/* SPDX-License-Identifier: GPL-2.0 */ /* * include/linux/userfaultfd_k.h * * Copyright (C) 2015 Red Hat, Inc. * */ #ifndef _LINUX_USERFAULTFD_K_H #define _LINUX_USERFAULTFD_K_H #ifdef CONFIG_USERFAULTFD #include /* linux/include/uapi/linux/userfaultfd.h */ #include #include #include #include #include #include /* The set of all possible UFFD-related VM flags. */ #define __VM_UFFD_FLAGS (VM_UFFD_MISSING | VM_UFFD_WP | VM_UFFD_MINOR) /* * CAREFUL: Check include/uapi/asm-generic/fcntl.h when defining * new flags, since they might collide with O_* ones. We want * to re-use O_* flags that couldn't possibly have a meaning * from userfaultfd, in order to leave a free define-space for * shared O_* flags. */ #define UFFD_CLOEXEC O_CLOEXEC #define UFFD_NONBLOCK O_NONBLOCK #define UFFD_SHARED_FCNTL_FLAGS (O_CLOEXEC | O_NONBLOCK) #define UFFD_FLAGS_SET (EFD_SHARED_FCNTL_FLAGS) /* * Start with fault_pending_wqh and fault_wqh so they're more likely * to be in the same cacheline. * * Locking order: * fd_wqh.lock * fault_pending_wqh.lock * fault_wqh.lock * event_wqh.lock * * To avoid deadlocks, IRQs must be disabled when taking any of the above locks, * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's * also taken in IRQ context. */ struct userfaultfd_ctx { /* waitqueue head for the pending (i.e. not read) userfaults */ wait_queue_head_t fault_pending_wqh; /* waitqueue head for the userfaults */ wait_queue_head_t fault_wqh; /* waitqueue head for the pseudo fd to wakeup poll/read */ wait_queue_head_t fd_wqh; /* waitqueue head for events */ wait_queue_head_t event_wqh; /* a refile sequence protected by fault_pending_wqh lock */ seqcount_spinlock_t refile_seq; /* pseudo fd refcounting */ refcount_t refcount; /* userfaultfd syscall flags */ unsigned int flags; /* features requested from the userspace */ unsigned int features; /* released */ bool released; /* * Prevents userfaultfd operations (fill/move/wp) from happening while * some non-cooperative event(s) is taking place. Increments are done * in write-mode. Whereas, userfaultfd operations, which includes * reading mmap_changing, is done under read-mode. */ struct rw_semaphore map_changing_lock; /* memory mappings are changing because of non-cooperative event */ atomic_t mmap_changing; /* mm with one ore more vmas attached to this userfaultfd_ctx */ struct mm_struct *mm; }; extern vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason); /* A combined operation mode + behavior flags. */ typedef unsigned int __bitwise uffd_flags_t; /* Mutually exclusive modes of operation. */ enum mfill_atomic_mode { MFILL_ATOMIC_COPY, MFILL_ATOMIC_ZEROPAGE, MFILL_ATOMIC_CONTINUE, MFILL_ATOMIC_POISON, NR_MFILL_ATOMIC_MODES, }; #define MFILL_ATOMIC_MODE_BITS (const_ilog2(NR_MFILL_ATOMIC_MODES - 1) + 1) #define MFILL_ATOMIC_BIT(nr) BIT(MFILL_ATOMIC_MODE_BITS + (nr)) #define MFILL_ATOMIC_FLAG(nr) ((__force uffd_flags_t) MFILL_ATOMIC_BIT(nr)) #define MFILL_ATOMIC_MODE_MASK ((__force uffd_flags_t) (MFILL_ATOMIC_BIT(0) - 1)) static inline bool uffd_flags_mode_is(uffd_flags_t flags, enum mfill_atomic_mode expected) { return (flags & MFILL_ATOMIC_MODE_MASK) == ((__force uffd_flags_t) expected); } static inline uffd_flags_t uffd_flags_set_mode(uffd_flags_t flags, enum mfill_atomic_mode mode) { flags &= ~MFILL_ATOMIC_MODE_MASK; return flags | ((__force uffd_flags_t) mode); } /* Flags controlling behavior. These behavior changes are mode-independent. */ #define MFILL_ATOMIC_WP MFILL_ATOMIC_FLAG(0) extern int mfill_atomic_install_pte(pmd_t *dst_pmd, struct vm_area_struct *dst_vma, unsigned long dst_addr, struct page *page, bool newly_allocated, uffd_flags_t flags); extern ssize_t mfill_atomic_copy(struct userfaultfd_ctx *ctx, unsigned long dst_start, unsigned long src_start, unsigned long len, uffd_flags_t flags); extern ssize_t mfill_atomic_zeropage(struct userfaultfd_ctx *ctx, unsigned