// SPDX-License-Identifier: GPL-2.0-or-later /* Network filesystem high-level read support. * * Copyright (C) 2021 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #include #include #include #include #include #include #include #include #include #include #include "internal.h" #define CREATE_TRACE_POINTS #include MODULE_DESCRIPTION("Network fs support"); MODULE_AUTHOR("Red Hat, Inc."); MODULE_LICENSE("GPL"); unsigned netfs_debug; module_param_named(debug, netfs_debug, uint, S_IWUSR | S_IRUGO); MODULE_PARM_DESC(netfs_debug, "Netfs support debugging mask"); static void netfs_rreq_work(struct work_struct *); static void __netfs_put_subrequest(struct netfs_read_subrequest *, bool); static void netfs_put_subrequest(struct netfs_read_subrequest *subreq, bool was_async) { if (refcount_dec_and_test(&subreq->usage)) __netfs_put_subrequest(subreq, was_async); } static struct netfs_read_request *netfs_alloc_read_request( const struct netfs_read_request_ops *ops, void *netfs_priv, struct file *file) { static atomic_t debug_ids; struct netfs_read_request *rreq; rreq = kzalloc(sizeof(struct netfs_read_request), GFP_KERNEL); if (rreq) { rreq->netfs_ops = ops; rreq->netfs_priv = netfs_priv; rreq->inode = file_inode(file); rreq->i_size = i_size_read(rreq->inode); rreq->debug_id = atomic_inc_return(&debug_ids); INIT_LIST_HEAD(&rreq->subrequests); INIT_WORK(&rreq->work, netfs_rreq_work); refcount_set(&rreq->usage, 1); __set_bit(NETFS_RREQ_IN_PROGRESS, &rreq->flags); ops->init_rreq(rreq, file); netfs_stat(&netfs_n_rh_rreq); } return rreq; } static void netfs_get_read_request(struct netfs_read_request *rreq) { refcount_inc(&rreq->usage); } static void netfs_rreq_clear_subreqs(struct netfs_read_request *rreq, bool was_async) { struct netfs_read_subrequest *subreq; while (!list_empty(&rreq->subrequests)) { subreq = list_first_entry(&rreq->subrequests, struct netfs_read_subrequest, rreq_link); list_del(&subreq->rreq_link); netfs_put_subrequest(subreq, was_async); } } static void netfs_free_read_request(struct work_struct *work) { struct netfs_read_request *rreq = container_of(work, struct netfs_read_request, work); netfs_rreq_clear_subreqs(rreq, false); if (rreq->netfs_priv) rreq->netfs_ops->cleanup(rreq->mapping, rreq->netfs_priv); trace_netfs_rreq(rreq, netfs_rreq_trace_free); if (rreq->cache_resources.ops) rreq->cache_resources.ops->end_operation(&rreq->cache_resources); kfree(rreq); netfs_stat_d(&netfs_n_rh_rreq); } static void netfs_put_read_request(struct netfs_read_request *rreq, bool was_async) { if (refcount_dec_and_test(&rreq->usage)) { if (was_async) { rreq->work.func = netfs_free_read_request; if (!queue_work(system_unbound_wq, &rreq->work)) BUG(); } else { netfs_free_read_request(&rreq->work); } } } /* * Allocate and partially initialise an I/O request structure. */ static struct netfs_read_subrequest *netfs_alloc_subrequest( struct netfs_read_request *rreq) { struct netfs_read_subrequest *subreq; subreq = kzalloc(sizeof(struct netfs_read_subrequest), GFP_KERNEL); if (subreq) { INIT_LIST_HEAD(&subreq->rreq_link); refcount_set(&subreq->usage, 2); subreq->rreq = rreq; netfs_get_read_request(rreq); netfs_stat(&netfs_n_rh_sreq); } return subreq; } static void netfs_get_read_subrequest(struct netfs_read_subrequest *subreq) { refcount_inc(&subreq->usage); } static void __netfs_put_subrequest(struct netfs_read_subrequest *subreq, bool was_async) { struct netfs_read_request *rreq = subreq->rreq; trace_netfs_sreq(subreq, netfs_sreq_trace_free); kfree(subreq); netfs_stat_d(&netfs_n_rh_sreq); netfs_put_read_request(rreq, was_async); } /* * Clear the unread part of an I/O request. */ static void netfs_clear_unread(struct netfs_read_subrequest *subreq) { struct iov_iter iter; iov_iter_xarray(&iter, READ, &subreq->rreq->mapping->i_pages, subreq->start + subreq->transferred, subreq->len - subreq->transferred); iov_iter_zero(iov_iter_count(&iter), &iter); } static void netfs_cache_read_terminated(void *priv, ssize_t transferred_or_error, bool was_async) { struct netfs_read_subrequest *subreq = priv; netfs_subreq_terminated(subreq, transferred_or_error, was_async); } /* * Issue a read against the cache. * - Eats the caller's ref on subreq. */ static void