#ifndef _LINUX_PERCPU_RWSEM_H #define _LINUX_PERCPU_RWSEM_H #include #include #include #include struct percpu_rw_semaphore { unsigned __percpu *counters; bool locked; struct mutex mtx; }; static inline void percpu_down_read(struct percpu_rw_semaphore *p) { rcu_read_lock(); if (unlikely(p->locked)) { rcu_read_unlock(); mutex_lock(&p->mtx); this_cpu_inc(*p->counters); mutex_unlock(&p->mtx); return; } this_cpu_inc(*p->counters); rcu_read_unlock(); } static inline void percpu_up_read(struct percpu_rw_semaphore *p) { /* * On X86, write operation in this_cpu_dec serves as a memory unlock * barrier (i.e. memory accesses may be moved before the write, but * no memory accesses are moved past the write). * On other architectures this may not be the case, so we need smp_mb() * there. */ #if defined(CONFIG_X86) && (!defined(CONFIG_X86_PPRO_FENCE) && !defined(CONFIG_X86_OOSTORE)) barrier(); #else smp_mb(); #endif this_cpu_dec(*p->counters); } static inline unsigned __percpu_count(unsigned __percpu *counters) { unsigned total = 0; int cpu; for_each_possible_cpu(cpu) total += ACCESS_ONCE(*per_cpu_ptr(counters, cpu)); return total; } static inline void percpu_down_write(struct percpu_rw_semaphore *p) { mutex_lock(&p->mtx); p->locked = true; synchronize_rcu(); while (__percpu_count(p->counters)) msleep(1); smp_rmb(); /* paired with smp_mb() in percpu_sem_up_read() */ } static inline void percpu_up_write(struct percpu_rw_semaphore *p) { p->locked = false; mutex_unlock(&p->mtx); } static inline int percpu_init_rwsem(struct percpu_rw_semaphore *p) { p->counters = alloc_percpu(unsigned); if (unlikely(!p->counters)) return -ENOMEM; p->locked = false; mutex_init(&p->mtx); return 0; } static inline void percpu_free_rwsem(struct percpu_rw_semaphore *p) { free_percpu(p->counters); p->counters = NULL; /* catch use after free bugs */ } #endif