// SPDX-License-Identifier: GPL-2.0-only /* Copyright (c) 2019 Facebook */ #include #include #include #include #include /* dummy _ops. The verifier will operate on target program's ops. */ const struct bpf_verifier_ops bpf_extension_verifier_ops = { }; const struct bpf_prog_ops bpf_extension_prog_ops = { }; /* btf_vmlinux has ~22k attachable functions. 1k htab is enough. */ #define TRAMPOLINE_HASH_BITS 10 #define TRAMPOLINE_TABLE_SIZE (1 << TRAMPOLINE_HASH_BITS) static struct hlist_head trampoline_table[TRAMPOLINE_TABLE_SIZE]; static struct latch_tree_root image_tree __cacheline_aligned; /* serializes access to trampoline_table and image_tree */ static DEFINE_MUTEX(trampoline_mutex); static void *bpf_jit_alloc_exec_page(void) { void *image; image = bpf_jit_alloc_exec(PAGE_SIZE); if (!image) return NULL; set_vm_flush_reset_perms(image); /* Keep image as writeable. The alternative is to keep flipping ro/rw * everytime new program is attached or detached. */ set_memory_x((long)image, 1); return image; } static __always_inline bool image_tree_less(struct latch_tree_node *a, struct latch_tree_node *b) { struct bpf_image *ia = container_of(a, struct bpf_image, tnode); struct bpf_image *ib = container_of(b, struct bpf_image, tnode); return ia < ib; } static __always_inline int image_tree_comp(void *addr, struct latch_tree_node *n) { void *image = container_of(n, struct bpf_image, tnode); if (addr < image) return -1; if (addr >= image + PAGE_SIZE) return 1; return 0; } static const struct latch_tree_ops image_tree_ops = { .less = image_tree_less, .comp = image_tree_comp, }; static void *__bpf_image_alloc(bool lock) { struct bpf_image *image; image = bpf_jit_alloc_exec_page(); if (!image) return NULL; if (lock) mutex_lock(&trampoline_mutex); latch_tree_insert(&image->tnode, &image_tree, &image_tree_ops); if (lock) mutex_unlock(&trampoline_mutex); return image->data; } void *bpf_image_alloc(void) { return __bpf_image_alloc(true); } bool is_bpf_image_address(unsigned long addr) { bool ret; rcu_read_lock(); ret = latch_tree_find((void *) addr, &image_tree, &image_tree_ops) != NULL; rcu_read_unlock(); return ret; } struct bpf_trampoline *bpf_trampoline_lookup(u64 key) { struct bpf_trampoline *tr; struct hlist_head *head; void *image; int i; mutex_lock(&trampoline_mutex); head = &trampoline_table[hash_64(key, TRAMPOLINE_HASH_BITS)]; hlist_for_each_entry(tr, head, hlist) { if (tr->key == key) { refcount_inc(&tr->refcnt); goto out; } } tr = kzalloc(sizeof(*tr), GFP_KERNEL); if (!tr) goto out; /* is_root was checked earlier. No need for bpf_jit_charge_modmem() */ image = __bpf_image_alloc(false); if (!image) { kfree(tr); tr = NULL; goto out; } tr->key = key; INIT_HLIST_NODE(&tr->hlist); hlist_add_head(&tr->hlist, head); refcount_set(&tr->refcnt, 1); mutex_init(&tr->mutex); for (i = 0; i < BPF_TRAMP_MAX; i++) INIT_HLIST_HEAD(&tr->progs_hlist[i]); tr->image = image; out: mutex_unlock(&trampoline_mutex); return tr; } static int is_ftrace_location(void *ip) { long addr; addr = ftrace_location((long)ip); if (!addr) return 0; if (WARN_ON_ONCE(addr != (long)ip)) return -EFAULT; return 1; } static int unregister_fentry(struct bpf_trampoline *tr, void *old_addr) { void *ip = tr->func.addr; int ret; if (tr->func.ftrace_managed) ret = unregister_ftrace_direct((long)ip, (long)old_addr); else