netfs_read_from_cache(struct netfs_read_request *rreq, struct netfs_read_subrequest *subreq, bool seek_data) { struct netfs_cache_resources *cres = &rreq->cache_resources; struct iov_iter iter; netfs_stat(&netfs_n_rh_read); iov_iter_xarray(&iter, READ, &rreq->mapping->i_pages, subreq->start + subreq->transferred, subreq->len - subreq->transferred); cres->ops->read(cres, subreq->start, &iter, seek_data, netfs_cache_read_terminated, subreq); } /* * Fill a subrequest region with zeroes. */ static void netfs_fill_with_zeroes(struct netfs_read_request *rreq, struct netfs_read_subrequest *subreq) { netfs_stat(&netfs_n_rh_zero); __set_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags); netfs_subreq_terminated(subreq, 0, false); } /* * Ask the netfs to issue a read request to the server for us. * * The netfs is expected to read from subreq->pos + subreq->transferred to * subreq->pos + subreq->len - 1. It may not backtrack and write data into the * buffer prior to the transferred point as it might clobber dirty data * obtained from the cache. * * Alternatively, the netfs is allowed to indicate one of two things: * * - NETFS_SREQ_SHORT_READ: A short read - it will get called again to try and * make progress. * * - NETFS_SREQ_CLEAR_TAIL: A short read - the rest of the buffer will be * cleared. */ static void netfs_read_from_server(struct netfs_read_request *rreq, struct netfs_read_subrequest *subreq) { netfs_stat(&netfs_n_rh_download); rreq->netfs_ops->issue_op(subreq); } /* * Release those waiting. */ static void netfs_rreq_completed(struct netfs_read_request *rreq, bool was_async) { trace_netfs_rreq(rreq, netfs_rreq_trace_done); netfs_rreq_clear_subreqs(rreq, was_async); netfs_put_read_request(rreq, was_async); } /* * Deal with the completion of writing the data to the cache. We have to clear * the PG_fscache bits on the folios involved and release the caller's ref. * * May be called in softirq mode and we inherit a ref from the caller. */ static void netfs_rreq_unmark_after_write(struct netfs_read_request *rreq, bool was_async) { struct netfs_read_subrequest *subreq; struct folio *folio; pgoff_t unlocked = 0; bool have_unlocked = false; rcu_read_lock(); list_for_each_entry(subreq, &rreq->subrequests, rreq_link) { XA_STATE(xas, &rreq->mapping->i_pages, subreq->start / PAGE_SIZE); xas_for_each(&xas, folio, (subreq->start + subreq->len - 1) / PAGE_SIZE) { /* We might have multiple writes from the same huge * folio, but we mustn't unlock a folio more than once. */ if (have_unlocked && folio_index(folio) <= unlocked) continue; unlocked = folio_index(folio); folio_end_fscache(folio); have_unlocked = true; } } rcu_read_unlock(); netfs_rreq_completed(rreq, was_async); } static void netfs_rreq_copy_terminated(void *priv, ssize_t transferred_or_error, bool was_async) { struct netfs_read_subrequest *subreq = priv; struct netfs_read_request *rreq = subreq->rreq; if (IS_ERR_VALUE(transferred_or_error)) { netfs_stat(&netfs_n_rh_write_failed); trace_netfs_failure(rreq, subreq, transferred_or_error, netfs_fail_copy_to_cache); } else { netfs_stat(&netfs_n_rh_write_done); } trace_netfs_sreq(subreq, netfs_sreq_trace_write_term); /* If we decrement nr_wr_ops to 0, the ref belongs to us. */ if (atomic_dec_and_test(&rreq->nr_wr_ops)) netfs_rreq_unmark_after_write(rreq, was_async); netfs_put_subrequest(subreq, was_async); } /* * Perform any outstanding writes to the cache. We inherit a ref from the * caller. */ static void netfs_rreq_do_write_to_cache(struct netfs_read_request *rreq) { struct netfs_cache_resources *cres = &rreq->cache_resources; struct netfs_read_subrequest *subreq, *next, *p; struct iov_iter iter; int ret; trace_netfs_rreq(rreq, netfs_rreq_trace_write); /* We don't want terminating writes trying to wake us up whilst we're * still going through the list. */ atomic_inc(&rreq->nr_wr_ops); list_for_each_entry_safe(subreq, p, &rreq->subrequests, rreq_link) { if (!test_bit(NETFS_SREQ_WRITE_TO_CACHE, &subreq->flags)) { list_del_init(&subreq->rreq_link); netfs_put_subrequest(subreq, false); } } list_for_each_entry(subreq, &rreq->subrequests, rreq_link) { /* Amalgamate adjacent writes */ while (!list_is_last(&subreq->rreq_link, &rreq->subrequests)) { next = list_next_entry(subreq, rreq_link); if (next->start != subreq->start + subreq->len) break; subreq->len += next->len; list_del_init(&next->rreq_link); netfs_put_subrequest(next, false); } ret = cres->ops->prepare_write(cres, &subreq->start, &subreq->len, rreq->i_size); if (ret < 0) { trace_netfs_failure(rreq, subreq, ret, netfs_fail_prepare_write); trace_netfs_sreq(subreq, netfs_sreq_trace_write_skip); continue; } iov_iter_xarray(&iter, WRITE, &rreq->mapping->i_pages, subreq->start, subreq->len); atomic_inc(&rreq->nr_wr_ops); netfs_stat(&netfs_n_rh_write); netfs_get_read_subrequest(subreq); trace_netfs_sreq(subreq, netfs_sreq_trace_write); cres->ops->write(cres, subreq->start, &iter, netfs_rreq_copy_terminated, subreq); } /* If we decrement nr_wr_ops to 0, the usage ref belongs to us. */ if (atomic_dec_and_test(&rreq->nr_wr_ops)) netfs_rreq_unmark_after_write(rreq, false); } static void netfs_rreq_write_to_cache_work(struct work_struct *work) { struct netfs_read_request *rreq = container_of(work, struct netfs_read_request, work); netfs_rreq_do_write_to_cache(rreq); } static void netfs_rreq_write_to_cache(struct netfs_read_request *rreq) { rreq->work.func = netfs_rreq_write_to_cache_work; if (!queue_work(system_unbound_wq, &rreq->work)) BUG(); } /* * Unlock the folios in a read operation. We need to set PG_fscache on any * folios we're going to write back before we unlock them. */ static void netfs_rreq_unlock(struct netfs_read_request *rreq) { struct netfs_read_subrequest *subreq; struct folio *folio; unsigned int iopos, account = 0; pgoff_t start_page = rreq->start / PAGE_SIZE; pgoff_t last_page = ((rreq->start + rreq->len) / PAGE_SIZE) - 1; bool subreq_failed = false; XA_STATE(xas, &rreq->mapping->i_pages, start_page); if (test_bit(NETFS_RREQ_FAILED, &rreq->flags)) { __clear_bit(NETFS_RREQ_WRITE_TO_CACHE, &rreq->flags); list_for_each_entry(subreq, &rreq->subrequests, rreq_link) { __clear_bit(NETFS_SREQ_WRITE_TO_CACHE, &subreq->flags); } } /* Walk through the pagecache and the I/O request lists simultaneously. * We may have a mixture of cached and uncached sections and we only * really want to write out the uncached sections. This is slightly * complicated by the possibility that we might have huge pages with a * mixture inside. */ subreq = list_first_entry(&rreq->subrequests, struct netfs_read_subrequest, rreq_link); iopos = 0; subreq_failed = (subreq->error < 0); trace_netfs_rreq(rreq, netfs_rreq_trace_unlock); rcu_read_lock(); xas_for_each(&xas, folio, last_page) { unsigned int pgpos = (folio_index(folio) - start_page) * PAGE_SIZE; unsigned int pgend = pgpos + folio_size(folio); bool pg_failed = false; for (;;) { if (!subreq) { pg_failed = true; break; } if (test_bit(NETFS_SREQ_WRITE_TO_CACHE, &subreq->flags)) folio_start_fscache(folio); pg_failed |= subreq_failed; if (pgend < iopos + subreq->len) break; account += subreq->transferred; iopos += subreq->len; if (!list_is_last(&subreq->rreq_link, &rreq->subrequests)) { subreq = list_next_entry(subreq, rreq_link); subreq_failed = (subreq->error < 0); } else { subreq = NULL; subreq_failed = false; } if (pgend == iopos) break; } if (!pg_failed) { flush_dcache_folio(folio); folio_mark_uptodate(folio); } if (!test_bit(NETFS_RREQ_DONT_UNLOCK_FOLIOS, &rreq->flags)) { if (folio_index(folio) == rreq->no_unlock_folio && test_bit(NETFS_RREQ_NO_UNLOCK_FOLIO, &rreq->flags)) _debug("no unlock"); else folio_unlock(folio); } } rcu_read_unlock(); task_io_account_read(account); if (rreq->netfs_ops->done) rreq->netfs_ops->done(rreq); } /* * Handle a short read. */ static void netfs_rreq_short_read(struct netfs_read_request *rreq, struct netfs_read_subrequest *subreq) { __clear_bit(NETFS_SREQ_SHORT_READ, &subreq->flags); __set_bit(NETFS_SREQ_SEEK_DATA_READ, &subreq->flags); netfs_stat(&netfs_n_rh_short_read); trace_netfs_sreq(subreq, netfs_sreq_trace_resubmit_short); netfs_get_read_subrequest(subreq); atomic_inc(&rreq->nr_rd_ops); if (subreq->source == NETFS_READ_FROM_CACHE) netfs_read_from_cache(rreq, subreq, true); else netfs_read_from_server(rreq, subreq); } /* * Resubmit any short or failed operations. Returns true if we got the rreq * ref back. */ static bool netfs_rreq_perform_resubmissions(struct