/* SPDX-License-Identifier: GPL-2.0 */ /* * Macros for manipulating and testing page->flags */ #ifndef PAGE_FLAGS_H #define PAGE_FLAGS_H #include #include #include #ifndef __GENERATING_BOUNDS_H #include #include #endif /* !__GENERATING_BOUNDS_H */ /* * Various page->flags bits: * * PG_reserved is set for special pages. The "struct page" of such a page * should in general not be touched (e.g. set dirty) except by its owner. * Pages marked as PG_reserved include: * - Pages part of the kernel image (including vDSO) and similar (e.g. BIOS, * initrd, HW tables) * - Pages reserved or allocated early during boot (before the page allocator * was initialized). This includes (depending on the architecture) the * initial vmemmap, initial page tables, crashkernel, elfcorehdr, and much * much more. Once (if ever) freed, PG_reserved is cleared and they will * be given to the page allocator. * - Pages falling into physical memory gaps - not IORESOURCE_SYSRAM. Trying * to read/write these pages might end badly. Don't touch! * - The zero page(s) * - Pages not added to the page allocator when onlining a section because * they were excluded via the online_page_callback() or because they are * PG_hwpoison. * - Pages allocated in the context of kexec/kdump (loaded kernel image, * control pages, vmcoreinfo) * - MMIO/DMA pages. Some architectures don't allow to ioremap pages that are * not marked PG_reserved (as they might be in use by somebody else who does * not respect the caching strategy). * - Pages part of an offline section (struct pages of offline sections should * not be trusted as they will be initialized when first onlined). * - MCA pages on ia64 * - Pages holding CPU notes for POWER Firmware Assisted Dump * - Device memory (e.g. PMEM, DAX, HMM) * Some PG_reserved pages will be excluded from the hibernation image. * PG_reserved does in general not hinder anybody from dumping or swapping * and is no longer required for remap_pfn_range(). ioremap might require it. * Consequently, PG_reserved for a page mapped into user space can indicate * the zero page, the vDSO, MMIO pages or device memory. * * The PG_private bitflag is set on pagecache pages if they contain filesystem * specific data (which is normally at page->private). It can be used by * private allocations for its own usage. * * During initiation of disk I/O, PG_locked is set. This bit is set before I/O * and cleared when writeback _starts_ or when read _completes_. PG_writeback * is set before writeback starts and cleared when it finishes. * * PG_locked also pins a page in pagecache, and blocks truncation of the file * while it is held. * * page_waitqueue(page) is a wait queue of all tasks waiting for the page * to become unlocked. * * PG_swapbacked is set when a page uses swap as a backing storage. This are * usually PageAnon or shmem pages but please note that even anonymous pages * might lose their PG_swapbacked flag when they simply can be dropped (e.g. as * a result of MADV_FREE). * * PG_uptodate tells whether the page's contents is valid. When a read * completes, the page becomes uptodate, unless a disk I/O error happened. * * PG_referenced, PG_reclaim are used for page reclaim for anonymous and * file-backed pagecache (see mm/vmscan.c). * * PG_error is set to indicate that an I/O error occurred on this page. * * PG_arch_1 is an architecture specific page state bit. The generic code * guarantees that this bit is cleared for a page when it first is entered into * the page cache. * * PG_hwpoison indicates that a page got corrupted in hardware and contains * data with incorrect ECC bits that triggered a machine check. Accessing is * not safe since it may cause another machine check. Don't touch! */ /* * Don't use the pageflags directly. Use the PageFoo macros. * * The page flags field is split into two parts, the main flags area * which extends from the low bits upwards, and the fields area which * extends from the high bits downwards. * * | FIELD | ... | FLAGS | * N-1 ^ 0 * (NR_PAGEFLAGS) * * The fields area is reserved for fields mapping zone, node (for NUMA) and * SPARSEMEM section (for variants of SPARSEMEM that require section ids like * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP). */ enum pageflags { PG_locked, /* Page is locked. Don't touch. */ PG_referenced, PG_uptodate, PG_dirty, PG_lru, PG_active, PG_workingset, PG_waiters, /* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */ PG_error, PG_slab, PG_owner_priv_1, /* Owner use. If pagecache, fs may use*/ PG_arch_1, PG_reserved, PG_private, /* If pagecache, has fs-private data */ PG_private_2, /* If pagecache, has fs aux data */ PG_writeback, /* Page is under writeback */ PG_head, /* A head page */ PG_mappedtodisk, /* Has blocks allocated on-disk */ PG_reclaim, /* To be reclaimed asap */ PG_swapbacked, /* Page is backed by RAM/swap */ PG_unevictable, /* Page is "unevictable" */ #ifdef CONFIG_MMU PG_mlocked, /* Page is vma mlocked */ #endif #ifdef CONFIG_ARCH_USES_PG_UNCACHED PG_uncached, /* Page has been mapped as uncached */ #endif #ifdef CONFIG_MEMORY_FAILURE PG_hwpoison, /* hardware poisoned page. Don't touch */ #endif #if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT) PG_young, PG_idle, #endif #ifdef CONFIG_64BIT PG_arch_2, #endif #ifdef CONFIG_KASAN_HW_TAGS PG_skip_kasan_poison, #endif __NR_PAGEFLAGS, PG_readahead = PG_reclaim, /* Filesystems */ PG_checked = PG_owner_priv_1, /* SwapBacked */ PG_swapcache = PG_owner_priv_1, /* Swap page: swp_entry_t in private */ /* Two page bits are conscripted by FS-Cache to maintain local caching * state. These bits are set on pages belonging to the netfs's inodes * when those inodes are being locally cached. */ PG_fscache = PG_private_2, /* page backed by cache */ /* XEN */ /* Pinned in Xen as a read-only pagetable page. */ PG_pinned = PG_owner_priv_1, /* Pinned as part of domain save (see xen_mm_pin_all()). */ PG_savepinned = PG_dirty, /* Has a grant mapping of another (foreign) domain's page. */ PG_foreign = PG_owner_priv_1, /* Remapped by swiotlb-xen. */ PG_xen_remapped = PG_owner_priv_1, /* SLOB */ PG_slob_free = PG_private, /* Compound pages. Stored in first tail page's flags */ PG_double_map = PG_workingset, #ifdef CONFIG_MEMORY_FAILURE /* * Compound pages. Stored in first tail page's flags. * Indicates that at least one subpage is hwpoisoned in the * THP. */ PG_has_hwpoisoned = PG_mappedtodisk, #endif /* non-lru isolated movable page */ PG_isolated = PG_reclaim, /* Only valid for buddy pages. Used to track pages that are reported */ PG_reported = PG_uptodate, }; #define PAGEFLAGS_MASK ((1UL << NR_PAGEFLAGS) - 1) #ifndef __GENERATING_BOUNDS_H static inline unsigned long _compound_head(const struct page *page) { unsigned long head = READ_ONCE(page->compound_head); if (unlikely(head & 1)) return head - 1; return (unsigned long)page; } #define compound_head(page) ((typeof(page))_compound_head(page)) /** * page_folio - Converts from page to folio. * @p: The page. * * Every page is part of a folio. This function cannot be called on a * NULL pointer. * * Context: No reference, nor lock is required on @page. If the caller * does not hold a reference, this call may race with a folio split, so * it should re-check the folio still contains this page after gaining * a reference on the folio. * Return: The folio which contains this page. */ #define page_folio(p) (_Generic((p), \ const struct page *: (const struct folio *)_compound_head(p), \ struct page *: (struct folio *)_compound_head(p))) /** * folio_page - Return a page from a folio. * @folio: The folio. * @n: The page number to return. * * @n is relative to the start of the folio. This function does not * check that the page number lies within @folio; the caller is presumed * to have a reference to the page. */ #define folio_page(folio, n) nth_page(&(folio)->page, n) static __always_inline int PageTail(struct page *page) { return READ_ONCE(page->compound_head) & 1; } static __always_inline int PageCompound(struct page *page) { return