/* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc. * All Rights Reserved. */ #ifndef __XFS_BTREE_H__ #define __XFS_BTREE_H__ struct xfs_buf; struct xfs_inode; struct xfs_mount; struct xfs_trans; struct xfs_ifork; struct xfs_perag; /* * Generic key, ptr and record wrapper structures. * * These are disk format structures, and are converted where necessary * by the btree specific code that needs to interpret them. */ union xfs_btree_ptr { __be32 s; /* short form ptr */ __be64 l; /* long form ptr */ }; /* * The in-core btree key. Overlapping btrees actually store two keys * per pointer, so we reserve enough memory to hold both. The __*bigkey * items should never be accessed directly. */ union xfs_btree_key { struct xfs_bmbt_key bmbt; xfs_bmdr_key_t bmbr; /* bmbt root block */ xfs_alloc_key_t alloc; struct xfs_inobt_key inobt; struct xfs_rmap_key rmap; struct xfs_rmap_key __rmap_bigkey[2]; struct xfs_refcount_key refc; }; union xfs_btree_rec { struct xfs_bmbt_rec bmbt; xfs_bmdr_rec_t bmbr; /* bmbt root block */ struct xfs_alloc_rec alloc; struct xfs_inobt_rec inobt; struct xfs_rmap_rec rmap; struct xfs_refcount_rec refc; }; /* * This nonsense is to make -wlint happy. */ #define XFS_LOOKUP_EQ ((xfs_lookup_t)XFS_LOOKUP_EQi) #define XFS_LOOKUP_LE ((xfs_lookup_t)XFS_LOOKUP_LEi) #define XFS_LOOKUP_GE ((xfs_lookup_t)XFS_LOOKUP_GEi) #define XFS_BTNUM_BNO ((xfs_btnum_t)XFS_BTNUM_BNOi) #define XFS_BTNUM_CNT ((xfs_btnum_t)XFS_BTNUM_CNTi) #define XFS_BTNUM_BMAP ((xfs_btnum_t)XFS_BTNUM_BMAPi) #define XFS_BTNUM_INO ((xfs_btnum_t)XFS_BTNUM_INOi) #define XFS_BTNUM_FINO ((xfs_btnum_t)XFS_BTNUM_FINOi) #define XFS_BTNUM_RMAP ((xfs_btnum_t)XFS_BTNUM_RMAPi) #define XFS_BTNUM_REFC ((xfs_btnum_t)XFS_BTNUM_REFCi) uint32_t xfs_btree_magic(int crc, xfs_btnum_t btnum); /* * For logging record fields. */ #define XFS_BB_MAGIC (1u << 0) #define XFS_BB_LEVEL (1u << 1) #define XFS_BB_NUMRECS (1u << 2) #define XFS_BB_LEFTSIB (1u << 3) #define XFS_BB_RIGHTSIB (1u << 4) #define XFS_BB_BLKNO (1u << 5) #define XFS_BB_LSN (1u << 6) #define XFS_BB_UUID (1u << 7) #define XFS_BB_OWNER (1u << 8) #define XFS_BB_NUM_BITS 5 #define XFS_BB_ALL_BITS ((1u << XFS_BB_NUM_BITS) - 1) #define XFS_BB_NUM_BITS_CRC 9 #define XFS_BB_ALL_BITS_CRC ((1u << XFS_BB_NUM_BITS_CRC) - 1) /* * Generic stats interface */ #define XFS_BTREE_STATS_INC(cur, stat) \ XFS_STATS_INC_OFF((cur)->bc_mp, (cur)->bc_statoff + __XBTS_ ## stat) #define XFS_BTREE_STATS_ADD(cur, stat, val) \ XFS_STATS_ADD_OFF((cur)->bc_mp, (cur)->bc_statoff + __XBTS_ ## stat, val) enum xbtree_key_contig { XBTREE_KEY_GAP = 0, XBTREE_KEY_CONTIGUOUS, XBTREE_KEY_OVERLAP, }; /* * Decide if these two numeric btree key fields are contiguous, overlapping, * or if there's a gap between them. @x should be the field from the high * key and @y should be the field from the low key. */ static inline enum xbtree_key_contig xbtree_key_contig(uint64_t x, uint64_t y) { x++; if (x < y) return XBTREE_KEY_GAP; if (x == y) return XBTREE_KEY_CONTIGUOUS; return XBTREE_KEY_OVERLAP; } struct xfs_btree_ops { /* size of the key and record structures */ size_t key_len; size_t rec_len; /* cursor operations */ struct xfs_btree_cur *(*dup_cursor)(struct xfs_btree_cur *); void (*update_cursor)(struct xfs_btree_cur *src, struct xfs_btree_cur *dst); /* update btree root pointer */ void (*set_root)(struct xfs_btree_cur *cur, const union xfs_btree_ptr *nptr, int level_change); /* block allocation / freeing */ int (*alloc_block)(struct xfs_btree_cur *cur, const union xfs_btree_ptr *start_bno, union xfs_btree_ptr *new_bno, int *stat); int (*free_block)(struct xfs_btree_cur *cur, struct xfs_buf *bp); /* update last record information */ void (*update_lastrec)(struct xfs_btree_cur *cur, const struct xfs_btree_block *block, const union xfs_btree_rec *rec, int ptr, int reason); /* records in block/level */ int (*get_minrecs)(struct xfs_btree_cur *cur, int level); int (*get_maxrecs)(struct xfs_btree_cur *cur, int level); /* records on disk. Matter for the root in inode case. */ int (*get_dmaxrecs)(struct xfs_btree_cur *cur, int level); /* init values of btree structures */ void (*init_key_from_rec)(union xfs_btree_key *key, const union xfs_btree_rec *rec); void (*init_rec_from_cur)(struct xfs_btree_cur *cur, union xfs_btree_rec *rec); void (*init_ptr_from_cur)(struct xfs_btree_cur *cur, union xfs_btree_ptr *ptr); void (*init_high_key_from_rec)(union xfs_btree_key *key, const union xfs_btree_rec *rec); /* difference between key value and cursor value */ int64_t (*key_diff)(struct xfs_btree_cur *cur, const union xfs_btree_key *key); /* * Difference between key2 and key1 -- positive if key1 > key2, * negative if key1 < key2, and zero if equal. If the @mask parameter * is non NULL, each key field to be used in the comparison must * contain a nonzero value. */ int64_t (*diff_two_keys)(struct xfs_btree_cur *cur, const union xfs_btree_key *key1, const union xfs_btree_key *key2, const union xfs_btree_key *mask); const struct xfs_buf_ops *buf_ops; /* check that k1 is lower than k2 */ int (*keys_inorder)(struct xfs_btree_cur *cur, const union xfs_btree_key *k1, const union xfs_btree_key *k2); /* check that r1 is lower than r2 */ int (*recs_inorder)(struct xfs_btree_cur *cur, const union xfs_btree_rec *r1, const union xfs_btree_rec *r2); /* * Are these two btree keys immediately adjacent? * * Given two btree keys @key1 and @key2, decide if it is impossible for * there to be a third btree key K satisfying the relationship * @key1 < K < @key2. To determine if two btree records are * immediately adjacent, @key1 should be the high key of the first * record and @key2 should be the low key of the second record. * If the @mask parameter is non NULL, each key field to be used in the * comparison must contain a nonzero value. */ enum xbtree_key_contig (*keys_contiguous)(struct xfs_btree_cur *cur, const union xfs_btree_key *key1, const union xfs_btree_key *key2, const union xfs_btree_key *mask); }; /* * Reasons for the update_lastrec method to be called. */ #define LASTREC_UPDATE 0 #define LASTREC_INSREC 1 #define LASTREC_DELREC 2 union xfs_btree_irec { struct xfs_alloc_rec_incore a; struct xfs_bmbt_irec b; struct xfs_inobt_rec_incore i; struct xfs_rmap_irec r; struct xfs_refcount_irec rc; }; /* Per-AG btree information. */ struct xfs_btree_cur_ag { struct