netfs_read_request *rreq) { struct netfs_read_subrequest *subreq; WARN_ON(in_interrupt()); trace_netfs_rreq(rreq, netfs_rreq_trace_resubmit); /* We don't want terminating submissions trying to wake us up whilst * we're still going through the list. */ atomic_inc(&rreq->nr_rd_ops); __clear_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags); list_for_each_entry(subreq, &rreq->subrequests, rreq_link) { if (subreq->error) { if (subreq->source != NETFS_READ_FROM_CACHE) break; subreq->source = NETFS_DOWNLOAD_FROM_SERVER; subreq->error = 0; netfs_stat(&netfs_n_rh_download_instead); trace_netfs_sreq(subreq, netfs_sreq_trace_download_instead); netfs_get_read_subrequest(subreq); atomic_inc(&rreq->nr_rd_ops); netfs_read_from_server(rreq, subreq); } else if (test_bit(NETFS_SREQ_SHORT_READ, &subreq->flags)) { netfs_rreq_short_read(rreq, subreq); } } /* If we decrement nr_rd_ops to 0, the usage ref belongs to us. */ if (atomic_dec_and_test(&rreq->nr_rd_ops)) return true; wake_up_var(&rreq->nr_rd_ops); return false; } /* * Check to see if the data read is still valid. */ static void netfs_rreq_is_still_valid(struct netfs_read_request *rreq) { struct netfs_read_subrequest *subreq; if (!rreq->netfs_ops->is_still_valid || rreq->netfs_ops->is_still_valid(rreq)) return; list_for_each_entry(subreq, &rreq->subrequests, rreq_link) { if (subreq->source == NETFS_READ_FROM_CACHE) { subreq->error = -ESTALE; __set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags); } } } /* * Assess the state of a read request and decide what to do next. * * Note that we could be in an ordinary kernel thread, on a workqueue or in * softirq context at this point. We inherit a ref from the caller. */ static void netfs_rreq_assess(struct netfs_read_request *rreq, bool was_async) { trace_netfs_rreq(rreq, netfs_rreq_trace_assess); again: netfs_rreq_is_still_valid(rreq); if (!test_bit(NETFS_RREQ_FAILED, &rreq->flags) && test_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags)) { if (netfs_rreq_perform_resubmissions(rreq)) goto again; return; } netfs_rreq_unlock(rreq); clear_bit_unlock(NETFS_RREQ_IN_PROGRESS, &rreq->flags); wake_up_bit(&rreq->flags, NETFS_RREQ_IN_PROGRESS); if (test_bit(NETFS_RREQ_WRITE_TO_CACHE, &rreq->flags)) return netfs_rreq_write_to_cache(rreq); netfs_rreq_completed(rreq, was_async); } static void netfs_rreq_work(struct work_struct *work) { struct netfs_read_request *rreq = container_of(work, struct netfs_read_request, work); netfs_rreq_assess(rreq, false); } /* * Handle the completion of all outstanding I/O operations on a read request. * We inherit a ref from the caller. */ static void netfs_rreq_terminated(struct netfs_read_request *rreq, bool was_async) { if (test_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags) && was_async) { if (!queue_work(system_unbound_wq, &rreq->work)) BUG(); } else { netfs_rreq_assess(rreq, was_async); } } /** * netfs_subreq_terminated - Note the termination of an I/O operation. * @subreq: The I/O request that has terminated. * @transferred_or_error: The amount of data transferred or an error code. * @was_async: The termination was asynchronous * * This tells the read helper that a contributory I/O operation has terminated, * one way or another, and that it should integrate the results. * * The caller indicates in @transferred_or_error the outcome of the operation, * supplying a positive value to indicate the number of bytes transferred, 0 to * indicate a failure to transfer anything that should be retried or a negative * error code. The helper will look after reissuing I/O operations as * appropriate and writing downloaded data to the cache. * * If @was_async is true, the caller might be running in softirq or interrupt * context and we can't sleep. */ void netfs_subreq_terminated(struct netfs_read_subrequest *subreq, ssize_t transferred_or_error, bool was_async) { struct netfs_read_request *rreq = subreq->rreq; int u; _enter("[%u]{%llx,%lx},%zd", subreq->debug_index, subreq->start, subreq->flags, transferred_or_error); switch (subreq->source) { case NETFS_READ_FROM_CACHE: netfs_stat(&netfs_n_rh_read_done); break; case NETFS_DOWNLOAD_FROM_SERVER: netfs_stat(&netfs_n_rh_download_done); break; default: break; } if (IS_ERR_VALUE(transferred_or_error)) { subreq->error = transferred_or_error; trace_netfs_failure(rreq, subreq, transferred_or_error, netfs_fail_read); goto failed; } if (WARN(transferred_or_error > subreq->len - subreq->transferred, "Subreq overread: R%x[%x] %zd > %zu - %zu", rreq->debug_id, subreq->debug_index, transferred_or_error, subreq->len, subreq->transferred)) transferred_or_error = subreq->len - subreq->transferred; subreq->error = 0; subreq->transferred += transferred_or_error; if (subreq->transferred < subreq->len) goto incomplete; complete: __clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags); if (test_bit(NETFS_SREQ_WRITE_TO_CACHE, &subreq->flags)) set_bit(NETFS_RREQ_WRITE_TO_CACHE, &rreq->flags); out: trace_netfs_sreq(subreq, netfs_sreq_trace_terminated); /* If we decrement nr_rd_ops to 0, the ref belongs to us. */ u = atomic_dec_return(&rreq->nr_rd_ops); if (u == 0) netfs_rreq_terminated(rreq, was_async); else if (u == 1) wake_up_var(&rreq->nr_rd_ops); netfs_put_subrequest(subreq, was_async); return; incomplete: if (test_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags)) { netfs_clear_unread(subreq); subreq->transferred = subreq->len; goto complete; } if (transferred_or_error == 0) { if (__test_and_set_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags)) { subreq->error = -ENODATA; goto failed; } } else { __clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags); } __set_bit(NETFS_SREQ_SHORT_READ, &subreq->flags); set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags); goto out; failed: if (subreq->source == NETFS_READ_FROM_CACHE) { netfs_stat(&netfs_n_rh_read_failed); set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags); } else { netfs_stat(&netfs_n_rh_download_failed); set_bit(NETFS_RREQ_FAILED, &rreq->flags); rreq->error = subreq->error; } goto out; } EXPORT_SYMBOL(netfs_subreq_terminated); static enum netfs_read_source netfs_cache_prepare_read(struct netfs_read_subrequest *subreq, loff_t i_size) { struct netfs_read_request *rreq = subreq->rreq; struct netfs_cache_resources *cres = &rreq->cache_resources; if (cres->ops) return cres->ops->prepare_read(subreq, i_size); if (subreq->start >= rreq->i_size) return NETFS_FILL_WITH_ZEROES; return NETFS_DOWNLOAD_FROM_SERVER; } /* * Work out what sort of subrequest the next one will be. */ static enum netfs_read_source netfs_rreq_prepare_read(struct netfs_read_request *rreq, struct netfs_read_subrequest *subreq) { enum netfs_read_source source; _enter("%llx-%llx,%llx", subreq->start, subreq->start + subreq->len, rreq->i_size); source = netfs_cache_prepare_read(subreq, rreq->i_size); if (source == NETFS_INVALID_READ) goto out; if (source == NETFS_DOWNLOAD_FROM_SERVER) { /* Call out to the netfs to let it shrink the request to fit * its own I/O sizes and boundaries. If it shinks it here, it * will be called again to make simultaneous calls; if it wants * to make serial calls, it can indicate a short read and then * we will call it again. */ if (subreq->len > rreq->i_size - subreq->start) subreq->len = rreq->i_size - subreq->start; if (rreq->netfs_ops->clamp_length && !rreq->netfs_ops->clamp_length(subreq)) { source = NETFS_INVALID_READ; goto out; } } if (WARN_ON(subreq->len == 0)) source = NETFS_INVALID_READ; out: subreq->source = source; trace_netfs_sreq(subreq, netfs_sreq_trace_prepare); return source; } /* * Slice off a piece of a read request and submit an I/O request for it. */ static bool netfs_rreq_submit_slice(struct netfs_read_request *rreq, unsigned int *_debug_index) { struct netfs_read_subrequest *subreq; enum netfs_read_source source; subreq = netfs_alloc_subrequest(rreq); if (!subreq) return false; subreq->debug_index = (*_debug_index)++; subreq->start = rreq->start + rreq->submitted; subreq->len = rreq->len - rreq->submitted; _debug("slice %llx,%zx,%zx", subreq->start, subreq->len, rreq->submitted); list_add_tail(&subreq->rreq_link, &rreq->subrequests); /* Call out to the cache to find out what it can do with the remaining * subset. It tells us in subreq->flags what it decided should be done * and adjusts subreq->len down if the subset crosses a cache boundary. * * Then when we hand the subset, it can choose