test_bit(PG_head, &page->flags) || PageTail(page); } #define PAGE_POISON_PATTERN -1l static inline int PagePoisoned(const struct page *page) { return READ_ONCE(page->flags) == PAGE_POISON_PATTERN; } #ifdef CONFIG_DEBUG_VM void page_init_poison(struct page *page, size_t size); #else static inline void page_init_poison(struct page *page, size_t size) { } #endif static unsigned long *folio_flags(struct folio *folio, unsigned n) { struct page *page = &folio->page; VM_BUG_ON_PGFLAGS(PageTail(page), page); VM_BUG_ON_PGFLAGS(n > 0 && !test_bit(PG_head, &page->flags), page); return &page[n].flags; } /* * Page flags policies wrt compound pages * * PF_POISONED_CHECK * check if this struct page poisoned/uninitialized * * PF_ANY: * the page flag is relevant for small, head and tail pages. * * PF_HEAD: * for compound page all operations related to the page flag applied to * head page. * * PF_ONLY_HEAD: * for compound page, callers only ever operate on the head page. * * PF_NO_TAIL: * modifications of the page flag must be done on small or head pages, * checks can be done on tail pages too. * * PF_NO_COMPOUND: * the page flag is not relevant for compound pages. * * PF_SECOND: * the page flag is stored in the first tail page. */ #define PF_POISONED_CHECK(page) ({ \ VM_BUG_ON_PGFLAGS(PagePoisoned(page), page); \ page; }) #define PF_ANY(page, enforce) PF_POISONED_CHECK(page) #define PF_HEAD(page, enforce) PF_POISONED_CHECK(compound_head(page)) #define PF_ONLY_HEAD(page, enforce) ({ \ VM_BUG_ON_PGFLAGS(PageTail(page), page); \ PF_POISONED_CHECK(page); }) #define PF_NO_TAIL(page, enforce) ({ \ VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page); \ PF_POISONED_CHECK(compound_head(page)); }) #define PF_NO_COMPOUND(page, enforce) ({ \ VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \ PF_POISONED_CHECK(page); }) #define PF_SECOND(page, enforce) ({ \ VM_BUG_ON_PGFLAGS(!PageHead(page), page); \ PF_POISONED_CHECK(&page[1]); }) /* Which page is the flag stored in */ #define FOLIO_PF_ANY 0 #define FOLIO_PF_HEAD 0 #define FOLIO_PF_ONLY_HEAD 0 #define FOLIO_PF_NO_TAIL 0 #define FOLIO_PF_NO_COMPOUND 0 #define FOLIO_PF_SECOND 1 /* * Macros to create function definitions for page flags */ #define TESTPAGEFLAG(uname, lname, policy) \ static __always_inline bool folio_test_##lname(struct folio *folio) \ { return test_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \ static __always_inline int Page##uname(struct page *page) \ { return test_bit(PG_##lname, &policy(page, 0)->flags); } #define SETPAGEFLAG(uname, lname, policy) \ static __always_inline \ void folio_set_##lname(struct folio *folio) \ { set_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \ static __always_inline void SetPage##uname(struct page *page) \ { set_bit(PG_##lname, &policy(page, 1)->flags); } #define CLEARPAGEFLAG(uname, lname, policy) \ static __always_inline \ void folio_clear_##lname(struct folio *folio) \ { clear_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \ static __always_inline void ClearPage##uname(struct page *page) \ { clear_bit(PG_##lname, &policy(page, 1)->flags); } #define __SETPAGEFLAG(uname, lname, policy) \ static __always_inline \ void __folio_set_##lname(struct folio *folio) \ { __set_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \ static __always_inline void __SetPage##uname(struct page *page) \ { __set_bit(PG_##lname, &policy(page, 1)->flags); } #define __CLEARPAGEFLAG(uname, lname, policy) \ static __always_inline \ void __folio_clear_##lname(struct folio *folio) \ { __clear_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \ static __always_inline void __ClearPage##uname(struct page *page) \ { __clear_bit(PG_##lname, &policy(page, 1)->flags); } #define TESTSETFLAG(uname, lname, policy) \ static __always_inline \ bool folio_test_set_##lname(struct folio *folio) \ { return test_and_set_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \ static __always_inline int TestSetPage##uname(struct page *page) \ { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); } #define TESTCLEARFLAG(uname, lname, policy) \ static __always_inline \ bool folio_test_clear_##lname(struct folio *folio) \ { return test_and_clear_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \ static __always_inline int TestClearPage##uname(struct page *page) \ { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); } #define PAGEFLAG(uname, lname, policy) \ TESTPAGEFLAG(uname, lname, policy) \ SETPAGEFLAG(uname, lname, policy) \ CLEARPAGEFLAG(uname, lname, policy) #define __PAGEFLAG(uname, lname, policy) \ TESTPAGEFLAG(uname, lname, policy) \ __SETPAGEFLAG(uname, lname, policy) \ __CLEARPAGEFLAG(uname, lname, policy) #define TESTSCFLAG(uname, lname, policy) \ TESTSETFLAG(uname, lname, policy) \ TESTCLEARFLAG(uname, lname, policy) #define TESTPAGEFLAG_FALSE(uname, lname) \ static inline bool folio_test_##lname(const struct folio *folio) { return 0; } \ static inline int Page##uname(const struct page *page) { return 0; } #define SETPAGEFLAG_NOOP(uname, lname) \ static inline void folio_set_##lname(struct folio *folio) { } \ static inline void SetPage##uname(struct page *page) { } #define CLEARPAGEFLAG_NOOP(uname, lname) \ static inline void folio_clear_##lname(struct folio *folio) { } \ static inline void ClearPage##uname(struct page *page) { } #define __CLEARPAGEFLAG_NOOP(uname, lname) \ static inline void __folio_clear_##lname(struct folio *folio) { } \ static inline void __ClearPage##uname(struct page *page) { } #define TESTSETFLAG_FALSE(uname, lname) \ static inline bool folio_test_set_##lname(struct folio *folio) \ { return 0; } \ static inline int TestSetPage##uname(struct page *page) { return 0; } #define TESTCLEARFLAG_FALSE(uname, lname) \ static inline bool folio_test_clear_##lname(struct folio *folio) \ { return 0; } \ static inline int TestClearPage##uname(struct page *page) { return 0; } #define PAGEFLAG_FALSE(uname, lname) TESTPAGEFLAG_FALSE(uname, lname) \ SETPAGEFLAG_NOOP(uname, lname) CLEARPAGEFLAG_NOOP(uname, lname) #define TESTSCFLAG_FALSE(uname, lname) \ TESTSETFLAG_FALSE(uname, lname) TESTCLEARFLAG_FALSE(uname, lname) __PAGEFLAG(Locked, locked, PF_NO_TAIL) PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) __CLEARPAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) PAGEFLAG(Error, error, PF_NO_TAIL) TESTCLEARFLAG(Error, error, PF_NO_TAIL) PAGEFLAG(Referenced, referenced, PF_HEAD) TESTCLEARFLAG(Referenced, referenced, PF_HEAD) __SETPAGEFLAG(Referenced, referenced, PF_HEAD) PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD) __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD) PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD) TESTCLEARFLAG(LRU, lru, PF_HEAD) PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD) TESTCLEARFLAG(Active, active, PF_HEAD) PAGEFLAG(Workingset, workingset, PF_HEAD) TESTCLEARFLAG(Workingset, workingset, PF_HEAD) __PAGEFLAG(Slab, slab, PF_NO_TAIL) __PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL) PAGEFLAG(Checked, checked, PF_NO_COMPOUND) /* Used by some filesystems */ /* Xen */ PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND) TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND) PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND); PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND); PAGEFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND) TESTCLEARFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND) PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) __CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) __SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) __CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) __SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) /* * Private page markings that may be used by the filesystem that owns the page * for its own purposes. * - PG_private and PG_private_2 cause releasepage() and co to be invoked */ PAGEFLAG(Private, private, PF_ANY) PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY) PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY) TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY) /* * Only test-and-set exist for PG_writeback. The unconditional operators are * risky: they bypass page accounting. */ TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL) TESTSCFLAG(Writeback, writeback, PF_NO_TAIL) PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL) /* PG_readahead is only used for reads; PG_reclaim is only for writes */ PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL) TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL) PAGEFLAG(Readahead, readahead, PF_NO_COMPOUND) TESTCLEARFLAG(Readahead, readahead, PF_NO_COMPOUND) #ifdef CONFIG_HIGHMEM /* * Must use a macro here due to header dependency issues. page_zone() is not * available at this point. */ #define PageHighMem(__p) is_highmem_idx(page_zonenum(__p)) #else PAGEFLAG_FALSE(HighMem, highmem) #endif #ifdef CONFIG_SWAP static __always_inline bool folio_test_swapcache(struct folio *folio) { return folio_test_swapbacked(folio) && test_bit(PG_swapcache, folio_flags(folio, 0)); } static __always_inline bool PageSwapCache(struct page *page) { return folio_test_swapcache(page_folio(page)); } SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL) CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL) #else PAGEFLAG_FALSE(SwapCache, swapcache) #endif PAGEFLAG(Unevictable, unevictable, PF_HEAD) __CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD) TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD) #ifdef CONFIG_MMU PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL) __CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL) TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL) #else PAGEFLAG_FALSE(Mlocked, mlocked) __CLEARPAGEFLAG_NOOP(Mlocked, mlocked) TESTSCFLAG_FALSE(Mlocked, mlocked) #endif #ifdef CONFIG_ARCH_USES_PG_UNCACHED PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND) #else PAGEFLAG_FALSE(Uncached, uncached) #endif #ifdef CONFIG_MEMORY_FAILURE PAGEFLAG(HWPoison, hwpoison, PF_ANY) TESTSCFLAG(HWPoison, hwpoison, PF_ANY) #define __PG_HWPOISON (1UL << PG_hwpoison) extern bool take_page_off_buddy(struct page *page); #else PAGEFLAG_FALSE(HWPoison, hwpoison) #define __PG_HWPOISON 0 #endif #if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT) TESTPAGEFLAG(Young, young, PF_ANY) SETPAGEFLAG(Young, young, PF_ANY) TESTCLEARFLAG(Young, young, PF_ANY) PAGEFLAG(Idle, idle, PF_ANY) #endif #ifdef CONFIG_KASAN_HW_TAGS PAGEFLAG(SkipKASanPoison, skip_kasan_poison, PF_HEAD) #else PAGEFLAG_FALSE(SkipKASanPoison, skip_kasan_poison) #endif /* * PageReported() is used to track reported free pages within the Buddy * allocator. We can use the non-atomic version of the test and set * operations as both should be shielded with the zone lock to prevent * any possible races on the setting or clearing of the bit. */ __PAGEFLAG(Reported, reported, PF_NO_COMPOUND) /* * On an anonymous page mapped into a user virtual memory area, * page->mapping points to its anon_vma, not to a struct address_space; * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. * * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON * bit; and then page->mapping points, not to an anon_vma, but to a private * structure which KSM associates with that merged page. See ksm.h. * * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable * page and then page->mapping points a struct address_space. * * Please note that, confusingly, "page_mapping" refers to the inode * address_space which maps the page from disk; whereas "page_mapped" * refers to user virtual address space into which the page is mapped. */ #define PAGE_MAPPING_ANON 0x1 #define PAGE_MAPPING_MOVABLE 0x2 #define PAGE_MAPPING_KSM (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE) #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE) static __always_inline int PageMappingFlags(struct page *page) { return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0; } static __always_inline bool