// SPDX-License-Identifier: GPL-2.0-only #include "cgroup-internal.h" #include #include #include #include #include static DEFINE_SPINLOCK(rstat_base_lock); static DEFINE_PER_CPU(raw_spinlock_t, rstat_base_cpu_lock); static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu); /* * Determines whether a given css can participate in rstat. * css's that are cgroup::self use rstat for base stats. * Other css's associated with a subsystem use rstat only when * they define the ss->css_rstat_flush callback. */ static inline bool css_uses_rstat(struct cgroup_subsys_state *css) { return css_is_self(css) || css->ss->css_rstat_flush != NULL; } static struct css_rstat_cpu *css_rstat_cpu( struct cgroup_subsys_state *css, int cpu) { return per_cpu_ptr(css->rstat_cpu, cpu); } static struct cgroup_rstat_base_cpu *cgroup_rstat_base_cpu( struct cgroup *cgrp, int cpu) { return per_cpu_ptr(cgrp->rstat_base_cpu, cpu); } static spinlock_t *ss_rstat_lock(struct cgroup_subsys *ss) { if (ss) return &ss->rstat_ss_lock; return &rstat_base_lock; } static raw_spinlock_t *ss_rstat_cpu_lock(struct cgroup_subsys *ss, int cpu) { if (ss) return per_cpu_ptr(ss->rstat_ss_cpu_lock, cpu); return per_cpu_ptr(&rstat_base_cpu_lock, cpu); } /* * Helper functions for rstat per CPU locks. * * This makes it easier to diagnose locking issues and contention in * production environments. The parameter @fast_path determine the * tracepoints being added, allowing us to diagnose "flush" related * operations without handling high-frequency fast-path "update" events. */ static __always_inline unsigned long _css_rstat_cpu_lock(struct cgroup_subsys_state *css, int cpu, const bool fast_path) { struct cgroup *cgrp = css->cgroup; raw_spinlock_t *cpu_lock; unsigned long flags; bool contended; /* * The _irqsave() is needed because the locks used for flushing are * spinlock_t which is a sleeping lock on PREEMPT_RT. Acquiring this lock * with the _irq() suffix only disables interrupts on a non-PREEMPT_RT * kernel. The raw_spinlock_t below disables interrupts on both * configurations. The _irqsave() ensures that interrupts are always * disabled and later restored. */ cpu_lock = ss_rstat_cpu_lock(css->ss, cpu); contended = !raw_spin_trylock_irqsave(cpu_lock, flags); if (contended) { if (fast_path) trace_cgroup_rstat_cpu_lock_contended_fastpath(cgrp, cpu, contended); else trace_cgroup_rstat_cpu_lock_contended(cgrp, cpu, contended); raw_spin_lock_irqsave(cpu_lock, flags); } if (fast_path) trace_cgroup_rstat_cpu_locked_fastpath(cgrp, cpu, contended); else trace_cgroup_rstat_cpu_locked(cgrp, cpu, contended); return flags; } static __always_inline void _css_rstat_cpu_unlock(struct cgroup_subsys_state *css, int cpu, unsigned long flags, const bool fast_path) { struct cgroup *cgrp = css->cgroup; raw_spinlock_t *cpu_lock; if (fast_path) trace_cgroup_rstat_cpu_unlock_fastpath(cgrp, cpu, false); else trace_cgroup_rstat_cpu_unlock(cgrp, cpu, false); cpu_lock = ss_rstat_cpu_lock(css->ss, cpu); raw_spin_unlock_irqrestore(cpu_lock, flags); } /** * css_rstat_updated - keep track of updated rstat_cpu * @css: target cgroup subsystem state * @cpu: cpu on which rstat_cpu was updated * * @css's rstat_cpu on @cpu was updated. Put it on the parent's matching * rstat_cpu->updated_children list. See the comment on top of * css_rstat_cpu definition for details. */ __bpf_kfunc void css_rstat_updated(struct cgroup_subsys_state *css, int cpu) { unsigned long flags; /* * Since bpf programs can call this function, prevent access to * uninitialized rstat pointers. */ if (!css_uses_rstat(css)) return; /* * Speculative already-on-list test. This may race leading to * temporary inaccuracies, which is fine. * * Because @parent's updated_children is terminated with @parent * instead of NULL, we can tell whether @css is on the list by * testing the next pointer for NULL. */ if (data_race(css_rstat_cpu(css, cpu)->updated_next)) return; flags = _css_rstat_cpu_lock(css, cpu, true); /* put @css and all ancestors on the corresponding updated lists */ while (true) { struct css_rstat_cpu *rstatc = css_rstat_cpu(css, cpu); struct cgroup_subsys_state *parent = css->parent; struct css_rstat_cpu *prstatc; /* * Both additions and