// SPDX-License-Identifier: GPL-2.0 #include "bcachefs.h" #include "btree_cache.h" #include "btree_iter.h" #include "btree_key_cache.h" #include "btree_locking.h" #include "btree_update.h" #include "errcode.h" #include "error.h" #include "journal.h" #include "journal_reclaim.h" #include "trace.h" #include static inline bool btree_uses_pcpu_readers(enum btree_id id) { return id == BTREE_ID_subvolumes; } static struct kmem_cache *bch2_key_cache; static int bch2_btree_key_cache_cmp_fn(struct rhashtable_compare_arg *arg, const void *obj) { const struct bkey_cached *ck = obj; const struct bkey_cached_key *key = arg->key; return ck->key.btree_id != key->btree_id || !bpos_eq(ck->key.pos, key->pos); } static const struct rhashtable_params bch2_btree_key_cache_params = { .head_offset = offsetof(struct bkey_cached, hash), .key_offset = offsetof(struct bkey_cached, key), .key_len = sizeof(struct bkey_cached_key), .obj_cmpfn = bch2_btree_key_cache_cmp_fn, }; __flatten inline struct bkey_cached * bch2_btree_key_cache_find(struct bch_fs *c, enum btree_id btree_id, struct bpos pos) { struct bkey_cached_key key = { .btree_id = btree_id, .pos = pos, }; return rhashtable_lookup_fast(&c->btree_key_cache.table, &key, bch2_btree_key_cache_params); } static bool bkey_cached_lock_for_evict(struct bkey_cached *ck) { if (!six_trylock_intent(&ck->c.lock)) return false; if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) { six_unlock_intent(&ck->c.lock); return false; } if (!six_trylock_write(&ck->c.lock)) { six_unlock_intent(&ck->c.lock); return false; } return true; } static void bkey_cached_evict(struct btree_key_cache *c, struct bkey_cached *ck) { BUG_ON(rhashtable_remove_fast(&c->table, &ck->hash, bch2_btree_key_cache_params)); memset(&ck->key, ~0, sizeof(ck->key)); atomic_long_dec(&c->nr_keys); } static void bkey_cached_free(struct btree_key_cache *bc, struct bkey_cached *ck) { struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache); BUG_ON(test_bit(BKEY_CACHED_DIRTY, &ck->flags)); ck->btree_trans_barrier_seq = start_poll_synchronize_srcu(&c->btree_trans_barrier); if (ck->c.lock.readers) { list_move_tail(&ck->list, &bc->freed_pcpu); bc->nr_freed_pcpu++; } else { list_move_tail(&ck->list, &bc->freed_nonpcpu); bc->nr_freed_nonpcpu++; } atomic_long_inc(&bc->nr_freed); kfree(ck->k); ck->k = NULL; ck->u64s = 0; six_unlock_write(&ck->c.lock); six_unlock_intent(&ck->c.lock); } #ifdef __KERNEL__ static void __bkey_cached_move_to_freelist_ordered(struct btree_key_cache *bc, struct bkey_cached *ck) { struct bkey_cached *pos; bc->nr_freed_nonpcpu++; list_for_each_entry_reverse(pos, &bc->freed_nonpcpu, list) { if (ULONG_CMP_GE(ck->btree_trans_barrier_seq, pos->btree_trans_barrier_seq)) { list_move(&ck->list, &pos->list); return; } } list_move(&ck->list, &bc->freed_nonpcpu); } #endif static void bkey_cached_move_to_freelist(struct btree_key_cache *bc, struct bkey_cached *ck) { BUG_ON(test_bit(BKEY_CACHED_DIRTY, &ck->flags)); if (!ck->c.lock.readers) { #ifdef __KERNEL__ struct btree_key_cache_freelist *f; bool freed = false; preempt_disable(); f = this_cpu_ptr(bc->pcpu_freed); if (f->nr < ARRAY_SIZE(f->objs)) { f->objs[f->nr++] = ck; freed = true; } preempt_enable(); if (!freed) { mutex_lock(&bc->lock); preempt_disable(); f = this_cpu_ptr(bc->pcpu_freed); while (f->nr > ARRAY_SIZE(f->objs) / 2) { struct bkey_cached *ck2 = f->objs[--f->nr]; __bkey_cached_move_to_freelist_ordered(bc, ck2); } preempt_enable(); __bkey_cached_move_to_freelist_ordered(bc, ck); mutex_unlock(&bc->lock); } #else mutex_lock(&bc->lock); list_move_tail(&ck->list, &bc->freed_nonpcpu); bc->nr_freed_nonpcpu++; mutex_unlock(&bc->lock); #endif } else { mutex_lock(&bc->lock); list_move_tail(&ck->list, &bc->freed_pcpu); mutex_unlock(&bc->lock); } } static void bkey_cached_free_fast(struct btree_key_cache *bc, struct bkey_cached *ck) { struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache); ck->btree_trans_barrier_seq = start_poll_synchronize_srcu(&c->btree_trans_barrier); list_del_init(&ck->list); atomic_long_inc(&bc->nr_freed); kfree(ck->k); ck->k = NULL; ck->u64s = 0; bkey_cached_move_to_freelist(bc, ck); six_unlock_write(&ck->c.lock); six_unlock_intent(&ck->c.lock); } static struct bkey_cached * bkey_cached_alloc(struct btree_trans *trans, struct btree_path *path, bool *was_new) { struct bch_fs *c = trans->c; struct btree_key_cache *bc = &c->btree_key_cache; struct bkey_cached *ck = NULL; bool pcpu_readers = btree_uses_pcpu_readers(path->btree_id); int ret; if (!pcpu_readers) { #ifdef __KERNEL__ struct btree_key_cache_freelist *f; preempt_disable(); f = this_cpu_ptr(bc->pcpu_freed); if (f->nr) ck = f->objs[--f->nr]; preempt_enable(); if (!ck) { mutex_lock(&bc->lock); preempt_disable(); f = this_cpu_ptr(bc->pcpu_freed); while (!list_empty(&bc->freed_nonpcpu) && f->nr < ARRAY_SIZE(f->objs) / 2) { ck = list_last_entry(&bc->freed_nonpcpu, struct bkey_cached, list); list_del_init(&ck->list); bc->nr_freed_nonpcpu--; f->objs[f->nr++] = ck; } ck = f->nr ? f->objs[--f->nr] : NULL; preempt_enable(); mutex_unlock(&bc->lock); } #else mutex_lock(&bc->lock); if (!list_empty(&bc->freed_nonpcpu)) { ck = list_last_entry(&bc->freed_nonpcpu, struct bkey_cached, list); list_del_init(&ck->list); bc->nr_freed_nonpcpu--; } mutex_unlock(&bc->lock); #endif } else { mutex_lock(&bc->lock); if (!list_empty(&bc->freed_pcpu)) { ck = list_last_entry(&bc->freed_pcpu, struct bkey_cached, list); list_del_init(&ck->list); } mutex_unlock(&bc->lock); } if (ck) { ret = btree_node_lock_nopath(trans, &ck->c, SIX_LOCK_intent, _THIS_IP_); if (unlikely(ret)) { bkey_cached_move_to_freelist(bc, ck); return ERR_PTR(ret); } path->l[0].b = (void *) ck; path->l[0].lock_seq = six_lock_seq(&ck->c.lock); mark_btree_node_locked(trans, path, 0, BTREE_NODE_INTENT_LOCKED); ret = bch2_btree_node_lock_write(trans, path, &ck->c); if (unlikely(ret)) { btree_node_unlock(trans, path, 0); bkey_cached_move_to_freelist(bc, ck); return ERR_PTR(ret); } return ck; } ck = allocate_dropping_locks(trans, ret, kmem_cache_zalloc(bch2_key_cache, _gfp)); if (ret) { kmem_cache_free(bch2_key_cache, ck); return ERR_PTR(ret); } if (!ck) return NULL; INIT_LIST_HEAD(&ck->list); bch2_btree_lock_init(&ck->c, pcpu_readers ? SIX_LOCK_INIT_PCPU : 0); ck->c.cached = true; BUG_ON(!six_trylock_intent(&ck->c.lock)); BUG_ON(!six_trylock_write(&ck->c.lock)); *was_new = true; return ck; } static struct bkey_cached * bkey_cached_reuse(struct btree_key_cache *c) { struct bucket_table *tbl; struct rhash_head *pos; struct bkey_cached *ck; unsigned i; mutex_lock(&c->lock); rcu_read_lock(); tbl = rht_dereference_rcu(c->table.tbl, &c->table); for (i = 0; i < tbl->size; i++) rht_for_each_entry_rcu(ck, pos, tbl, i, hash) { if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags) && bkey_cached_lock_for_evict(ck)) { bkey_cached_evict(c, ck); goto out; } } ck = NULL; out: rcu_read_unlock(); mutex_unlock(&c->lock); return ck; } static struct bkey_cached * btree_key_cache_create(struct btree_trans *trans, struct btree_path *path) { struct bch_fs *c = trans->c; struct btree_key_cache *bc = &c->btree_key_cache; struct bkey_cached *ck; bool was_new = false; ck = bkey_cached_alloc(trans, path, &was_new); if (IS_ERR(ck)) return ck; if (unlikely(!ck)) { ck = bkey_cached_reuse(bc); if (unlikely(!ck)) { bch_err(c, "error allocating memory for key cache item, btree %s", bch2_btree_id_str(path->btree_id)); return ERR_PTR(-BCH_ERR_ENOMEM_btree_key_cache_create); } mark_btree_node_locked(trans, path, 0, BTREE_NODE_INTENT_LOCKED); } ck->c.level = 0; ck->c.btree_id = path->btree_id; ck->key.btree_id = path->btree_id; ck->key.pos = path->pos; ck->valid = false; ck->flags = 1U << BKEY_CACHED_ACCESSED; if (unlikely(rhashtable_lookup_insert_fast(&bc->table, &ck->hash, bch2_btree_key_cache_params))) { /* We raced with another fill: */ if (likely(was_new)) { six_unlock_write(&ck->c.lock); six_unlock_intent(&ck->c.lock); kfree(ck); } else { bkey_cached_free_fast(bc, ck); } mark_btree_node_locked(trans, path, 0, BTREE_NODE_UNLOCKED); return NULL; } atomic_long_inc(&bc->nr_keys); six_unlock_write(&ck->c.lock); return ck; } static int btree_key_cache_fill(struct btree_trans *trans, struct btree_path *ck_path, struct bkey_cached *ck) { struct btree_iter iter; struct bkey_s_c k; unsigned new_u64s = 0; struct bkey_i *new_k = NULL; int ret; k = bch2_bkey_get_iter(trans, &iter, ck->key.btree_id, ck->key.pos, BTREE_ITER_KEY_CACHE_FILL| BTREE_ITER_CACHED_NOFILL); ret = bkey_err(k); if (ret) goto err; if (!bch2_btree_node_relock(trans, ck_path, 0)) { trace_and_count(trans->c, trans_restart_relock_key_cache_fill, trans, _THIS_IP_, ck_path); ret = btree_trans_restart(trans, BCH_ERR_transaction_restart_key_cache_fill); goto err; } /* * bch2_varint_decode can read past the end of the buffer by at * most 7 bytes (it won't be used): */ new_u64s = k.k->u64s + 1; /* * Allocate some extra space so that the transaction commit path is less * likely to have to reallocate, since that requires a transaction * restart: */ new_u64s = min(256U, (new_u64s * 3) / 2); if (new_u64s > ck->u64s) { new_u64s = roundup_pow_of_two(new_u64s); new_k = kmalloc(new_u64s * sizeof(u64), GFP_NOWAIT|__GFP_NOWARN); if (!new_k) { bch2_trans_unlock(trans); new_k = kmalloc(new_u64s * sizeof(u64), GFP_KERNEL); if (!new_k) { bch_err(trans->c, "error allocating memory for key cache key, btree %s u64s %u", bch2_btree_id_str(ck->key.btree_id), new_u64s); ret = -BCH_ERR_ENOMEM_btree_key_cache_fill; goto err; } if (!bch2_btree_node_relock(trans, ck_path, 0)) { kfree(new_k); trace_and_count(trans->c, trans_restart_relock_key_cache_fill, trans, _THIS_IP_, ck_path); ret = btree_trans_restart(trans, BCH_ERR_transaction_restart_key_cache_fill); goto err; } ret = bch2_trans_relock(trans); if (ret) { kfree(new_k); goto err; } } } ret = bch2_btree_node_lock_write(trans, ck_path, &ck_path->l[0].b->c); if (ret) { kfree(new_k); goto err; } if (new_k) { kfree(ck->k); ck->u64s = new_u64s; ck->k = new_k; } bkey_reassemble(ck->k, k); ck->valid = true; bch2_btree_node_unlock_write(trans, ck_path, ck_path->l[0].b); /* We're not likely to need this iterator again: */ set_btree_iter_dontneed(&iter); err: bch2_trans_iter_exit(trans, &iter); return ret; } static noinline int bch2_btree_path_traverse_cached_slowpath(struct btree_trans *trans, struct btree_path *path, unsigned flags) { struct bch_fs *c = trans->c; struct bkey_cached *ck; int ret = 0; BUG_ON(path->level); path->l[1].b = NULL; if (bch2_btree_node_relock_notrace(trans, path, 0)) { ck = (void *) path->l[0].b; goto fill; } retry: ck = bch2_btree_key_cache_find(c, path->btree_id, path->pos); if (!ck) { ck = btree_key_cache_create(trans, path); ret = PTR_ERR_OR_ZERO(ck); if (ret) goto err; if (!ck) goto retry; mark_btree_node_locked(trans, path, 0, BTREE_NODE_INTENT_LOCKED); path->locks_want = 1; } else { enum six_lock_type lock_want = __btree_lock_want(path, 0); ret = btree_node_lock(trans, path, (void *) ck, 0, lock_want, _THIS_IP_); if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) goto err; BUG_ON(ret); if (ck->key.btree_id != path->btree_id || !bpos_eq(ck->key.pos, path->pos)) { six_unlock_type(&ck->c.lock, lock_want); goto retry; } mark_btree_node_locked(trans, path, 0, (enum btree_node_locked_type) lock_want); } path->l[0].lock_seq = six_lock_seq(&ck->c.lock); path->l[0].b = (void *) ck; fill: path->uptodate = BTREE_ITER_UPTODATE; if (!ck->valid && !(flags & BTREE_ITER_CACHED_NOFILL)) { /* * Using the underscore version because we haven't set * path->uptodate yet: */ if (!path->locks_want && !__bch2_btree_path_upgrade(trans, path, 1, NULL)) { trace_and_count(trans->c, trans_restart_key_cache_upgrade, trans, _THIS_IP_); ret = btree_trans_restart(trans, BCH_ERR_transaction_restart_key_cache_upgrade); goto err; } ret = btree_key_cache_fill(trans, path, ck); if (ret) goto err; ret = bch2_btree_path_relock(trans, path, _THIS_IP_); if (ret) goto err; path->uptodate = BTREE_ITER_UPTODATE; } if (!test_bit(BKEY_CACHED_ACCESSED, &ck->flags)) set_bit(BKEY_CACHED_ACCESSED, &ck->flags); BUG_ON(btree_node_locked_type(path, 0) != btree_lock_want(path, 0)); BUG_ON(path->uptodate); return ret; err: path->uptodate = BTREE_ITER_NEED_TRAVERSE; if (!bch2_err_matches(ret, BCH_ERR_transaction_restart)) { btree_node_unlock(trans, path, 0); path->l[0].b = ERR_PTR(ret); } return ret; } int bch2_btree_path_traverse_cached(struct btree_trans *trans, struct btree_path *path, unsigned flags) { struct bch_fs *c = trans->c; struct bkey_cached *ck; int ret = 0; EBUG_ON(path->level); path->l[1].b = NULL; if (bch2_btree_node_relock_notrace(trans, path, 0)) { ck = (void *) path->l[0].b; goto fill; } retry: ck = bch2_btree_key_cache_find(c, path->btree_id, path->pos); if (!ck) { return bch2_btree_path_traverse_cached_slowpath(trans, path, flags); } else { enum six_lock_type lock_want = __btree_lock_want(path, 0); ret = btree_node_lock(trans, path, (void *) ck, 0, lock_want, _THIS_IP_); EBUG_ON(ret && !bch2_err_matches(ret, BCH_ERR_transaction_restart)); if (ret) return ret; if (ck->key.btree_id != path->btree_id || !bpos_eq(ck->key.pos, path->pos)) { six_unlock_type(&ck->c.lock, lock_want); goto retry; } mark_btree_node_locked(trans, path, 0, (enum btree_node_locked_type) lock_want); } path->l[0].lock_seq = six_lock_seq(&ck->c.lock); path->l[0].b = (void *) ck; fill: if (!ck->valid) return bch2_btree_path_traverse_cached_slowpath(trans, path, flags); if (!test_bit(BKEY_CACHED_ACCESSED, &ck->flags)) set_bit(BKEY_CACHED_ACCESSED, &ck->flags); path->uptodate = BTREE_ITER_UPTODATE; EBUG_ON(!ck->valid); EBUG_ON(btree_node_locked_type(path, 0) != btree_lock_want(path, 0)); return ret; } static int btree_key_cache_flush_pos(struct btree_trans *trans, struct bkey_cached_key key, u64 journal_seq, unsigned commit_flags, bool evict) { struct bch_fs *c = trans->c; struct journal *j = &c->journal; struct btree_iter c_iter, b_iter; struct bkey_cached *ck = NULL; int ret; bch2_trans_iter_init(trans, &b_iter, key.btree_id, key.pos, BTREE_ITER_SLOTS| BTREE_ITER_INTENT| BTREE_ITER_ALL_SNAPSHOTS); bch2_trans_iter_init(trans, &c_iter, key.btree_id, key.pos, BTREE_ITER_CACHED| BTREE_ITER_INTENT); b_iter.flags &= ~BTREE_ITER_WITH_KEY_CACHE; ret = bch2_btree_iter_traverse(&c_iter); if (ret) goto out; ck = (void *) btree_iter_path(trans, &c_iter)->l[0].b; if (!ck) goto out; if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags)) { if (evict) goto evict; goto out; } BUG_ON(!ck->valid); if (journal_seq && ck->journal.seq != journal_seq) goto out; trans->journal_res.seq = ck->journal.seq; /* * If we're at the end of the journal, we really want to free up space * in the journal right away - we don't want to pin that old journal * sequence number with a new btree node write, we want to re-journal * the update */ if (ck->journal.seq == journal_last_seq(j)) commit_flags |= BCH_WATERMARK_reclaim; if (ck->journal.seq != journal_last_seq(j) || j->watermark == BCH_WATERMARK_stripe) commit_flags |= BCH_TRANS_COMMIT_no_journal_res; ret = bch2_btree_iter_traverse(&b_iter) ?: bch2_trans_update(trans, &b_iter, ck->k, BTREE_UPDATE_KEY_CACHE_RECLAIM| BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE| BTREE_TRIGGER_NORUN) ?: bch2_trans_commit(trans, NULL, NULL, BCH_TRANS_COMMIT_no_check_rw| BCH_TRANS_COMMIT_no_enospc| commit_flags); bch2_fs_fatal_err_on(ret && !bch2_err_matches(ret, BCH_ERR_transaction_restart) && !bch2_err_matches(ret, BCH_ERR_journal_reclaim_would_deadlock) && !bch2_journal_error(j), c, "error flushing key cache: %s", bch2_err_str(ret)); if (ret) goto out; bch2_journal_pin_drop(j, &ck->journal); struct btree_path *path = btree_iter_path(trans, &c_iter); BUG_ON(!btree_node_locked(path, 0)); if (!evict) { if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) { clear_bit(BKEY_CACHED_DIRTY, &ck->flags); atomic_long_dec(&c->btree_key_cache.nr_dirty); } } else { struct btree_path *path2; unsigned i; evict: trans_for_each_path(trans, path2, i) if (path2 != path) __bch2_btree_path_unlock(trans, path2); bch2_btree_node_lock_write_nofail(trans, path, &ck->c); if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) { clear_bit(BKEY_CACHED_DIRTY, &ck->flags); atomic_long_dec(&c->btree_key_cache.nr_dirty); } mark_btree_node_locked_noreset(path, 0, BTREE_NODE_UNLOCKED); bkey_cached_evict(&c->btree_key_cache, ck); bkey_cached_free_fast(&c->btree_key_cache, ck); } out: bch2_trans_iter_exit(trans, &b_iter); bch2_trans_iter_exit(trans, &c_iter); return ret; } int bch2_btree_key_cache_journal_flush(struct journal *j, struct journal_entry_pin *pin, u64 seq) { struct bch_fs *c = container_of(j, struct bch_fs, journal); struct bkey_cached *ck = container_of(pin, struct bkey_cached, journal); struct bkey_cached_key key; struct btree_trans *trans = bch2_trans_get(c); int srcu_idx = srcu_read_lock(&c->btree_trans_barrier); int ret = 0; btree_node_lock_nopath_nofail(trans, &ck->c, SIX_LOCK_read); key = ck->key; if (ck->journal.seq != seq || !test_bit(BKEY_CACHED_DIRTY, &ck->flags)) { six_unlock_read(&ck->c.lock); goto unlock; } if (ck->seq != seq) { bch2_journal_pin_update(&c->journal, ck->seq, &ck->journal, bch2_btree_key_cache_journal_flush); six_unlock_read(&ck->c.lock); goto unlock; } six_unlock_read(&ck->c.lock); ret = lockrestart_do(trans, btree_key_cache_flush_pos(trans, key, seq, BCH_TRANS_COMMIT_journal_reclaim, false)); unlock: srcu_read_unlock(&c->btree_trans_barrier, srcu_idx); bch2_trans_put(trans); return ret; } bool bch2_btree_insert_key_cached(struct btree_trans *trans, unsigned flags, struct btree_insert_entry *insert_entry) { struct bch_fs *c = trans->c; struct bkey_cached *ck = (void *) (trans->paths + insert_entry->path)->l[0].b; struct bkey_i *insert = insert_entry->k; bool kick_reclaim = false; BUG_ON(insert->k.u64s > ck->u64s); bkey_copy(ck->k, insert); ck->valid = true; if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags)) { EBUG_ON(test_bit(BCH_FS_clean_shutdown, &c->flags)); set_bit(BKEY_CACHED_DIRTY, &ck->flags); atomic_long_inc(&c->btree_key_cache.nr_dirty); if (bch2_nr_btree_keys_need_flush(c)) kick_reclaim = true; } /* * To minimize lock contention, we only add the journal pin here and * defer pin updates to the flush callback via ->seq. Be careful not to * update ->seq on nojournal commits because we don't want to update the * pin to a seq that doesn't include journal updates on disk. Otherwise * we risk losing the update after a crash. * * The only exception is if the pin is not active in the first place. We * have to add the pin because journal reclaim drives key cache * flushing. The flush callback will not proceed unless ->seq matches * the latest pin, so make sure it starts with a consistent value. */ if (!