xfs_perag *pag; union { struct xfs_buf *agbp; struct xbtree_afakeroot *afake; /* for staging cursor */ }; union { struct { unsigned int nr_ops; /* # record updates */ unsigned int shape_changes; /* # of extent splits */ } refc; struct { bool active; /* allocation cursor state */ } abt; }; }; /* Btree-in-inode cursor information */ struct xfs_btree_cur_ino { struct xfs_inode *ip; struct xbtree_ifakeroot *ifake; /* for staging cursor */ int allocated; short forksize; char whichfork; char flags; /* We are converting a delalloc reservation */ #define XFS_BTCUR_BMBT_WASDEL (1 << 0) /* For extent swap, ignore owner check in verifier */ #define XFS_BTCUR_BMBT_INVALID_OWNER (1 << 1) }; struct xfs_btree_level { /* buffer pointer */ struct xfs_buf *bp; /* key/record number */ uint16_t ptr; /* readahead info */ #define XFS_BTCUR_LEFTRA (1 << 0) /* left sibling has been read-ahead */ #define XFS_BTCUR_RIGHTRA (1 << 1) /* right sibling has been read-ahead */ uint16_t ra; }; /* * Btree cursor structure. * This collects all information needed by the btree code in one place. */ struct xfs_btree_cur { struct xfs_trans *bc_tp; /* transaction we're in, if any */ struct xfs_mount *bc_mp; /* file system mount struct */ const struct xfs_btree_ops *bc_ops; struct kmem_cache *bc_cache; /* cursor cache */ unsigned int bc_flags; /* btree features - below */ xfs_btnum_t bc_btnum; /* identifies which btree type */ union xfs_btree_irec bc_rec; /* current insert/search record value */ uint8_t bc_nlevels; /* number of levels in the tree */ uint8_t bc_maxlevels; /* maximum levels for this btree type */ int bc_statoff; /* offset of btree stats array */ /* * Short btree pointers need an agno to be able to turn the pointers * into physical addresses for IO, so the btree cursor switches between * bc_ino and bc_ag based on whether XFS_BTREE_LONG_PTRS is set for the * cursor. */ union { struct xfs_btree_cur_ag bc_ag; struct xfs_btree_cur_ino bc_ino; }; /* Must be at the end of the struct! */ struct xfs_btree_level bc_levels[]; }; /* * Compute the size of a btree cursor that can handle a btree of a given * height. The bc_levels array handles node and leaf blocks, so its size * is exactly nlevels. */ static inline size_t xfs_btree_cur_sizeof(unsigned int nlevels) { return struct_size_t(struct xfs_btree_cur, bc_levels, nlevels); } /* cursor flags */ #define XFS_BTREE_LONG_PTRS (1<<0) /* pointers are 64bits long */ #define XFS_BTREE_ROOT_IN_INODE (1<<1) /* root may be variable size */ #define XFS_BTREE_LASTREC_UPDATE (1<<2) /* track last rec externally */ #define XFS_BTREE_CRC_BLOCKS (1<<3) /* uses extended btree blocks */ #define XFS_BTREE_OVERLAPPING (1<<4) /* overlapping intervals */ /* * The root of this btree is a fakeroot structure so that we can stage a btree * rebuild without leaving it accessible via primary metadata. The ops struct * is dynamically allocated and must be freed when the cursor is deleted. */ #define XFS_BTREE_STAGING (1<<5) #define XFS_BTREE_NOERROR 0 #define XFS_BTREE_ERROR 1 /* * Convert from buffer to btree block header. */ #define XFS_BUF_TO_BLOCK(bp) ((struct xfs_btree_block *)((bp)->b_addr)) /* * Internal