to take a subset of that * (the starts must coincide), in which case, we go around the loop * again and ask it to download the next piece. */ source = netfs_rreq_prepare_read(rreq, subreq); if (source == NETFS_INVALID_READ) goto subreq_failed; atomic_inc(&rreq->nr_rd_ops); rreq->submitted += subreq->len; trace_netfs_sreq(subreq, netfs_sreq_trace_submit); switch (source) { case NETFS_FILL_WITH_ZEROES: netfs_fill_with_zeroes(rreq, subreq); break; case NETFS_DOWNLOAD_FROM_SERVER: netfs_read_from_server(rreq, subreq); break; case NETFS_READ_FROM_CACHE: netfs_read_from_cache(rreq, subreq, false); break; default: BUG(); } return true; subreq_failed: rreq->error = subreq->error; netfs_put_subrequest(subreq, false); return false; } static void netfs_cache_expand_readahead(struct netfs_read_request *rreq, loff_t *_start, size_t *_len, loff_t i_size) { struct netfs_cache_resources *cres = &rreq->cache_resources; if (cres->ops && cres->ops->expand_readahead) cres->ops->expand_readahead(cres, _start, _len, i_size); } static void netfs_rreq_expand(struct netfs_read_request *rreq, struct readahead_control *ractl) { /* Give the cache a chance to change the request parameters. The * resultant request must contain the original region. */ netfs_cache_expand_readahead(rreq, &rreq->start, &rreq->len, rreq->i_size); /* Give the netfs a chance to change the request parameters. The * resultant request must contain the original region. */ if (rreq->netfs_ops->expand_readahead) rreq->netfs_ops->expand_readahead(rreq); /* Expand the request if the cache wants it to start earlier. Note * that the expansion may get further extended if the VM wishes to * insert THPs and the preferred start and/or end wind up in the middle * of THPs. * * If this is the case, however, the THP size should be an integer * multiple of the cache granule size, so we get a whole number of * granules to deal with. */ if (rreq->start != readahead_pos(ractl) || rreq->len != readahead_length(ractl)) { readahead_expand(ractl, rreq->start, rreq->len); rreq->start = readahead_pos(ractl); rreq->len = readahead_length(ractl); trace_netfs_read(rreq, readahead_pos(ractl), readahead_length(ractl), netfs_read_trace_expanded); } } /** * netfs_readahead - Helper to manage a read request * @ractl: The description of the readahead request * @ops: The network filesystem's operations for the helper to use * @netfs_priv: Private netfs data to be retained in the request * * Fulfil a readahead request by drawing data from the cache if possible, or * the netfs if not. Space beyond the EOF is zero-filled. Multiple I/O * requests from different sources will get munged together. If necessary, the * readahead window can be expanded in either direction to a more convenient * alighment for RPC efficiency or to make storage in the cache feasible. * * The calling netfs must provide a table of operations, only one of which, * issue_op, is mandatory. It may also be passed a private token, which will * be retained in rreq->netfs_priv and will be cleaned up by ops->cleanup(). * * This is usable whether or not caching is enabled. */ void netfs_readahead(struct readahead_control *ractl, const struct netfs_read_request_ops *ops, void *netfs_priv) { struct netfs_read_request *rreq; unsigned int debug_index = 0; int ret; _enter("%lx,%x", readahead_index(ractl), readahead_count(ractl)); if (readahead_count(ractl) == 0) goto cleanup; rreq = netfs_alloc_read_request(ops, netfs_priv, ractl->file); if (!rreq) goto cleanup; rreq->mapping = ractl->mapping; rreq->start = readahead_pos(ractl); rreq->len = readahead_length(ractl); if (ops->begin_cache_operation) { ret = ops->begin_cache_operation(rreq); if (ret == -ENOMEM || ret == -EINTR || ret == -ERESTARTSYS) goto cleanup_free; } netfs_stat(&netfs_n_rh_readahead); trace_netfs_read(rreq, readahead_pos(ractl), readahead_length(ractl), netfs_read_trace_readahead); netfs_rreq_expand(rreq, ractl); atomic_set(&rreq->nr_rd_ops, 1); do { if (!netfs_rreq_submit_slice(rreq, &debug_index)) break; } while (rreq->submitted < rreq->len); /* Drop the refs on the folios here rather than in the cache or * filesystem. The locks will be dropped in netfs_rreq_unlock(). */ while (readahead_folio(ractl)) ; /* If