(insert_entry->flags & BTREE_UPDATE_NOJOURNAL) || !journal_pin_active(&ck->journal)) { ck->seq = trans->journal_res.seq; } bch2_journal_pin_add(&c->journal, trans->journal_res.seq, &ck->journal, bch2_btree_key_cache_journal_flush); if (kick_reclaim) journal_reclaim_kick(&c->journal); return true; } void bch2_btree_key_cache_drop(struct btree_trans *trans, struct btree_path *path) { struct bch_fs *c = trans->c; struct bkey_cached *ck = (void *) path->l[0].b; BUG_ON(!ck->valid); /* * We just did an update to the btree, bypassing the key cache: the key * cache key is now stale and must be dropped, even if dirty: */ if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) { clear_bit(BKEY_CACHED_DIRTY, &ck->flags); atomic_long_dec(&c->btree_key_cache.nr_dirty); bch2_journal_pin_drop(&c->journal, &ck->journal); } ck->valid = false; } static unsigned long bch2_btree_key_cache_scan(struct shrinker *shrink, struct shrink_control *sc) { struct bch_fs *c = shrink->private_data; struct btree_key_cache *bc = &c->btree_key_cache; struct bucket_table *tbl; struct bkey_cached *ck, *t; size_t scanned = 0, freed = 0, nr = sc->nr_to_scan; unsigned start, flags; int srcu_idx; mutex_lock(&bc->lock); srcu_idx = srcu_read_lock(&c->btree_trans_barrier); flags = memalloc_nofs_save(); /* * Newest freed entries are at the end of the list - once we hit one * that's too new to be freed, we can bail out: */ scanned += bc->nr_freed_nonpcpu; list_for_each_entry_safe(ck, t, &bc->freed_nonpcpu, list) { if (!poll_state_synchronize_srcu(&c->btree_trans_barrier, ck->btree_trans_barrier_seq)) break; list_del(&ck->list); six_lock_exit(&ck->c.lock); kmem_cache_free(bch2_key_cache, ck); atomic_long_dec(&bc->nr_freed); freed++; bc->nr_freed_nonpcpu--; } if (scanned >= nr) goto out; scanned += bc->nr_freed_pcpu; list_for_each_entry_safe(ck, t, &bc->freed_pcpu, list) { if (!poll_state_synchronize_srcu(&c->btree_trans_barrier, ck->btree_trans_barrier_seq)) break; list_del(&ck->list); six_lock_exit(&ck->c.lock); kmem_cache_free(bch2_key_cache, ck); atomic_long_dec(&bc->nr_freed); freed++; bc->nr_freed_pcpu--; } if (scanned >= nr) goto out; rcu_read_lock(); tbl = rht_dereference_rcu(bc->table.tbl, &bc->table); if (bc->shrink_iter >= tbl->size) bc->shrink_iter = 0; start = bc->shrink_iter; do { struct rhash_head *pos, *next; pos = rht_ptr_rcu(rht_bucket(tbl, bc->shrink_iter)); while (!rht_is_a_nulls(pos)) { next = rht_dereference_bucket_rcu(pos->next, tbl, bc->shrink_iter); ck = container_of(pos, struct bkey_cached, hash); if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) goto next; if (test_bit(BKEY_CACHED_ACCESSED, &ck->flags)) clear_bit(BKEY_CACHED_ACCESSED, &ck->flags); else if (bkey_cached_lock_for_evict(ck)) { bkey_cached_evict(bc, ck); bkey_cached_free(bc, ck); } scanned++; if (scanned >= nr) break; next: pos = next; } bc->shrink_iter++; if (bc->shrink_iter >= tbl->size) bc->shrink_iter = 0; } while (scanned < nr && bc->shrink_iter != start); rcu_read_unlock(); out: memalloc_nofs_restore(flags); srcu_read_unlock(&c->btree_trans_barrier, srcu_idx); mutex_unlock(&bc->lock); return freed; } static unsigned long bch2_btree_key_cache_count(struct shrinker *shrink, struct shrink_control *sc) { struct bch_fs *c = shrink->private_data; struct btree_key_cache *bc = &c->btree_key_cache; long nr = atomic_long_read(&bc->nr_keys) - atomic_long_read(&bc->nr_dirty); return max(0L, nr); } void bch2_fs_btree_key_cache_exit(struct