long and short btree block checks. They return NULL if the * block is ok or the address of the failed check otherwise. */ xfs_failaddr_t __xfs_btree_check_lblock(struct xfs_btree_cur *cur, struct xfs_btree_block *block, int level, struct xfs_buf *bp); xfs_failaddr_t __xfs_btree_check_sblock(struct xfs_btree_cur *cur, struct xfs_btree_block *block, int level, struct xfs_buf *bp); /* * Check that block header is ok. */ int xfs_btree_check_block( struct xfs_btree_cur *cur, /* btree cursor */ struct xfs_btree_block *block, /* generic btree block pointer */ int level, /* level of the btree block */ struct xfs_buf *bp); /* buffer containing block, if any */ /* * Check that (long) pointer is ok. */ bool /* error (0 or EFSCORRUPTED) */ xfs_btree_check_lptr( struct xfs_btree_cur *cur, /* btree cursor */ xfs_fsblock_t fsbno, /* btree block disk address */ int level); /* btree block level */ /* * Check that (short) pointer is ok. */ bool /* error (0 or EFSCORRUPTED) */ xfs_btree_check_sptr( struct xfs_btree_cur *cur, /* btree cursor */ xfs_agblock_t agbno, /* btree block disk address */ int level); /* btree block level */ /* * Delete the btree cursor. */ void xfs_btree_del_cursor( struct xfs_btree_cur *cur, /* btree cursor */ int error); /* del because of error */ /* * Duplicate the btree cursor. * Allocate a new one, copy the record, re-get the buffers. */ int /* error */ xfs_btree_dup_cursor( struct xfs_btree_cur *cur, /* input cursor */ struct xfs_btree_cur **ncur);/* output cursor */ /* * Compute first and last byte offsets for the fields given. * Interprets the offsets table, which contains struct field offsets. */ void xfs_btree_offsets( uint32_t fields, /* bitmask of fields */ const short *offsets,/* table of field offsets */ int nbits, /* number of bits to inspect */ int *first, /* output: first byte offset */ int *last); /* output: last byte offset */ /* * Get a buffer for the block, return it read in. * Long-form addressing. */ int /* error */ xfs_btree_read_bufl( struct xfs_mount *mp, /* file system mount point */ struct xfs_trans *tp, /* transaction pointer */ xfs_fsblock_t fsbno, /* file system block number */ struct xfs_buf **bpp, /* buffer for fsbno */ int refval, /* ref count value for buffer */ const struct xfs_buf_ops *ops); /* * Read-ahead the block, don't wait for it, don't return a buffer. * Long-form addressing. */ void /* error */ xfs_btree_reada_bufl( struct xfs_mount *mp, /* file system mount point */ xfs_fsblock_t fsbno, /* file system block number */ xfs_extlen_t count, /* count of filesystem blocks */ const struct xfs_buf_ops *ops); /* * Read-ahead the block, don't wait for it, don't return a buffer. * Short-form addressing. */ void /* error */ xfs_btree_reada_bufs( struct xfs_mount *mp, /* file system mount point */ xfs_agnumber_t agno, /* allocation group number */ xfs_agblock_t agbno, /* allocation group block number */ xfs_extlen_t count, /* count of filesystem blocks */ const struct xfs_buf_ops *ops); /* * Initialise a new btree block header */ void xfs_btree_init_block( struct xfs_mount *mp, struct xfs_buf *bp, xfs_btnum_t btnum, __u16 level, __u16 numrecs, __u64 owner); void