/* SPDX-License-Identifier: GPL-2.0-or-later */ /* mpi.h - Multi Precision Integers * Copyright (C) 1994, 1996, 1998, 1999, * 2000, 2001 Free Software Foundation, Inc. * * This file is part of GNUPG. * * Note: This code is heavily based on the GNU MP Library. * Actually it's the same code with only minor changes in the * way the data is stored; this is to support the abstraction * of an optional secure memory allocation which may be used * to avoid revealing of sensitive data due to paging etc. * The GNU MP Library itself is published under the LGPL; * however I decided to publish this code under the plain GPL. */ #ifndef G10_MPI_H #define G10_MPI_H #include #include #define BYTES_PER_MPI_LIMB (BITS_PER_LONG / 8) #define BITS_PER_MPI_LIMB BITS_PER_LONG typedef unsigned long int mpi_limb_t; typedef signed long int mpi_limb_signed_t; struct gcry_mpi { int alloced; /* array size (# of allocated limbs) */ int nlimbs; /* number of valid limbs */ int nbits; /* the real number of valid bits (info only) */ int sign; /* indicates a negative number */ unsigned flags; /* bit 0: array must be allocated in secure memory space */ /* bit 1: not used */ /* bit 2: the limb is a pointer to some m_alloced data */ mpi_limb_t *d; /* array with the limbs */ }; typedef struct gcry_mpi *MPI; #define mpi_get_nlimbs(a) ((a)->nlimbs) #define mpi_has_sign(a) ((a)->sign) /*-- mpiutil.c --*/ MPI mpi_alloc(unsigned nlimbs); void mpi_clear(MPI a); void mpi_free(MPI a); int mpi_resize(MPI a, unsigned nlimbs); static inline MPI mpi_new(unsigned int nbits) { return mpi_alloc((nbits + BITS_PER_MPI_LIMB - 1) / BITS_PER_MPI_LIMB); } MPI mpi_copy(MPI a); MPI mpi_alloc_like(MPI a); void mpi_snatch(MPI w, MPI u); MPI mpi_set(MPI w, MPI u); MPI mpi_set_ui(MPI w, unsigned long u); MPI mpi_alloc_set_ui(unsigned long u); void mpi_swap_cond(MPI a, MPI b, unsigned long swap); /* Constants used to return constant MPIs. See mpi_init if you * want to add more constants. */ #define MPI_NUMBER_OF_CONSTANTS 6 enum gcry_mpi_constants { MPI_C_ZERO, MPI_C_ONE, MPI_C_TWO, MPI_C_THREE, MPI_C_FOUR, MPI_C_EIGHT }; MPI mpi_const(enum gcry_mpi_constants no); /*-- mpicoder.c --*/ /* Different formats of external big integer representation. */ enum gcry_mpi_format { GCRYMPI_FMT_NONE = 0, GCRYMPI_FMT_STD = 1, /* Twos complement stored without length. */ GCRYMPI_FMT_PGP = 2, /* As used by OpenPGP (unsigned only). */ GCRYMPI_FMT_SSH = 3, /* As used by SSH (like STD but with length). */ GCRYMPI_FMT_HEX = 4, /* Hex format. */ GCRYMPI_FMT_USG = 5, /* Like STD but unsigned. */ GCRYMPI_FMT_OPAQUE = 8 /* Opaque format (some functions only). */ }; MPI mpi_read_raw_data(const void *xbuffer, size_t nbytes); MPI mpi_read_from_buffer(const void *buffer, unsigned *ret_nread); int mpi_fromstr(MPI val, const char *str); MPI mpi_scanval(const char *string); MPI mpi_read_raw_from_sgl(struct scatterlist *sgl, unsigned int len); void *mpi_get_buffer(MPI a, unsigned *nbytes, int *sign); int mpi_read_buffer(MPI a, uint8_t *buf, unsigned buf_len, unsigned *nbytes, int *sign); int mpi_write_to_sgl(MPI a, struct scatterlist *sg, unsigned nbytes, int *sign); int mpi_print(enum gcry_mpi_format format, unsigned char *buffer, size_t buflen, size_t *nwritten, MPI a); /*-- mpi-mod.c --*/ void mpi_mod(MPI rem, MPI dividend, MPI divisor); /* Context used with Barrett reduction. */ struct barrett_ctx_s; typedef struct barrett_ctx_s *mpi_barrett_t; mpi_barrett_t mpi_barrett_init(MPI m, int copy); void mpi_barrett_free(mpi_barrett_t ctx); void mpi_mod_barrett(MPI r, MPI x, mpi_barrett_t ctx); void mpi_mul_barrett(MPI w, MPI u, MPI v, mpi_barrett_t ctx); /*-- mpi-pow.c --*/ int mpi_powm(MPI res, MPI base, MPI exp, MPI mod); /*-- mpi-cmp.c --*/ int mpi_cmp_ui(MPI u, ulong v); int mpi_cmp(MPI u, MPI v); int mpi_cmpabs(MPI u, MPI v); /*-- mpi-sub-ui.c --*/ int mpi_sub_ui(MPI w, MPI u, unsigned long vval); /*-- mpi-bit.c --*/ void mpi_normalize(MPI a); unsigned mpi_get_nbits(MPI a); int mpi_test_bit(MPI a, unsigned int n); void mpi_set_bit(MPI a, unsigned int n); void mpi_set_highbit(MPI a, unsigned int n); void mpi_clear_highbit(MPI