we decrement nr_rd_ops to 0, the ref belongs to us. */ if (atomic_dec_and_test(&rreq->nr_rd_ops)) netfs_rreq_assess(rreq, false); return; cleanup_free: netfs_put_read_request(rreq, false); return; cleanup: if (netfs_priv) ops->cleanup(ractl->mapping, netfs_priv); return; } EXPORT_SYMBOL(netfs_readahead); /** * netfs_readpage - Helper to manage a readpage request * @file: The file to read from * @folio: The folio to read * @ops: The network filesystem's operations for the helper to use * @netfs_priv: Private netfs data to be retained in the request * * Fulfil a readpage request by drawing data from the cache if possible, or the * netfs if not. Space beyond the EOF is zero-filled. Multiple I/O requests * from different sources will get munged together. * * The calling netfs must provide a table of operations, only one of which, * issue_op, is mandatory. It may also be passed a private token, which will * be retained in rreq->netfs_priv and will be cleaned up by ops->cleanup(). * * This is usable whether or not caching is enabled. */ int netfs_readpage(struct file *file, struct folio *folio, const struct netfs_read_request_ops *ops, void *netfs_priv) { struct netfs_read_request *rreq; unsigned int debug_index = 0; int ret; _enter("%lx", folio_index(folio)); rreq = netfs_alloc_read_request(ops, netfs_priv, file); if (!rreq) { if (netfs_priv) ops->cleanup(folio_file_mapping(folio), netfs_priv); folio_unlock(folio); return -ENOMEM; } rreq->mapping = folio_file_mapping(folio); rreq->start = folio_file_pos(folio); rreq->len = folio_size(folio); if (ops->begin_cache_operation) { ret = ops->begin_cache_operation(rreq); if (ret == -ENOMEM || ret == -EINTR || ret == -ERESTARTSYS) { folio_unlock(folio); goto out; } } netfs_stat(&netfs_n_rh_readpage); trace_netfs_read(rreq, rreq->start, rreq->len, netfs_read_trace_readpage); netfs_get_read_request(rreq); atomic_set(&rreq->nr_rd_ops, 1); do { if (!netfs_rreq_submit_slice(rreq, &debug_index)) break; } while (rreq->submitted < rreq->len); /* Keep nr_rd_ops incremented so that the ref always belongs to us, and * the service code isn't punted off to a random thread pool to * process. */ do { wait_var_event(&rreq->nr_rd_ops, atomic_read(&rreq->nr_rd_ops) == 1); netfs_rreq_assess(rreq, false); } while (test_bit(NETFS_RREQ_IN_PROGRESS, &rreq->flags)); ret = rreq->error; if (ret == 0 && rreq->submitted < rreq->len) { trace_netfs_failure(rreq, NULL, ret, netfs_fail_short_readpage); ret = -EIO; } out: netfs_put_read_request(rreq, false); return ret; } EXPORT_SYMBOL(netfs_readpage); /* * Prepare a folio for writing without reading first * @folio: The folio being prepared * @pos: starting position for the write * @len: length of write * * In some cases, write_begin doesn't need to read at all: * - full folio write * - write that lies in a folio that is completely beyond EOF * - write that covers the folio from start to EOF or beyond it * * If any of these criteria are met, then zero out the unwritten parts * of the folio and return true. Otherwise, return false. */ static bool netfs_skip_folio_read(struct folio *folio, loff_t pos, size_t len) { struct inode *inode = folio_inode(folio); loff_t i_size = i_size_read(inode); size_t offset = offset_in_folio(folio, pos); /* Full folio write */ if (offset == 0 && len >= folio_size(folio)) return true; /* pos beyond last folio in the file */ if (pos - offset >= i_size) goto zero_out; /* Write that covers from the start of the folio to EOF or beyond */ if (offset == 0 && (pos + len) >= i_size) goto zero_out; return false; zero_out: zero_user_segments(&folio->page, 0, offset, offset + len, folio_size(folio)); return true; } /** * netfs_write_begin - Helper to prepare for writing * @file: The file to read from * @mapping: The mapping to read from * @pos: File position at which the write will begin * @len: The length of the write (may extend beyond the end of the folio chosen) * @aop_flags: AOP_* flags * @_folio: Where to put the resultant folio * @_fsdata: Place for the netfs to store a cookie * @ops: The network filesystem's operations for the helper to use * @netfs_priv: Private netfs data to be retained in the request * * Pre-read data for a write-begin