xfs_btree_init_block_int( struct xfs_mount *mp, struct xfs_btree_block *buf, xfs_daddr_t blkno, xfs_btnum_t btnum, __u16 level, __u16 numrecs, __u64 owner, unsigned int flags); /* * Common btree core entry points. */ int xfs_btree_increment(struct xfs_btree_cur *, int, int *); int xfs_btree_decrement(struct xfs_btree_cur *, int, int *); int xfs_btree_lookup(struct xfs_btree_cur *, xfs_lookup_t, int *); int xfs_btree_update(struct xfs_btree_cur *, union xfs_btree_rec *); int xfs_btree_new_iroot(struct xfs_btree_cur *, int *, int *); int xfs_btree_insert(struct xfs_btree_cur *, int *); int xfs_btree_delete(struct xfs_btree_cur *, int *); int xfs_btree_get_rec(struct xfs_btree_cur *, union xfs_btree_rec **, int *); int xfs_btree_change_owner(struct xfs_btree_cur *cur, uint64_t new_owner, struct list_head *buffer_list); /* * btree block CRC helpers */ void xfs_btree_lblock_calc_crc(struct xfs_buf *); bool xfs_btree_lblock_verify_crc(struct xfs_buf *); void xfs_btree_sblock_calc_crc(struct xfs_buf *); bool xfs_btree_sblock_verify_crc(struct xfs_buf *); /* * Internal btree helpers also used by xfs_bmap.c. */ void xfs_btree_log_block(struct xfs_btree_cur *, struct xfs_buf *, uint32_t); void xfs_btree_log_recs(struct xfs_btree_cur *, struct xfs_buf *, int, int); /* * Helpers. */ static inline int xfs_btree_get_numrecs(const struct xfs_btree_block *block) { return be16_to_cpu(block->bb_numrecs); } static inline void xfs_btree_set_numrecs(struct xfs_btree_block *block, uint16_t numrecs) { block->bb_numrecs = cpu_to_be16(numrecs); } static inline int xfs_btree_get_level(const struct xfs_btree_block *block) { return be16_to_cpu(block->bb_level); } /* * Min and max functions for extlen, agblock, fileoff, and filblks types. */ #define XFS_EXTLEN_MIN(a,b) min_t(xfs_extlen_t, (a), (b)) #define XFS_EXTLEN_MAX(a,b) max_t(xfs_extlen_t, (a), (b)) #define XFS_AGBLOCK_MIN(a,b) min_t(xfs_agblock_t, (a), (b)) #define XFS_AGBLOCK_MAX(a,b) max_t(xfs_agblock_t, (a), (b)) #define XFS_FILEOFF_MIN(a,b) min_t(xfs_fileoff_t, (a), (b)) #define XFS_FILEOFF_MAX(a,b) max_t(xfs_fileoff_t, (a), (b)) #define XFS_FILBLKS_MIN(a,b) min_t(xfs_filblks_t, (a), (b)) #define XFS_FILBLKS_MAX(a,b) max_t(xfs_filblks_t, (a), (b)) xfs_failaddr_t xfs_btree_sblock_v5hdr_verify(struct xfs_buf *bp); xfs_failaddr_t xfs_btree_sblock_verify(struct xfs_buf *bp, unsigned int max_recs); xfs_failaddr_t xfs_btree_lblock_v5hdr_verify(struct xfs_buf *bp, uint64_t owner); xfs_failaddr_t xfs_btree_lblock_verify(struct xfs_buf *bp, unsigned int max_recs); unsigned int xfs_btree_compute_maxlevels(const unsigned int *limits, unsigned long long records); unsigned long long xfs_btree_calc_size(const unsigned int *limits, unsigned long long records); unsigned int xfs_btree_space_to_height(const unsigned int *limits, unsigned long long blocks); /* * Return codes for the query range iterator function are 0 to continue * iterating, and non-zero to stop iterating. Any non-zero value will be * passed up to the _query_range caller. The special value -ECANCELED can be * used to stop iteration, because _query_range never generates that error * code on its own. */ typedef int (*xfs_btree_query_range_fn)(struct xfs_btree_cur *cur, const union xfs_btree_rec *rec, void *priv); int xfs_btree_query_range(struct xfs_btree_cur *cur, const union xfs_btree_irec *low_rec, const union xfs_btree_irec *high_rec, xfs_btree_query_range_fn fn, void *priv); int xfs_btree_query_all(struct xfs_btree_cur *cur, xfs_btree_query_range_fn fn, void *priv); typedef int (*xfs_btree_visit_blocks_fn)(struct xfs_btree_cur *cur, int level, void *data); /* Visit record blocks. */ #define XFS_BTREE_VISIT_RECORDS (1 << 0) /* Visit leaf blocks. */ #define XFS_BTREE_VISIT_LEAVES (1 << 1) /* Visit all blocks. */ #define XFS_BTREE_VISIT_ALL (XFS_BTREE_VISIT_RECORDS | \ XFS_BTREE_VISIT_LEAVES) int xfs_btree_visit_blocks(struct xfs_btree_cur *cur, xfs_btree_visit_blocks_fn fn, unsigned int flags, void *data); int xfs_btree_count_blocks(struct xfs_btree_cur *cur, xfs_extlen_t *blocks); union xfs_btree_rec *xfs_btree_rec_addr(struct xfs_btree_cur *cur, int n, struct xfs_btree_block *block); union xfs_btree_key *xfs_btree_key_addr(struct xfs_btree_cur *cur, int n, struct xfs_btree_block *block); union xfs_btree_key *xfs_btree_high_key_addr(struct xfs_btree_cur *cur, int n, struct xfs_btree_block *block); union xfs_btree_ptr *xfs_btree_ptr_addr(struct xfs_btree_cur *cur, int n, struct xfs_btree_block *block); int xfs_btree_lookup_get_block(struct xfs_btree_cur *cur, int level, const union xfs_btree_ptr *pp, struct xfs_btree_block **blkp); struct xfs_btree_block *xfs_btree_get_block(struct xfs_btree_cur *cur, int level, struct xfs_buf **bpp); bool xfs_btree_ptr_is_null(struct xfs_btree_cur *cur, const union xfs_btree_ptr *ptr); int64_t xfs_btree_diff_two_ptrs(struct xfs_btree_cur *cur, const union xfs_btree_ptr *a, const union xfs_btree_ptr *b); void xfs_btree_get_sibling(struct xfs_btree_cur *cur, struct xfs_btree_block *block, union xfs_btree_ptr *ptr, int lr); void xfs_btree_get_keys(struct xfs_btree_cur *cur, struct xfs_btree_block *block, union xfs_btree_key *key); union xfs_btree_key *xfs_btree_high_key_from_key(struct xfs_btree_cur *cur, union xfs_btree_key *key); typedef bool (*xfs_btree_key_gap_fn)(struct xfs_btree_cur *cur, const union xfs_btree_key *key1, const union xfs_btree_key *key2); int xfs_btree_has_records(struct xfs_btree_cur *cur, const union xfs_btree_irec *low, const union xfs_btree_irec *high, const union xfs_btree_key *mask, enum xbtree_recpacking *outcome); bool xfs_btree_has_more_records(struct xfs_btree_cur *cur); struct xfs_ifork *xfs_btree_ifork_ptr(struct xfs_btree_cur *cur); /* Key comparison helpers */ static inline bool xfs_btree_keycmp_lt( struct xfs_btree_cur *cur, const union xfs_btree_key *key1, const union xfs_btree_key *key2) { return cur->bc_ops->diff_two_keys(cur, key1, key2, NULL) < 0; } static inline bool xfs_btree_keycmp_gt( struct xfs_btree_cur *cur, const union xfs_btree_key *key1, const union xfs_btree_key *key2) { return cur->bc_ops->diff_two_keys(cur, key1, key2, NULL) > 0; } static inline bool xfs_btree_keycmp_eq( struct xfs_btree_cur *cur, const union xfs_btree_key *key1, const union xfs_btree_key *key2) { return cur->bc_ops->diff_two_keys(cur, key1, key2, NULL) == 