long dst_start, unsigned long len); extern ssize_t mfill_atomic_continue(struct userfaultfd_ctx *ctx, unsigned long dst_start, unsigned long len, uffd_flags_t flags); extern ssize_t mfill_atomic_poison(struct userfaultfd_ctx *ctx, unsigned long start, unsigned long len, uffd_flags_t flags); extern int mwriteprotect_range(struct userfaultfd_ctx *ctx, unsigned long start, unsigned long len, bool enable_wp); extern long uffd_wp_range(struct vm_area_struct *vma, unsigned long start, unsigned long len, bool enable_wp); /* move_pages */ void double_pt_lock(spinlock_t *ptl1, spinlock_t *ptl2); void double_pt_unlock(spinlock_t *ptl1, spinlock_t *ptl2); ssize_t move_pages(struct userfaultfd_ctx *ctx, unsigned long dst_start, unsigned long src_start, unsigned long len, __u64 flags); int move_pages_huge_pmd(struct mm_struct *mm, pmd_t *dst_pmd, pmd_t *src_pmd, pmd_t dst_pmdval, struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, unsigned long dst_addr, unsigned long src_addr); /* mm helpers */ static inline bool is_mergeable_vm_userfaultfd_ctx(struct vm_area_struct *vma, struct vm_userfaultfd_ctx vm_ctx) { return vma->vm_userfaultfd_ctx.ctx == vm_ctx.ctx; } /* * Never enable huge pmd sharing on some uffd registered vmas: * * - VM_UFFD_WP VMAs, because write protect information is per pgtable entry. * * - VM_UFFD_MINOR VMAs, because otherwise we would never get minor faults for * VMAs which share huge pmds. (If you have two mappings to the same * underlying pages, and fault in the non-UFFD-registered one with a write, * with huge pmd sharing this would *also* setup the second UFFD-registered * mapping, and we'd not get minor faults.) */ static inline bool uffd_disable_huge_pmd_share(struct vm_area_struct *vma) { return vma->vm_flags & (VM_UFFD_WP | VM_UFFD_MINOR); } /* * Don't do fault around for either WP or MINOR registered uffd range. For * MINOR registered range, fault around will be a total disaster and ptes can * be installed without notifications; for WP it should mostly be fine as long * as the fault around checks for pte_none() before the installation, however * to be super safe we just forbid it. */ static inline bool uffd_disable_fault_around(struct vm_area_struct *vma) { return vma->vm_flags & (VM_UFFD_WP | VM_UFFD_MINOR); } static inline bool userfaultfd_missing(struct vm_area_struct *vma) { return vma->vm_flags & VM_UFFD_MISSING; } static inline bool userfaultfd_wp(struct vm_area_struct *vma) { return vma->vm_flags & VM_UFFD_WP; } static inline bool userfaultfd_minor(struct vm_area_struct *vma) { return vma->vm_flags & VM_UFFD_MINOR; } static inline bool userfaultfd_pte_wp(struct vm_area_struct *vma, pte_t pte) { return userfaultfd_wp(vma) && pte_uffd_wp(pte); } static inline bool userfaultfd_huge_pmd_wp(struct vm_area_struct *vma, pmd_t pmd) { return userfaultfd_wp(vma) && pmd_uffd_wp(pmd); } static inline bool userfaultfd_armed(struct vm_area_struct *vma) { return vma->vm_flags & __VM_UFFD_FLAGS; } static inline bool vma_can_userfault(struct vm_area_struct *vma, unsigned long vm_flags, bool wp_async) { vm_flags &= __VM_UFFD_FLAGS; if ((vm_flags & VM_UFFD_MINOR) && (!is_vm_hugetlb_page(vma) && !vma_is_shmem(vma))) return false; /* * If wp async enabled, and WP is the only mode enabled, allow any * memory type. */ if (wp_async && (vm_flags == VM_UFFD_WP)) return true; #ifndef CONFIG_PTE_MARKER_UFFD_WP /* * If user requested uffd-wp but not enabled pte markers for * uffd-wp, then shmem & hugetlbfs are not supported but only * anonymous. */ if ((vm_flags & VM_UFFD_WP) && !vma_is_anonymous(vma)) return false; #endif /* By default, allow any of anon|shmem|hugetlb */ return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) || vma_is_shmem(vma); } extern int dup_userfaultfd(struct vm_area_struct *, struct list_head *); extern void dup_userfaultfd_complete(struct list_head *); extern void