request by drawing data from the cache if * possible, or the netfs if not. Space beyond the EOF is zero-filled. * Multiple I/O requests from different sources will get munged together. If * necessary, the readahead window can be expanded in either direction to a * more convenient alighment for RPC efficiency or to make storage in the cache * feasible. * * The calling netfs must provide a table of operations, only one of which, * issue_op, is mandatory. * * The check_write_begin() operation can be provided to check for and flush * conflicting writes once the folio is grabbed and locked. It is passed a * pointer to the fsdata cookie that gets returned to the VM to be passed to * write_end. It is permitted to sleep. It should return 0 if the request * should go ahead; unlock the folio and return -EAGAIN to cause the folio to * be regot; or return an error. * * This is usable whether or not caching is enabled. */ int netfs_write_begin(struct file *file, struct address_space *mapping, loff_t pos, unsigned int len, unsigned int aop_flags, struct folio **_folio, void **_fsdata, const struct netfs_read_request_ops *ops, void *netfs_priv) { struct netfs_read_request *rreq; struct folio *folio; struct inode *inode = file_inode(file); unsigned int debug_index = 0, fgp_flags; pgoff_t index = pos >> PAGE_SHIFT; int ret; DEFINE_READAHEAD(ractl, file, NULL, mapping, index); retry: fgp_flags = FGP_LOCK | FGP_WRITE | FGP_CREAT | FGP_STABLE; if (aop_flags & AOP_FLAG_NOFS) fgp_flags |= FGP_NOFS; folio = __filemap_get_folio(mapping, index, fgp_flags, mapping_gfp_mask(mapping)); if (!folio) return -ENOMEM; if (ops->check_write_begin) { /* Allow the netfs (eg. ceph) to flush conflicts. */ ret = ops->check_write_begin(file, pos, len, folio, _fsdata); if (ret < 0) { trace_netfs_failure(NULL, NULL, ret, netfs_fail_check_write_begin); if (ret == -EAGAIN) goto retry; goto error; } } if (folio_test_uptodate(folio)) goto have_folio; /* If the page is beyond the EOF, we want to clear it - unless it's * within the cache granule containing the EOF, in which case we need * to preload the granule. */ if (!ops->is_cache_enabled(inode) && netfs_skip_folio_read(folio, pos, len)) { netfs_stat(&netfs_n_rh_write_zskip); goto have_folio_no_wait; } ret = -ENOMEM; rreq = netfs_alloc_read_request(ops, netfs_priv, file); if (!rreq) goto error; rreq->mapping = folio_file_mapping(folio); rreq->start = folio_file_pos(folio); rreq->len = folio_size(folio); rreq->no_unlock_folio = folio_index(folio); __set_bit(NETFS_RREQ_NO_UNLOCK_FOLIO, &rreq->flags); netfs_priv = NULL; if (ops->begin_cache_operation) { ret = ops->begin_cache_operation(rreq); if (ret == -ENOMEM || ret == -EINTR || ret == -ERESTARTSYS) goto error_put; } netfs_stat(&netfs_n_rh_write_begin); trace_netfs_read(rreq, pos, len, netfs_read_trace_write_begin); /* Expand the request to meet caching requirements and download * preferences. */ ractl._nr_pages = folio_nr_pages(folio); netfs_rreq_expand(rreq, &ractl); netfs_get_read_request(rreq); /* We hold the folio locks, so we can drop the references */ folio_get(folio); while (readahead_folio(&ractl)) ; atomic_set(&rreq->nr_rd_ops, 1); do { if (!netfs_rreq_submit_slice(rreq, &debug_index)) break; } while (rreq->submitted < rreq->len); /* Keep nr_rd_ops incremented so that the ref always belongs to us, and * the service code isn't punted off to a random thread pool to * process. */ for (;;) { wait_var_event(&rreq->nr_rd_ops, atomic_read(&rreq->nr_rd_ops) == 1); netfs_rreq_assess(rreq, false); if (!test_bit(NETFS_RREQ_IN_PROGRESS, &rreq->flags)) break; cond_resched(); } ret = rreq->error; if (ret == 0 && rreq->submitted < rreq->len) { trace_netfs_failure(rreq, NULL, ret, netfs_fail_short_write_begin); ret = -EIO; } netfs_put_read_request(rreq, false); if (ret < 0) goto error; have_folio: ret = folio_wait_fscache_killable(folio); if (ret < 0) goto error; have_folio_no_wait: if (netfs_priv) ops->cleanup(mapping, netfs_priv); *_folio = folio; _leave(" = 0"); return 0; error_put: netfs_put_read_request(rreq, false); error: folio_unlock(folio); folio_put(folio); if (netfs_priv) ops->cleanup(mapping, netfs_priv); _leave(" = %d", ret); return ret; } EXPORT_SYMBOL(netfs_write_begin);