0; } static inline bool xfs_btree_keycmp_le( struct xfs_btree_cur *cur, const union xfs_btree_key *key1, const union xfs_btree_key *key2) { return !xfs_btree_keycmp_gt(cur, key1, key2); } static inline bool xfs_btree_keycmp_ge( struct xfs_btree_cur *cur, const union xfs_btree_key *key1, const union xfs_btree_key *key2) { return !xfs_btree_keycmp_lt(cur, key1, key2); } static inline bool xfs_btree_keycmp_ne( struct xfs_btree_cur *cur, const union xfs_btree_key *key1, const union xfs_btree_key *key2) { return !xfs_btree_keycmp_eq(cur, key1, key2); } /* Masked key comparison helpers */ static inline bool xfs_btree_masked_keycmp_lt( struct xfs_btree_cur *cur, const union xfs_btree_key *key1, const union xfs_btree_key *key2, const union xfs_btree_key *mask) { return cur->bc_ops->diff_two_keys(cur, key1, key2, mask) < 0; } static inline bool xfs_btree_masked_keycmp_gt( struct xfs_btree_cur *cur, const union xfs_btree_key *key1, const union xfs_btree_key *key2, const union xfs_btree_key *mask) { return cur->bc_ops->diff_two_keys(cur, key1, key2, mask) > 0; } static inline bool xfs_btree_masked_keycmp_ge( struct xfs_btree_cur *cur, const union xfs_btree_key *key1, const union xfs_btree_key *key2, const union xfs_btree_key *mask) { return !xfs_btree_masked_keycmp_lt(cur, key1, key2, mask); } /* Does this cursor point to the last block in the given level? */ static inline bool xfs_btree_islastblock( struct xfs_btree_cur *cur, int level) { struct xfs_btree_block *block; struct xfs_buf *bp; block = xfs_btree_get_block(cur, level, &bp); if (cur->bc_flags & XFS_BTREE_LONG_PTRS) return block->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK); return block->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK); } void xfs_btree_set_ptr_null(struct xfs_btree_cur *cur, union xfs_btree_ptr *ptr); int xfs_btree_get_buf_block(struct xfs_btree_cur *cur, const union xfs_btree_ptr *ptr, struct xfs_btree_block **block, struct xfs_buf **bpp); int xfs_btree_read_buf_block(struct xfs_btree_cur *cur, const union xfs_btree_ptr *ptr, int flags, struct xfs_btree_block **block, struct xfs_buf **bpp); void xfs_btree_set_sibling(struct xfs_btree_cur *cur, struct xfs_btree_block *block, const union xfs_btree_ptr *ptr, int lr); void xfs_btree_init_block_cur(struct xfs_btree_cur *cur, struct xfs_buf *bp, int level, int numrecs); void xfs_btree_copy_ptrs(struct xfs_btree_cur *cur, union xfs_btree_ptr *dst_ptr, const union xfs_btree_ptr *src_ptr, int numptrs); void xfs_btree_copy_keys(struct xfs_btree_cur *cur, union xfs_btree_key *dst_key, const union xfs_btree_key *src_key, int numkeys); static inline struct xfs_btree_cur * xfs_btree_alloc_cursor( struct xfs_mount *mp, struct xfs_trans *tp, xfs_btnum_t btnum, uint8_t maxlevels, struct kmem_cache *cache) { struct xfs_btree_cur *cur; cur = kmem_cache_zalloc(cache, GFP_NOFS | __GFP_NOFAIL); cur->bc_tp = tp; cur->bc_mp = mp; cur->bc_btnum = btnum; cur->bc_maxlevels = maxlevels; cur->bc_cache = cache; return cur; } int __init xfs_btree_init_cur_caches(void); void xfs_btree_destroy_cur_caches(void); int xfs_btree_goto_left_edge(struct xfs_btree_cur *cur); #endif /* __XFS_BTREE_H__ */