/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_HELPER_MACROS_H_ #define _LINUX_HELPER_MACROS_H_ #include #include #include #include /** * for_each_if - helper for handling conditionals in various for_each macros * @condition: The condition to check * * Typical use:: * * #define for_each_foo_bar(x, y) \' * list_for_each_entry(x, y->list, head) \' * for_each_if(x->something == SOMETHING) * * The for_each_if() macro makes the use of for_each_foo_bar() less error * prone. */ #define for_each_if(condition) if (!(condition)) {} else /** * find_closest - locate the closest element in a sorted array * @x: The reference value. * @a: The array in which to look for the closest element. Must be sorted * in ascending order. * @as: Size of 'a'. * * Returns the index of the element closest to 'x'. * Note: If using an array of negative numbers (or mixed positive numbers), * then be sure that 'x' is of a signed-type to get good results. */ #define find_closest(x, a, as) \ ({ \ typeof(as) __fc_i, __fc_as = (as) - 1; \ long __fc_mid_x, __fc_x = (x); \ long __fc_left, __fc_right; \ typeof(*a) const *__fc_a = (a); \ for (__fc_i = 0; __fc_i < __fc_as; __fc_i++) { \ __fc_mid_x = (__fc_a[__fc_i] + __fc_a[__fc_i + 1]) / 2; \ if (__fc_x <= __fc_mid_x) { \ __fc_left = __fc_x - __fc_a[__fc_i]; \ __fc_right = __fc_a[__fc_i + 1] - __fc_x; \ if (__fc_right < __fc_left) \ __fc_i++; \ break; \ } \ } \ (__fc_i); \ }) /** * find_closest_descending - locate the closest element in a sorted array * @x: The reference value. * @a: The array in which to look for the closest element. Must be sorted * in descending order. * @as: Size of 'a'. * * Similar to find_closest() but 'a' is expected to be sorted in descending * order. The iteration is done in reverse order, so that the comparison * of '__fc_right' & '__fc_left' also works for unsigned numbers. */ #define find_closest_descending(x, a, as) \ ({ \ typeof(as) __fc_i, __fc_as = (as) - 1; \ long __fc_mid_x, __fc_x = (x); \ long __fc_left, __fc_right; \ typeof(*a) const *__fc_a = (a); \ for (__fc_i = __fc_as; __fc_i >= 1; __fc_i--) { \ __fc_mid_x = (__fc_a[__fc_i] + __fc_a[__fc_i - 1]) / 2; \ if (__fc_x <= __fc_mid_x) { \ __fc_left = __fc_x - __fc_a[__fc_i]; \ __fc_right = __fc_a[__fc_i - 1] - __fc_x; \ if (__fc_right < __fc_left) \ __fc_i--; \ break; \ } \ } \ (__fc_i); \ }) /** * PTR_IF - evaluate to @ptr if @cond is true, or to NULL otherwise. * @cond: A conditional, usually in a form of IS_ENABLED(CONFIG_FOO) * @ptr: A pointer to assign if @cond is true. * * PTR_IF(IS_ENABLED(CONFIG_FOO), ptr) evaluates to @ptr if CONFIG_FOO is set * to 'y' or 'm', or to NULL otherwise. The @ptr argument must be a pointer. * * The macro can be very useful to help compiler dropping dead code. * * For instance, consider the following:: * * #ifdef CONFIG_FOO_SUSPEND * static int foo_suspend(struct device *dev) * { * ... * } * #endif * * static struct pm_ops foo_ops = { * #ifdef CONFIG_FOO_SUSPEND * .suspend = foo_suspend, * #endif * }; * * While this works, the foo_suspend() macro is compiled conditionally, * only when CONFIG_FOO_SUSPEND is set. This is problematic, as there could * be a build bug in this function, we wouldn't have a way to know unless * the configuration option is set. * * An alternative is to declare foo_suspend() always, but mark it * as __maybe_unused. This works, but the __maybe_unused attribute * is required to instruct the compiler that the function may not * be referenced anywhere, and is safe to remove without making * a fuss about it. This makes the programmer responsible for tagging * the functions that can be garbage-collected. * * With the macro it is possible to write the following: * * static int foo_suspend(struct device *dev) * { * ... * } * * static struct pm_ops foo_ops = { * .suspend = PTR_IF(IS_ENABLED(CONFIG_FOO_SUSPEND), foo_suspend), * }; * * The foo_suspend() function will now be automatically dropped by the * compiler, and it does not require any specific attribute. */ #define PTR_IF(cond, ptr) ((cond) ? (ptr) : NULL) /** * to_user_ptr - cast a pointer passed as u64 from user space to void __user * * @x: The u64 value from user space, usually via IOCTL * * to_user_ptr() simply casts a pointer passed as u64 from user space to void * __user * correctly. Using this lets us get rid of all the tiresome casts. */ #define u64_to_user_ptr(x) \ ({ \ typecheck(u64, (x)); \ (void __user *)(uintptr_t)(x); \ }) /** * is_insidevar - check if the @ptr points inside the @var memory range. * @ptr: the pointer to a memory address. * @var: the variable which address and size identify the memory range. * * Evaluates to true if the address in @ptr lies within the memory * range allocated to @var. */ #define is_insidevar(ptr, var) \ ((uintptr_t)(ptr) >= (uintptr_t)(var) && \ (uintptr_t)(ptr) < (uintptr_t)(var) + sizeof(var)) #endif