folio_test_anon(struct folio *folio) { return ((unsigned long)folio->mapping & PAGE_MAPPING_ANON) != 0; } static __always_inline bool PageAnon(struct page *page) { return folio_test_anon(page_folio(page)); } static __always_inline int __PageMovable(struct page *page) { return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) == PAGE_MAPPING_MOVABLE; } #ifdef CONFIG_KSM /* * A KSM page is one of those write-protected "shared pages" or "merged pages" * which KSM maps into multiple mms, wherever identical anonymous page content * is found in VM_MERGEABLE vmas. It's a PageAnon page, pointing not to any * anon_vma, but to that page's node of the stable tree. */ static __always_inline bool folio_test_ksm(struct folio *folio) { return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) == PAGE_MAPPING_KSM; } static __always_inline bool PageKsm(struct page *page) { return folio_test_ksm(page_folio(page)); } #else TESTPAGEFLAG_FALSE(Ksm, ksm) #endif u64 stable_page_flags(struct page *page); static inline bool folio_test_uptodate(struct folio *folio) { bool ret = test_bit(PG_uptodate, folio_flags(folio, 0)); /* * Must ensure that the data we read out of the folio is loaded * _after_ we've loaded folio->flags to check the uptodate bit. * We can skip the barrier if the folio is not uptodate, because * we wouldn't be reading anything from it. * * See folio_mark_uptodate() for the other side of the story. */ if (ret) smp_rmb(); return ret; } static inline int PageUptodate(struct page *page) { return folio_test_uptodate(page_folio(page)); } static __always_inline void __folio_mark_uptodate(struct folio *folio) { smp_wmb(); __set_bit(PG_uptodate, folio_flags(folio, 0)); } static __always_inline void folio_mark_uptodate(struct folio *folio) { /* * Memory barrier must be issued before setting the PG_uptodate bit, * so that all previous stores issued in order to bring the folio * uptodate are actually visible before folio_test_uptodate becomes true. */ smp_wmb(); set_bit(PG_uptodate, folio_flags(folio, 0)); } static __always_inline void __SetPageUptodate(struct page *page) { __folio_mark_uptodate((struct folio *)page); } static __always_inline void SetPageUptodate(struct page *page) { folio_mark_uptodate((struct folio *)page); } CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL) bool __folio_start_writeback(struct folio *folio, bool keep_write); bool set_page_writeback(struct page *page); #define folio_start_writeback(folio) \ __folio_start_writeback(folio, false) #define folio_start_writeback_keepwrite(folio) \ __folio_start_writeback(folio, true) static inline void set_page_writeback_keepwrite(struct page *page) { folio_start_writeback_keepwrite(page_folio(page)); } static inline bool test_set_page_writeback(struct page *page) { return set_page_writeback(page); } __PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY) /** * folio_test_large() - Does this folio contain more than one page? * @folio: The folio to test. * * Return: True if the folio is larger than one page. */ static inline bool folio_test_large(struct folio *folio) { return folio_test_head(folio); } static __always_inline void set_compound_head(struct page *page, struct page *head) { WRITE_ONCE(page->compound_head, (unsigned long)head + 1); } static __always_inline void clear_compound_head(struct page *page) { WRITE_ONCE(page->compound_head, 0); } #ifdef CONFIG_TRANSPARENT_HUGEPAGE static inline void ClearPageCompound(struct page *page) { BUG_ON(!PageHead(page)); ClearPageHead(page); } #endif #define PG_head_mask ((1UL << PG_head)) #ifdef CONFIG_HUGETLB_PAGE int PageHuge(struct page *page); int PageHeadHuge(struct page *page); static inline bool folio_test_hugetlb(struct folio *folio) { return PageHeadHuge(&folio->page); } #else TESTPAGEFLAG_FALSE(Huge, hugetlb) TESTPAGEFLAG_FALSE(HeadHuge, headhuge) #endif #ifdef CONFIG_TRANSPARENT_HUGEPAGE /* * PageHuge() only returns true for hugetlbfs pages, but not for * normal or transparent huge pages. * * PageTransHuge() returns