/* SPDX-License-Identifier: GPL-2.0 */ /* * include/linux/userfaultfd_k.h * * Copyright (C) 2015 Red Hat, Inc. * */ #ifndef _LINUX_USERFAULTFD_K_H #define _LINUX_USERFAULTFD_K_H #ifdef CONFIG_USERFAULTFD #include /* linux/include/uapi/linux/userfaultfd.h */ #include #include #include /* The set of all possible UFFD-related VM flags. */ #define __VM_UFFD_FLAGS (VM_UFFD_MISSING | VM_UFFD_WP | VM_UFFD_MINOR) /* * CAREFUL: Check include/uapi/asm-generic/fcntl.h when defining * new flags, since they might collide with O_* ones. We want * to re-use O_* flags that couldn't possibly have a meaning * from userfaultfd, in order to leave a free define-space for * shared O_* flags. */ #define UFFD_CLOEXEC O_CLOEXEC #define UFFD_NONBLOCK O_NONBLOCK #define UFFD_SHARED_FCNTL_FLAGS (O_CLOEXEC | O_NONBLOCK) #define UFFD_FLAGS_SET (EFD_SHARED_FCNTL_FLAGS) extern int sysctl_unprivileged_userfaultfd; extern vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason); /* * The mode of operation for __mcopy_atomic and its helpers. * * This is almost an implementation detail (mcopy_atomic below doesn't take this * as a parameter), but it's exposed here because memory-kind-specific * implementations (e.g. hugetlbfs) need to know the mode of operation. */ enum mcopy_atomic_mode { /* A normal copy_from_user into the destination range. */ MCOPY_ATOMIC_NORMAL, /* Don't copy; map the destination range to the zero page. */ MCOPY_ATOMIC_ZEROPAGE, /* Just install pte(s) with the existing page(s) in the page cache. */ MCOPY_ATOMIC_CONTINUE, }; extern int mfill_atomic_install_pte(struct mm_struct *dst_mm, pmd_t *dst_pmd, struct vm_area_struct *dst_vma, unsigned long dst_addr, struct page *page, bool newly_allocated, bool wp_copy); extern ssize_t mcopy_atomic(struct mm_struct *dst_mm, unsigned long dst_start, unsigned long src_start, unsigned long len, atomic_t *mmap_changing, __u64 mode); extern ssize_t mfill_zeropage(struct mm_struct *dst_mm, unsigned long dst_start, unsigned long len, atomic_t *mmap_changing); extern ssize_t mcopy_continue(struct mm_struct *dst_mm, unsigned long dst_start, unsigned long len, atomic_t *mmap_changing); extern int mwriteprotect_range(struct mm_struct *dst_mm, unsigned long start, unsigned long len, bool enable_wp, atomic_t *mmap_changing); /* mm helpers */ static inline bool is_mergeable_vm_userfaultfd_ctx(struct vm_area_struct *vma, struct vm_userfaultfd_ctx vm_ctx) { return vma->vm_userfaultfd_ctx.ctx == vm_ctx.ctx; } /* * Never enable huge pmd sharing on some uffd registered vmas: * * - VM_UFFD_WP VMAs, because write protect information is per pgtable entry. * * - VM_UFFD_MINOR VMAs, because otherwise we would never get minor faults for * VMAs which share huge pmds. (If you have two mappings to the same * underlying pages, and fault in the non-UFFD-registered one with a write, * with huge pmd sharing this would *also* setup the second UFFD-registered * mapping, and we'd not get minor faults.) */ static inline bool uffd_disable_huge_pmd_share(struct vm_area_struct *vma) { return vma->vm_flags & (VM_UFFD_WP | VM_UFFD_MINOR); } static inline bool userfaultfd_missing(struct vm_area_struct *vma) { return vma->vm_flags & VM_UFFD_MISSING; } static inline bool userfaultfd_wp(struct vm_area_struct *vma) { return vma->vm_flags & VM_UFFD_WP; } static inline bool userfaultfd_minor(struct vm_area_struct *vma) { return vma->vm_flags & VM_UFFD_MINOR; } static inline bool userfaultfd_pte_wp(struct vm_area_struct *vma, pte_t pte) { return userfaultfd_wp(vma) && pte_uffd_wp(pte); } static inline bool userfaultfd_huge_pmd_wp(struct vm_area_struct *vma, pmd_t pmd) { return userfaultfd_wp(vma) && pmd_uffd_wp(pmd); } static inline bool userfaultfd_armed(struct vm_area_struct *vma) { return vma->vm_flags & __VM_UFFD_FLAGS; } extern int dup_userfaultfd(struct vm_area_struct *, struct list_head *); extern void dup_userfaultfd_complete(struct list_head *); extern void mremap_userfaultfd_prep(struct vm_area_struct *, struct vm_userfaultfd_ctx *); extern void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *, unsigned long from, unsigned long to, unsigned long len); extern bool userfaultfd_remove(struct vm_area_struct *vma, unsigned long start, unsigned long end); extern int userfaultfd_unmap_prep(struct vm_area_struct *vma, unsigned long start, unsigned long end, struct list_head *uf); extern void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf); #else /* CONFIG_USERFAULTFD */ /* mm helpers */ static inline vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason) { return VM_FAULT_SIGBUS; } static inline bool is_mergeable_vm_userfaultfd_ctx(struct vm_area_struct *vma, struct vm_userfaultfd_ctx vm_ctx) { return true; } static inline bool userfaultfd_missing(struct vm_area_struct *vma) { return false; } static inline bool userfaultfd_wp(struct vm_area_struct *vma) { return false; } static inline bool userfaultfd_minor(struct vm_area_struct *vma) { return false; } static inline bool userfaultfd_pte_wp(struct vm_area_struct *vma, pte_t pte) { return false; } static inline bool userfaultfd_huge_pmd_wp(struct vm_area_struct *vma, pmd_t pmd) { return false; } static inline bool userfaultfd_armed(struct vm_area_struct *vma) { return false; } static inline int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *l) { return 0; } static inline void dup_userfaultfd_complete(struct list_head *l) { } static inline void mremap_userfaultfd_prep(struct vm_area_struct *vma, struct vm_userfaultfd_ctx *ctx) { } static inline void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *ctx, unsigned long from, unsigned long to, unsigned long len) { } static inline bool userfaultfd_remove(struct vm_area_struct *vma, unsigned long start, unsigned long end) { return true; } static inline int userfaultfd_unmap_prep(struct vm_area_struct *vma, unsigned long start, unsigned long end, struct list_head *uf) { return 0; } static inline void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf) { } #endif /* CONFIG_USERFAULTFD */ #endif /* _LINUX_USERFAULTFD_K_H */