; } kctl->id.device = pcm->device; kctl->id.subdevice = 0; err = snd_ctl_add(card, kctl); if (err < 0) goto snd_fail; } if (p_chmask) { kctl = snd_ctl_new1(&u_audio_controls[UAC_P_PITCH_CTRL], &uac->p_prm); if (!kctl) { err = -ENOMEM; goto snd_fail; } kctl->id.device = pcm->device; kctl->id.subdevice = 0; err = snd_ctl_add(card, kctl); if (err < 0) goto snd_fail; } for (i = 0; i <= SNDRV_PCM_STREAM_LAST; i++) { struct uac_rtd_params *prm; struct uac_fu_params *fu; char ctrl_name[24]; char *direction; if (!pcm->streams[i].substream_count) continue; if (i == SNDRV_PCM_STREAM_PLAYBACK) { prm = &uac->p_prm; fu = ¶ms->p_fu; direction = "Playback"; } else { prm = &uac->c_prm; fu = ¶ms->c_fu; direction = "Capture"; } prm->fu_id = fu->id; if (fu->mute_present) { snprintf(ctrl_name, sizeof(ctrl_name), "PCM %s Switch", direction); u_audio_controls[UAC_MUTE_CTRL].name = ctrl_name; kctl = snd_ctl_new1(&u_audio_controls[UAC_MUTE_CTRL], prm); if (!kctl) { err = -ENOMEM; goto snd_fail; } kctl->id.device = pcm->device; kctl->id.subdevice = 0; err = snd_ctl_add(card, kctl); if (err < 0) goto snd_fail; prm->snd_kctl_mute = kctl; prm->mute = 0; } if (fu->volume_present) { snprintf(ctrl_name, sizeof(ctrl_name), "PCM %s Volume", direction); u_audio_controls[UAC_VOLUME_CTRL].name = ctrl_name; kctl = snd_ctl_new1(&u_audio_controls[UAC_VOLUME_CTRL], prm); if (!kctl) { err = -ENOMEM; goto snd_fail; } kctl->id.device = pcm->device; kctl->id.subdevice = 0; kctl->tlv.c = u_audio_volume_tlv; kctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_TLV_READ | SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK; err = snd_ctl_add(card, kctl); if (err < 0) goto snd_fail; prm->snd_kctl_volume = kctl; prm->volume = fu->volume_max; prm->volume_max = fu->volume_max; prm->volume_min = fu->volume_min; prm->volume_res = fu->volume_res; } } strscpy(card->driver, card_name, sizeof(card->driver)); strscpy(card->shortname, card_name, sizeof(card->shortname)); sprintf(card->longname, "%s %i", card_name, card->dev->id); snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_CONTINUOUS, NULL, 0, BUFF_SIZE_MAX); err = snd_card_register(card); if (!err) return 0; snd_fail: snd_card_free(card); fail: kfree(uac->p_prm.reqs); kfree(uac->c_prm.reqs); kfree(uac->p_prm.rbuf); kfree(uac->c_prm.rbuf); kfree(uac); return err; } EXPORT_SYMBOL_GPL(g_audio_setup); void g_audio_cleanup(struct g_audio *g_audio) { struct snd_uac_chip *uac; struct snd_card *card; if (!g_audio || !g_audio->uac) return; uac = g_audio->uac; card = uac->card; if (card) snd_card_free(card); kfree(uac->p_prm.reqs); kfree(uac->c_prm.reqs); kfree(uac->p_prm.rbuf); kfree(uac->c_prm.rbuf); kfree(uac); } EXPORT_SYMBOL_GPL(g_audio_cleanup); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("USB gadget \"ALSA sound card\" utilities"); MODULE_AUTHOR("Ruslan Bilovol");