ret = bpf_arch_text_poke(ip, BPF_MOD_CALL, old_addr, NULL); return ret; } static int modify_fentry(struct bpf_trampoline *tr, void *old_addr, void *new_addr) { void *ip = tr->func.addr; int ret; if (tr->func.ftrace_managed) ret = modify_ftrace_direct((long)ip, (long)old_addr, (long)new_addr); else ret = bpf_arch_text_poke(ip, BPF_MOD_CALL, old_addr, new_addr); return ret; } /* first time registering */ static int register_fentry(struct bpf_trampoline *tr, void *new_addr) { void *ip = tr->func.addr; int ret; ret = is_ftrace_location(ip); if (ret < 0) return ret; tr->func.ftrace_managed = ret; if (tr->func.ftrace_managed) ret = register_ftrace_direct((long)ip, (long)new_addr); else ret = bpf_arch_text_poke(ip, BPF_MOD_CALL, NULL, new_addr); return ret; } /* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50 * bytes on x86. Pick a number to fit into BPF_IMAGE_SIZE / 2 */ #define BPF_MAX_TRAMP_PROGS 40 static int bpf_trampoline_update(struct bpf_trampoline *tr) { void *old_image = tr->image + ((tr->selector + 1) & 1) * BPF_IMAGE_SIZE/2; void *new_image = tr->image + (tr->selector & 1) * BPF_IMAGE_SIZE/2; struct bpf_prog *progs_to_run[BPF_MAX_TRAMP_PROGS]; int fentry_cnt = tr->progs_cnt[BPF_TRAMP_FENTRY]; int fexit_cnt = tr->progs_cnt[BPF_TRAMP_FEXIT]; struct bpf_prog **progs, **fentry, **fexit; u32 flags = BPF_TRAMP_F_RESTORE_REGS; struct bpf_prog_aux *aux; int err; if (fentry_cnt + fexit_cnt == 0) { err = unregister_fentry(tr, old_image); tr->selector = 0; goto out; } /* populate fentry progs */ fentry = progs = progs_to_run; hlist_for_each_entry(aux, &tr->progs_hlist[BPF_TRAMP_FENTRY], tramp_hlist) *progs++ = aux->prog; /* populate fexit progs */ fexit = progs; hlist_for_each_entry(aux, &tr->progs_hlist[BPF_TRAMP_FEXIT], tramp_hlist) *progs++ = aux->prog; if (fexit_cnt) flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME; /* Though the second half of trampoline page is unused a task could be * preempted in the middle of the first half of trampoline and two * updates to trampoline would change the code from underneath the * preempted task. Hence wait for tasks to voluntarily schedule or go * to userspace. */ synchronize_rcu_tasks(); err = arch_prepare_bpf_trampoline(new_image, new_image + BPF_IMAGE_SIZE / 2, &tr->func.model, flags, fentry, fentry_cnt, fexit, fexit_cnt, tr->func.addr); if (err < 0) goto out; if (tr->selector) /* progs already running at this address */ err = modify_fentry(tr, old_image, new_image); else /* first time registering */ err = register_fentry(tr, new_image); if (err) goto out; tr->selector++; out: return err; } static enum bpf_tramp_prog_type bpf_attach_type_to_tramp(enum bpf_attach_type t) { switch (t) { case BPF_TRACE_FENTRY: return BPF_TRAMP_FENTRY; case BPF_TRACE_FEXIT: return BPF_TRAMP_FEXIT; default: return BPF_TRAMP_REPLACE; } } int bpf_trampoline_link_prog(struct bpf_prog *prog) { enum bpf_tramp_prog_type kind; struct bpf_trampoline *tr; int err = 0; int cnt; tr = prog->aux->trampoline; kind = bpf_attach_type_to_tramp(prog->expected_attach_type); mutex_lock(&tr->mutex); if (tr->extension_prog) { /* cannot attach fentry/fexit if extension prog is attached. * cannot overwrite extension prog either. */ err = -EBUSY; goto out; } cnt = tr->progs_cnt[BPF_TRAMP_FENTRY] + tr->progs_cnt[BPF_TRAMP_FEXIT]; if (kind == BPF_TRAMP_REPLACE) { /* Cannot attach extension if fentry/fexit are in use. */ if (cnt) { err = -EBUSY; goto out; } tr->extension_prog = prog; err = bpf_arch_text_poke(tr->func.addr, BPF_MOD_JUMP, NULL, prog->bpf_func); goto out; } if (cnt >= BPF_MAX_TRAMP_PROGS) { err = -E2BIG; goto out; } if (!hlist_unhashed(&prog->aux->tramp_hlist)) { /* prog already linked */ err = -EBUSY; goto out; } hlist_add_head(&prog->aux->tramp_hlist, &tr->progs_hlist[kind]); tr->progs_cnt[kind]++; err = bpf_trampoline_update(prog->aux->trampoline); if (err) { hlist_del(&prog->aux->tramp_hlist); tr->progs_cnt[kind]--; } out: mutex_unlock(&tr->mutex); return err; } /* bpf_trampoline_unlink_prog() should never fail. */ int bpf_trampoline_unlink_prog(struct bpf_prog *prog) { enum bpf_tramp_prog_type kind; struct bpf_trampoline *tr; int err; tr = prog->aux->trampoline; kind = bpf_attach_type_to_tramp(prog->expected_attach_type); mutex_lock(&tr->mutex); if (kind == BPF_TRAMP_REPLACE) { WARN_ON_ONCE(!tr->extension_prog); err = bpf_arch_text_poke(tr->func.addr, BPF_MOD_JUMP, tr->extension_prog->bpf_func, NULL); tr->extension_prog = NULL; goto out; } hlist_del(&prog->aux->tramp_hlist); tr->progs_cnt[kind]--; err = bpf_trampoline_update(prog->aux->trampoline); out: mutex_unlock(&tr->mutex); return err; } void bpf_trampoline_put(struct bpf_trampoline *tr) { struct bpf_image *image; if (!tr) return; mutex_lock(&trampoline_mutex); if (!refcount_dec_and_test(&tr->refcnt)) goto out; WARN_ON_ONCE(mutex_is_locked(&tr->mutex)); if (WARN_ON_ONCE(!hlist_empty(&tr->progs_hlist[BPF_TRAMP_FENTRY]))) goto out; if (WARN_ON_ONCE(!hlist_empty(&tr->progs_hlist[BPF_TRAMP_FEXIT]))) goto out; image = container_of(tr->image, struct bpf_image, data); latch_tree_erase(&image->tnode, &image_tree, &image_tree_ops); /* wait for tasks to get out of trampoline before freeing it */ synchronize_rcu_tasks(); bpf_jit_free_exec(image); hlist_del(&tr->hlist); kfree(tr); out: mutex_unlock(&trampoline_mutex); } /* The logic is similar to BPF_PROG_RUN, but with explicit rcu and preempt that * are needed for trampoline. The macro is split into * call _bpf_prog_enter * call prog->bpf_func * call __bpf_prog_exit */ u64 notrace __bpf_prog_enter(void) { u64 start = 0; rcu_read_lock(); preempt_disable(); if (static_branch_unlikely(&bpf_stats_enabled_key)) start = sched_clock(); return start; } void notrace __bpf_prog_exit(struct bpf_prog *prog, u64 start) { struct bpf_prog_stats *stats; if (static_branch_unlikely(&bpf_stats_enabled_key) && /* static_key could be enabled in __bpf_prog_enter * and disabled in __bpf_prog_exit. * And vice versa. * Hence check that 'start' is not zero. */ start) { stats = this_cpu_ptr(prog->aux->stats); u64_stats_update_begin(&stats->syncp); stats->cnt++; stats->nsecs += sched_clock() - start; u64_stats_update_end(&stats->syncp); } preempt_enable(); rcu_read_unlock(); } int __weak arch_prepare_bpf_trampoline(void *image, void *image_end, const struct btf_func_model *m, u32 flags, struct bpf_prog **fentry_progs, int fentry_cnt, struct bpf_prog **fexit_progs, int fexit_cnt, void *orig_call) { return -ENOTSUPP; } static int __init init_trampolines(void) { int i; for (i = 0; i < TRAMPOLINE_TABLE_SIZE; i++) INIT_HLIST_HEAD(&trampoline_table[i]); return 0; } late_initcall(init_trampolines);