btree_key_cache *bc) { struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache); struct bucket_table *tbl; struct bkey_cached *ck, *n; struct rhash_head *pos; LIST_HEAD(items); unsigned i; #ifdef __KERNEL__ int cpu; #endif shrinker_free(bc->shrink); mutex_lock(&bc->lock); /* * The loop is needed to guard against racing with rehash: */ while (atomic_long_read(&bc->nr_keys)) { rcu_read_lock(); tbl = rht_dereference_rcu(bc->table.tbl, &bc->table); if (tbl) for (i = 0; i < tbl->size; i++) rht_for_each_entry_rcu(ck, pos, tbl, i, hash) { bkey_cached_evict(bc, ck); list_add(&ck->list, &items); } rcu_read_unlock(); } #ifdef __KERNEL__ for_each_possible_cpu(cpu) { struct btree_key_cache_freelist *f = per_cpu_ptr(bc->pcpu_freed, cpu); for (i = 0; i < f->nr; i++) { ck = f->objs[i]; list_add(&ck->list, &items); } } #endif BUG_ON(list_count_nodes(&bc->freed_pcpu) != bc->nr_freed_pcpu); BUG_ON(list_count_nodes(&bc->freed_nonpcpu) != bc->nr_freed_nonpcpu); list_splice(&bc->freed_pcpu, &items); list_splice(&bc->freed_nonpcpu, &items); mutex_unlock(&bc->lock); list_for_each_entry_safe(ck, n, &items, list) { cond_resched(); list_del(&ck->list); kfree(ck->k); six_lock_exit(&ck->c.lock); kmem_cache_free(bch2_key_cache, ck); } if (atomic_long_read(&bc->nr_dirty) && !bch2_journal_error(&c->journal) && test_bit(BCH_FS_was_rw, &c->flags)) panic("btree key cache shutdown error: nr_dirty nonzero (%li)\n", atomic_long_read(&bc->nr_dirty)); if (atomic_long_read(&bc->nr_keys)) panic("btree key cache shutdown error: nr_keys nonzero (%li)\n", atomic_long_read(&bc->nr_keys)); if (bc->table_init_done) rhashtable_destroy(&bc->table); free_percpu(bc->pcpu_freed); } void bch2_fs_btree_key_cache_init_early(struct btree_key_cache *c) { mutex_init(&c->lock); INIT_LIST_HEAD(&c->freed_pcpu); INIT_LIST_HEAD(&c->freed_nonpcpu); } int bch2_fs_btree_key_cache_init(struct btree_key_cache *bc) { struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache); struct shrinker *shrink; #ifdef __KERNEL__ bc->pcpu_freed = alloc_percpu(struct btree_key_cache_freelist); if (!bc->pcpu_freed) return -BCH_ERR_ENOMEM_fs_btree_cache_init; #endif if (rhashtable_init(&bc->table, &bch2_btree_key_cache_params)) return -BCH_ERR_ENOMEM_fs_btree_cache_init; bc->table_init_done = true; shrink = shrinker_alloc(0, "%s-btree_key_cache", c->name); if (!shrink) return -BCH_ERR_ENOMEM_fs_btree_cache_init; bc->shrink = shrink; shrink->seeks = 0; shrink->count_objects = bch2_btree_key_cache_count; shrink->scan_objects = bch2_btree_key_cache_scan; shrink->private_data = c; shrinker_register(shrink); return 0; } void bch2_btree_key_cache_to_text(struct printbuf *out, struct btree_key_cache *c) { prt_printf(out, "nr_freed:\t%lu", atomic_long_read(&c->nr_freed)); prt_newline(out); prt_printf(out, "nr_keys:\t%lu", atomic_long_read(&c->nr_keys)); prt_newline(out); prt_printf(out, "nr_dirty:\t%lu", atomic_long_read(&c->nr_dirty)); prt_newline(out); } void bch2_btree_key_cache_exit(void) { kmem_cache_destroy(bch2_key_cache); } int __init bch2_btree_key_cache_init(void) { bch2_key_cache = KMEM_CACHE(bkey_cached, SLAB_RECLAIM_ACCOUNT); if (!bch2_key_cache) return -ENOMEM; return 0; }