true for both transparent huge and * hugetlbfs pages, but not normal pages. PageTransHuge() can only be * called only in the core VM paths where hugetlbfs pages can't exist. */ static inline int PageTransHuge(struct page *page) { VM_BUG_ON_PAGE(PageTail(page), page); return PageHead(page); } static inline bool folio_test_transhuge(struct folio *folio) { return folio_test_head(folio); } /* * PageTransCompound returns true for both transparent huge pages * and hugetlbfs pages, so it should only be called when it's known * that hugetlbfs pages aren't involved. */ static inline int PageTransCompound(struct page *page) { return PageCompound(page); } /* * PageTransTail returns true for both transparent huge pages * and hugetlbfs pages, so it should only be called when it's known * that hugetlbfs pages aren't involved. */ static inline int PageTransTail(struct page *page) { return PageTail(page); } /* * PageDoubleMap indicates that the compound page is mapped with PTEs as well * as PMDs. * * This is required for optimization of rmap operations for THP: we can postpone * per small page mapcount accounting (and its overhead from atomic operations) * until the first PMD split. * * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up * by one. This reference will go away with last compound_mapcount. * * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap(). */ PAGEFLAG(DoubleMap, double_map, PF_SECOND) TESTSCFLAG(DoubleMap, double_map, PF_SECOND) #else TESTPAGEFLAG_FALSE(TransHuge, transhuge) TESTPAGEFLAG_FALSE(TransCompound, transcompound) TESTPAGEFLAG_FALSE(TransCompoundMap, transcompoundmap) TESTPAGEFLAG_FALSE(TransTail, transtail) PAGEFLAG_FALSE(DoubleMap, double_map) TESTSCFLAG_FALSE(DoubleMap, double_map) #endif #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_TRANSPARENT_HUGEPAGE) /* * PageHasHWPoisoned indicates that at least one subpage is hwpoisoned in the * compound page. * * This flag is set by hwpoison handler. Cleared by THP split or free page. */ PAGEFLAG(HasHWPoisoned, has_hwpoisoned, PF_SECOND) TESTSCFLAG(HasHWPoisoned, has_hwpoisoned, PF_SECOND) #else PAGEFLAG_FALSE(HasHWPoisoned, has_hwpoisoned) TESTSCFLAG_FALSE(HasHWPoisoned, has_hwpoisoned) #endif /* * Check if a page is currently marked HWPoisoned. Note that this check is * best effort only and inherently racy: there is no way to synchronize with * failing hardware. */ static inline bool is_page_hwpoison(struct page *page) { if (PageHWPoison(page)) return true; return PageHuge(page) && PageHWPoison(compound_head(page)); } /* * For pages that are never mapped to userspace (and aren't PageSlab), * page_type may be used. Because it is initialised to -1, we invert the * sense of the bit, so __SetPageFoo *clears* the bit used for PageFoo, and * __ClearPageFoo *sets* the bit used for PageFoo. We reserve a few high and * low bits so that an underflow or overflow of page_mapcount() won't be * mistaken for a page type value. */ #define PAGE_TYPE_BASE 0xf0000000 /* Reserve 0x0000007f to catch underflows of page_mapcount */ #define PAGE_MAPCOUNT_RESERVE -128 #define PG_buddy 0x00000080 #define PG_offline 0x00000100 #define PG_table 0x00000200 #define PG_guard 0x00000400 #define PageType(page, flag) \ ((page->page_type & (PAGE_TYPE_BASE | flag)) == PAGE_TYPE_BASE) static inline int page_has_type(struct page *page) { return (int)page->page_type < PAGE_MAPCOUNT_RESERVE; } #define PAGE_TYPE_OPS(uname, lname) \ static __always_inline int Page##uname(struct page *page) \ { \ return PageType(page, PG_##lname); \ } \ static __always_inline void __SetPage##uname(struct page *page) \ { \ VM_BUG_ON_PAGE(!PageType(page, 0), page); \ page->page_type &= ~PG_##lname; \ } \ static __always_inline void __ClearPage##uname(struct page *page) \ { \ VM_BUG_ON_PAGE(!Page##uname(page), page); \ page->page_type |= PG_##lname; \ } /* * PageBuddy() indicates that the page is free and in the buddy system * (see mm/page_alloc.c). */ PAGE_TYPE_OPS(Buddy, buddy) /* * PageOffline() indicates