mremap_userfaultfd_prep(struct vm_area_struct *, struct vm_userfaultfd_ctx *); extern void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *, unsigned long from, unsigned long to, unsigned long len); extern bool userfaultfd_remove(struct vm_area_struct *vma, unsigned long start, unsigned long end); extern int userfaultfd_unmap_prep(struct vm_area_struct *vma, unsigned long start, unsigned long end, struct list_head *uf); extern void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf); extern bool userfaultfd_wp_unpopulated(struct vm_area_struct *vma); extern bool userfaultfd_wp_async(struct vm_area_struct *vma); #else /* CONFIG_USERFAULTFD */ /* mm helpers */ static inline vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason) { return VM_FAULT_SIGBUS; } static inline long uffd_wp_range(struct vm_area_struct *vma, unsigned long start, unsigned long len, bool enable_wp) { return false; } static inline bool is_mergeable_vm_userfaultfd_ctx(struct vm_area_struct *vma, struct vm_userfaultfd_ctx vm_ctx) { return true; } static inline bool userfaultfd_missing(struct vm_area_struct *vma) { return false; } static inline bool userfaultfd_wp(struct vm_area_struct *vma) { return false; } static inline bool userfaultfd_minor(struct vm_area_struct *vma) { return false; } static inline bool userfaultfd_pte_wp(struct vm_area_struct *vma, pte_t pte) { return false; } static inline bool userfaultfd_huge_pmd_wp(struct vm_area_struct *vma, pmd_t pmd) { return false; } static inline bool userfaultfd_armed(struct vm_area_struct *vma) { return false; } static inline int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *l) { return 0; } static inline void dup_userfaultfd_complete(struct list_head *l) { } static inline void mremap_userfaultfd_prep(struct vm_area_struct *vma, struct vm_userfaultfd_ctx *ctx) { } static inline void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *ctx, unsigned long from, unsigned long to, unsigned long len) { } static inline bool userfaultfd_remove(struct vm_area_struct *vma, unsigned long start, unsigned long end) { return true; } static inline int userfaultfd_unmap_prep(struct vm_area_struct *vma, unsigned long start, unsigned long end, struct list_head *uf) { return 0; } static inline void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf) { } static inline bool uffd_disable_fault_around(struct vm_area_struct *vma) { return false; } static inline bool userfaultfd_wp_unpopulated(struct vm_area_struct *vma) { return false; } static inline bool userfaultfd_wp_async(struct vm_area_struct *vma) { return false; } #endif /* CONFIG_USERFAULTFD */ static inline bool userfaultfd_wp_use_markers(struct vm_area_struct *vma) { /* Only wr-protect mode uses pte markers */ if (!userfaultfd_wp(vma)) return false; /* File-based uffd-wp always need markers */ if (!vma_is_anonymous(vma)) return true; /* * Anonymous uffd-wp only needs the markers if WP_UNPOPULATED * enabled (to apply markers on zero pages). */ return userfaultfd_wp_unpopulated(vma); } static inline bool pte_marker_entry_uffd_wp(swp_entry_t entry) { #ifdef CONFIG_PTE_MARKER_UFFD_WP return is_pte_marker_entry(entry) && (pte_marker_get(entry) & PTE_MARKER_UFFD_WP); #else return false; #endif } static inline bool pte_marker_uffd_wp(pte_t pte) { #ifdef CONFIG_PTE_MARKER_UFFD_WP swp_entry_t entry; if (!is_swap_pte(pte)) return false; entry = pte_to_swp_entry(pte); return pte_marker_entry_uffd_wp(entry); #else return false; #endif } /* * Returns true if this is a swap pte and was uffd-wp wr-protected in either * forms (pte marker or a normal swap pte), false otherwise. */ static inline bool pte_swp_uffd_wp_any(pte_t pte) { #ifdef CONFIG_PTE_MARKER_UFFD_WP if (!is_swap_pte(pte)) return false; if (pte_swp_uffd_wp(pte)) return true; if (pte_marker_uffd_wp(pte)) return true; #endif return false; } #endif /* _LINUX_USERFAULTFD_K_H */