a, unsigned int n); void mpi_clear_bit(MPI a, unsigned int n); void mpi_rshift_limbs(MPI a, unsigned int count); void mpi_rshift(MPI x, MPI a, unsigned int n); void mpi_lshift_limbs(MPI a, unsigned int count); void mpi_lshift(MPI x, MPI a, unsigned int n); /*-- mpi-add.c --*/ void mpi_add_ui(MPI w, MPI u, unsigned long v); void mpi_add(MPI w, MPI u, MPI v); void mpi_sub(MPI w, MPI u, MPI v); void mpi_addm(MPI w, MPI u, MPI v, MPI m); void mpi_subm(MPI w, MPI u, MPI v, MPI m); /*-- mpi-mul.c --*/ void mpi_mul(MPI w, MPI u, MPI v); void mpi_mulm(MPI w, MPI u, MPI v, MPI m); /*-- mpi-div.c --*/ void mpi_tdiv_r(MPI rem, MPI num, MPI den); void mpi_fdiv_r(MPI rem, MPI dividend, MPI divisor); void mpi_fdiv_q(MPI quot, MPI dividend, MPI divisor); /*-- mpi-inv.c --*/ int mpi_invm(MPI x, MPI a, MPI n); /*-- ec.c --*/ /* Object to represent a point in projective coordinates */ struct gcry_mpi_point { MPI x; MPI y; MPI z; }; typedef struct gcry_mpi_point *MPI_POINT; /* Models describing an elliptic curve */ enum gcry_mpi_ec_models { /* The Short Weierstrass equation is * y^2 = x^3 + ax + b */ MPI_EC_WEIERSTRASS = 0, /* The Montgomery equation is * by^2 = x^3 + ax^2 + x */ MPI_EC_MONTGOMERY, /* The Twisted Edwards equation is * ax^2 + y^2 = 1 + bx^2y^2 * Note that we use 'b' instead of the commonly used 'd'. */ MPI_EC_EDWARDS }; /* Dialects used with elliptic curves */ enum ecc_dialects { ECC_DIALECT_STANDARD = 0, ECC_DIALECT_ED25519, ECC_DIALECT_SAFECURVE }; /* This context is used with all our EC functions. */ struct mpi_ec_ctx { enum gcry_mpi_ec_models model; /* The model describing this curve. */ enum ecc_dialects dialect; /* The ECC dialect used with the curve. */ int flags; /* Public key flags (not always used). */ unsigned int nbits; /* Number of bits. */ /* Domain parameters. Note that they may not all be set and if set * the MPIs may be flagged as constant. */ MPI p; /* Prime specifying the field GF(p). */ MPI a; /* First coefficient of the Weierstrass equation. */ MPI b; /* Second coefficient of the Weierstrass equation. */ MPI_POINT G; /* Base point (generator). */ MPI n; /* Order of G. */ unsigned int h; /* Cofactor. */ /* The actual key. May not be set. */ MPI_POINT Q; /* Public key. */ MPI d; /* Private key. */ const char *name; /* Name of the curve. */ /* This structure is private to mpi/ec.c! */ struct { struct { unsigned int a_is_pminus3:1; unsigned int two_inv_p:1; } valid; /* Flags to help setting the helper vars below. */ int a_is_pminus3; /* True if A = P - 3. */ MPI two_inv_p; mpi_barrett_t p_barrett; /* Scratch variables. */ MPI scratch[11]; /* Helper for fast reduction. */ /* int nist_nbits; /\* If this is a NIST curve, the # of bits. *\/ */ /* MPI s[10]; */ /* MPI c; */ } t; /* Curve specific computation routines for the field. */ void (*addm)(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx); void (*subm)(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ec); void (*mulm)(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx); void (*pow2)(MPI w, const MPI b, struct mpi_ec_ctx *ctx); void (*mul2)(MPI w, MPI u, struct mpi_ec_ctx *ctx); }; void mpi_ec_init(struct mpi_ec_ctx *ctx, enum gcry_mpi_ec_models model, enum ecc_dialects dialect, int flags, MPI p, MPI a, MPI b); void mpi_ec_deinit(struct mpi_ec_ctx *ctx); MPI_POINT mpi_point_new(unsigned int nbits); void mpi_point_release(MPI_POINT p); void mpi_point_init(MPI_POINT p); void mpi_point_free_parts(MPI_POINT p); int mpi_ec_get_affine(MPI x, MPI y, MPI_POINT point, struct mpi_ec_ctx *ctx); void mpi_ec_add_points(MPI_POINT result, MPI_POINT p1, MPI_POINT p2, struct mpi_ec_ctx *ctx); void mpi_ec_mul_point(MPI_POINT result, MPI scalar, MPI_POINT point, struct mpi_ec_ctx *ctx); int mpi_ec_curve_point(MPI_POINT point, struct mpi_ec_ctx *ctx); /* inline functions */ /** * mpi_get_size() - returns max size required to store the number * * @a: A multi precision integer for which we want to allocate a buffer * * Return: size required to store the number */ static inline unsigned int mpi_get_size(MPI a) { return a->nlimbs * BYTES_PER_MPI_LIMB; } #endif /*G10_MPI_H */