that the page is logically offline although the * containing section is online. (e.g. inflated in a balloon driver or * not onlined when onlining the section). * The content of these pages is effectively stale. Such pages should not * be touched (read/write/dump/save) except by their owner. * * If a driver wants to allow to offline unmovable PageOffline() pages without * putting them back to the buddy, it can do so via the memory notifier by * decrementing the reference count in MEM_GOING_OFFLINE and incrementing the * reference count in MEM_CANCEL_OFFLINE. When offlining, the PageOffline() * pages (now with a reference count of zero) are treated like free pages, * allowing the containing memory block to get offlined. A driver that * relies on this feature is aware that re-onlining the memory block will * require to re-set the pages PageOffline() and not giving them to the * buddy via online_page_callback_t. * * There are drivers that mark a page PageOffline() and expect there won't be * any further access to page content. PFN walkers that read content of random * pages should check PageOffline() and synchronize with such drivers using * page_offline_freeze()/page_offline_thaw(). */ PAGE_TYPE_OPS(Offline, offline) extern void page_offline_freeze(void); extern void page_offline_thaw(void); extern void page_offline_begin(void); extern void page_offline_end(void); /* * Marks pages in use as page tables. */ PAGE_TYPE_OPS(Table, table) /* * Marks guardpages used with debug_pagealloc. */ PAGE_TYPE_OPS(Guard, guard) extern bool is_free_buddy_page(struct page *page); __PAGEFLAG(Isolated, isolated, PF_ANY); /* * If network-based swap is enabled, sl*b must keep track of whether pages * were allocated from pfmemalloc reserves. */ static inline int PageSlabPfmemalloc(struct page *page) { VM_BUG_ON_PAGE(!PageSlab(page), page); return PageActive(page); } /* * A version of PageSlabPfmemalloc() for opportunistic checks where the page * might have been freed under us and not be a PageSlab anymore. */ static inline int __PageSlabPfmemalloc(struct page *page) { return PageActive(page); } static inline void SetPageSlabPfmemalloc(struct page *page) { VM_BUG_ON_PAGE(!PageSlab(page), page); SetPageActive(page); } static inline void __ClearPageSlabPfmemalloc(struct page *page) { VM_BUG_ON_PAGE(!PageSlab(page), page); __ClearPageActive(page); } static inline void ClearPageSlabPfmemalloc(struct page *page) { VM_BUG_ON_PAGE(!PageSlab(page), page); ClearPageActive(page); } #ifdef CONFIG_MMU #define __PG_MLOCKED (1UL << PG_mlocked) #else #define __PG_MLOCKED 0 #endif /* * Flags checked when a page is freed. Pages being freed should not have * these flags set. If they are, there is a problem. */ #define PAGE_FLAGS_CHECK_AT_FREE \ (1UL << PG_lru | 1UL << PG_locked | \ 1UL << PG_private | 1UL << PG_private_2 | \ 1UL << PG_writeback | 1UL << PG_reserved | \ 1UL << PG_slab | 1UL << PG_active | \ 1UL << PG_unevictable | __PG_MLOCKED) /* * Flags checked when a page is prepped for return by the page allocator. * Pages being prepped should not have these flags set. If they are set, * there has been a kernel bug or struct page corruption. * * __PG_HWPOISON is exceptional because it needs to be kept beyond page's * alloc-free cycle to prevent from reusing the page. */ #define PAGE_FLAGS_CHECK_AT_PREP \ (PAGEFLAGS_MASK & ~__PG_HWPOISON) #define PAGE_FLAGS_PRIVATE \ (1UL << PG_private | 1UL << PG_private_2) /** * page_has_private - Determine if page has private stuff * @page: The page to be checked * * Determine if a page has private stuff, indicating that release routines * should be invoked upon it. */ static inline int page_has_private(struct page *page) { return !!(page->flags & PAGE_FLAGS_PRIVATE); } static inline bool folio_has_private(struct folio *folio) { return page_has_private(&folio->page); } #undef PF_ANY #undef PF_HEAD #undef PF_ONLY_HEAD #undef PF_NO_TAIL #undef PF_NO_COMPOUND #undef PF_SECOND #endif /* !__GENERATING_BOUNDS_H */ #endif /* PAGE_FLAGS_H */