removals are bottom-up. If a cgroup * is already in the tree, all ancestors are. */ if (rstatc->updated_next) break; /* Root has no parent to link it to, but mark it busy */ if (!parent) { rstatc->updated_next = css; break; } prstatc = css_rstat_cpu(parent, cpu); rstatc->updated_next = prstatc->updated_children; prstatc->updated_children = css; css = parent; } _css_rstat_cpu_unlock(css, cpu, flags, true); } /** * css_rstat_push_children - push children css's into the given list * @head: current head of the list (= subtree root) * @child: first child of the root * @cpu: target cpu * Return: A new singly linked list of css's to be flushed * * Iteratively traverse down the css_rstat_cpu updated tree level by * level and push all the parents first before their next level children * into a singly linked list via the rstat_flush_next pointer built from the * tail backward like "pushing" css's into a stack. The root is pushed by * the caller. */ static struct cgroup_subsys_state *css_rstat_push_children( struct cgroup_subsys_state *head, struct cgroup_subsys_state *child, int cpu) { struct cgroup_subsys_state *cnext = child; /* Next head of child css level */ struct cgroup_subsys_state *ghead = NULL; /* Head of grandchild css level */ struct cgroup_subsys_state *parent, *grandchild; struct css_rstat_cpu *crstatc; child->rstat_flush_next = NULL; /* * The subsystem rstat lock must be held for the whole duration from * here as the rstat_flush_next list is being constructed to when * it is consumed later in css_rstat_flush(). */ lockdep_assert_held(ss_rstat_lock(head->ss)); /* * Notation: -> updated_next pointer * => rstat_flush_next pointer * * Assuming the following sample updated_children lists: * P: C1 -> C2 -> P * C1: G11 -> G12 -> C1 * C2: G21 -> G22 -> C2 * * After 1st iteration: * head => C2 => C1 => NULL * ghead => G21 => G11 => NULL * * After 2nd iteration: * head => G12 => G11 => G22 => G21 => C2 => C1 => NULL */ next_level: while (cnext) { child = cnext; cnext = child->rstat_flush_next; parent = child->parent; /* updated_next is parent cgroup terminated if !NULL */ while (child != parent) { child->rstat_flush_next = head; head = child; crstatc = css_rstat_cpu(child, cpu); grandchild = crstatc->updated_children; if (grandchild != child) { /* Push the grand child to the next level */ crstatc->updated_children = child; grandchild->rstat_flush_next = ghead; ghead = grandchild; } child = crstatc->updated_next; crstatc->updated_next = NULL; } } if (ghead) { cnext = ghead; ghead = NULL; goto next_level; } return head; } /** * css_rstat_updated_list - build a list of updated css's to be flushed * @root: root of the css subtree to traverse * @cpu: target cpu * Return: A singly linked list of css's to be flushed * * Walks the updated rstat_cpu tree on @cpu from @root. During traversal, * each returned css is unlinked from the updated tree. * * The only ordering guarantee is that, for a parent and a child pair * covered by a given traversal, the child is before its parent in * the list. * * Note that updated_children is self terminated and points to a list of * child css's if not empty. Whereas updated_next is like a sibling link * within the children list and terminated by the parent css. An exception * here is the css root whose updated_next can be self terminated. */ static struct cgroup_subsys_state *css_rstat_updated_list( struct cgroup_subsys_state *root, int cpu) { struct css_rstat_cpu *rstatc = css_rstat_cpu(root, cpu); struct cgroup_subsys_state *head = NULL, *parent, *child; unsigned long flags; flags = _css_rstat_cpu_lock(root, cpu, false); /* Return NULL if this subtree is not on-list */ if (!rstatc->updated_next) goto unlock_ret; /* * Unlink @root from its parent. As the updated_children list is * singly linked, we have to walk it to find the removal point. */ parent = root->parent; if (parent) { struct css_rstat_cpu *prstatc; struct cgroup_subsys_state **nextp; prstatc = css_rstat_cpu(parent, cpu); nextp = &prstatc->updated_children; while (*nextp != root) { struct css_rstat_cpu *nrstatc; nrstatc = css_rstat_cpu(*nextp, cpu); WARN_ON_ONCE(*nextp == parent); nextp = &nrstatc->updated_next; } *nextp = rstatc->updated_next; } rstatc->updated_next = NULL; /* Push @root to the list first before pushing the children */ head = root; root->rstat_flush_next = NULL; child = rstatc->updated_children; rstatc->updated_children = root; if (child != root) head = css_rstat_push_children(head, child, cpu); unlock_ret: _css_rstat_cpu_unlock(root, cpu, flags, false); return head; } /* * A hook for bpf stat collectors to attach to and flush their stats. * Together with providing bpf kfuncs for css_rstat_updated() and * css_rstat_flush(), this enables a complete workflow where bpf progs that * collect cgroup stats can integrate with rstat for efficient flushing. * * A static noinline declaration here could cause the compiler to optimize away * the function. A global noinline declaration will keep the definition, but may * optimize away the callsite. Therefore, __weak is needed to ensure that the * call is still emitted, by telling the compiler that we don't know what the * function might eventually be. */ __bpf_hook_start(); __weak noinline void bpf_rstat_flush(struct cgroup *cgrp, struct cgroup *parent, int cpu) { } __bpf_hook_end(); /* * Helper functions for locking. * * This makes it easier to diagnose locking issues and contention in * production environments. The parameter @cpu_in_loop indicate lock * was released and re-taken when collection data from the CPUs. The * value -1 is used when obtaining the main lock else this is the CPU * number processed last. */ static inline void __css_rstat_lock(struct cgroup_subsys_state *css, int cpu_in_loop) __acquires(ss_rstat_lock(css->ss)) { struct cgroup *cgrp = css->cgroup; spinlock_t *lock; bool contended; lock = ss_rstat_lock(css->ss); contended = !spin_trylock_irq(lock); if (contended) { trace_cgroup_rstat_lock_contended(cgrp, cpu_in_loop, contended); spin_lock_irq(lock); } trace_cgroup_rstat_locked(cgrp, cpu_in_loop, contended); } static inline void __css_rstat_unlock(struct cgroup_subsys_state *css, int cpu_in_loop) __releases(ss_rstat_lock(css->ss)) { struct cgroup *cgrp = css->cgroup; spinlock_t *lock; lock = ss_rstat_lock(css->ss); trace_cgroup_rstat_unlock(cgrp, cpu_in_loop, false); spin_unlock_irq(lock); } /** * css_rstat_flush - flush stats in @css's rstat subtree * @css: target cgroup subsystem state * * Collect all per-cpu stats in @css's subtree into the global counters * and propagate them upwards. After this function returns, all rstat * nodes in the subtree have up-to-date ->stat. * * This also gets all rstat nodes in the subtree including @css off the * ->updated_children lists. * * This function may block. */ __bpf_kfunc void css_rstat_flush(struct cgroup_subsys_state *css) { int cpu; bool is_self = css_is_self(css); /* * Since bpf programs can call this function, prevent access to * uninitialized rstat pointers. */ if (!css_uses_rstat(css)) return; might_sleep(); for_each_possible_cpu(cpu) { struct cgroup_subsys_state *pos; /* Reacquire for each CPU to avoid disabling IRQs too long */ __css_rstat_lock(css, cpu); pos = css_rstat_updated_list(css, cpu); for (; pos; pos = pos->rstat_flush_next) { if (is_self) { cgroup_base_stat_flush(pos->cgroup, cpu); bpf_rstat_flush(pos->cgroup, cgroup_parent(pos->cgroup), cpu); } else pos->ss->css_rstat_flush(pos, cpu); } __css_rstat_unlock(css, cpu); if (!cond_resched()) cpu_relax(); } } int css_rstat_init(struct cgroup_subsys_state *css) { struct cgroup *cgrp = css->cgroup; int cpu; bool is_self = css_is_self(css); if (is_self) { /* the root cgrp has rstat_base_cpu preallocated */ if (!cgrp->rstat_base_cpu) { cgrp->rstat_base_cpu = alloc_percpu(struct cgroup_rstat_base_cpu); if (!cgrp->rstat_base_cpu) return -ENOMEM; } } else if (css->ss->css_rstat_flush == NULL) return 0; /* the root cgrp's self css has rstat_cpu preallocated */ if (!css->rstat_cpu) { css->rstat_cpu = alloc_percpu(struct css_rstat_cpu); if (!css->rstat_cpu) { if (is_self) free_percpu(cgrp->rstat_base_cpu); return -ENOMEM; } } /* ->updated_children list is self terminated */ for_each_possible_cpu(cpu) { struct css_rstat_cpu *rstatc = css_rstat_cpu(css, cpu); rstatc->updated_children = css; if (is_self) { struct cgroup_rstat_base_cpu *rstatbc; rstatbc = cgroup_rstat_base_cpu(cgrp, cpu); u64_stats_init(&rstatbc->bsync); } } return 0; } void css_rstat_exit(struct cgroup_subsys_state *css) { int cpu; if (!css_uses_rstat(css)) return; css_rstat_flush(css); /* sanity check */ for_each_possible_cpu(cpu) { struct css_rstat_cpu *rstatc = css_rstat_cpu(css, cpu); if (WARN_ON_ONCE(rstatc->updated_children != css) || WARN_ON_ONCE(rstatc->updated_next)) return; } if (css_is_self(css)) { struct cgroup *cgrp = css->cgroup; free_percpu(cgrp->rstat_base_cpu); cgrp->rstat_base_cpu = NULL; } free_percpu(css->rstat_cpu); css->rstat_cpu = NULL; } /** * ss_rstat_init - subsystem-specific rstat initialization * @ss: target subsystem * * If @ss is NULL, the static locks associated with the base stats * are initialized. If @ss is non-NULL, the subsystem-specific locks * are initialized. */ int __init ss_rstat_init(struct cgroup_subsys *ss) { int cpu; #ifdef CONFIG_SMP /* * On uniprocessor machines, arch_spinlock_t is defined as an empty * struct. Avoid allocating a size of zero by having this block * excluded in this case. It's acceptable to leave the subsystem locks * unitialized since the associated lock functions are no-ops in the * non-smp case. */ if (ss) { ss->rstat_ss_cpu_lock = alloc_percpu(raw_spinlock_t); if (!ss->rstat_ss_cpu_lock) return -ENOMEM; } #endif spin_lock_init(ss_rstat_lock(ss)); for_each_possible_cpu(cpu) raw_spin_lock_init(ss_rstat_cpu_lock(ss, cpu)); return 0; } /* * Functions for cgroup basic resource statistics implemented on top of * rstat. */ static void cgroup_base_stat_add(struct cgroup_base_stat *dst_bstat, struct cgroup_base_stat *src_bstat) { dst_bstat->cputime.utime += src_bstat->cputime.utime; dst_bstat->cputime.stime += src_bstat->cputime.stime; dst_bstat->cputime.sum_exec_runtime += src_bstat->cputime.sum_exec_runtime; #ifdef CONFIG_SCHED_CORE dst_bstat->forceidle_sum += src_bstat->forceidle_sum; #endif dst_bstat->ntime += src_bstat->ntime; } static void cgroup_base_stat_sub(struct cgroup_base_stat *dst_bstat, struct cgroup_base_stat *src_bstat) { dst_bstat->cputime.utime -= src_bstat->cputime.utime; dst_bstat->cputime.stime -= src_bstat->cputime.stime; dst_bstat->cputime.sum_exec_runtime -= src_bstat->cputime.sum_exec_runtime; #ifdef CONFIG_SCHED_CORE dst_bstat->forceidle_sum -= src_bstat->forceidle_sum; #endif dst_bstat->ntime -= src_bstat->ntime; } static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu) { struct cgroup_rstat_base_cpu *rstatbc = cgroup_rstat_base_cpu(cgrp, cpu); struct cgroup *parent = cgroup_parent(cgrp); struct cgroup_rstat_base_cpu *prstatbc; struct cgroup_base_stat delta; unsigned seq; /* Root-level stats are sourced from system-wide CPU stats */ if (!parent) return; /* fetch the current per-cpu values */ do { seq = __u64_stats_fetch_begin(&rstatbc->bsync); delta = rstatbc->bstat; } while (__u64_stats_fetch_retry(&rstatbc->bsync, seq)); /* propagate per-cpu delta to cgroup and per-cpu global statistics */ cgroup_base_stat_sub(&delta, &rstatbc->last_bstat); cgroup_base_stat_add(&cgrp->bstat, &delta); cgroup_base_stat_add(&rstatbc->last_bstat, &delta); cgroup_base_stat_add(&rstatbc->subtree_bstat, &delta); /* propagate cgroup and per-cpu global delta to parent (unless that's root) */ if (cgroup_parent(parent)) { delta = cgrp->bstat; cgroup_base_stat_sub(&delta, &cgrp->last_bstat); cgroup_base_stat_add(&parent->bstat, &delta); cgroup_base_stat_add(&cgrp->last_bstat, &delta); delta = rstatbc->subtree_bstat; prstatbc = cgroup_rstat_base_cpu(parent, cpu); cgroup_base_stat_sub(&delta, &rstatbc->last_subtree_bstat); cgroup_base_stat_add(&prstatbc->subtree_bstat, &delta); cgroup_base_stat_add(&rstatbc->last_subtree_bstat, &delta); } } static struct cgroup_rstat_base_cpu * cgroup_base_stat_cputime_account_begin(struct cgroup *cgrp, unsigned long *flags) { struct cgroup_rstat_base_cpu *rstatbc; rstatbc = get_cpu_ptr(cgrp->rstat_base_cpu); *flags = u64_stats_update_begin_irqsave(&rstatbc->bsync); return rstatbc; } static void cgroup_base_stat_cputime_account_end(struct cgroup *cgrp, struct cgroup_rstat_base_cpu *rstatbc, unsigned long flags) { u64_stats_update_end_irqrestore(&rstatbc->bsync, flags); css_rstat_updated(&cgrp->self, smp_processor_id()); put_cpu_ptr(rstatbc); } void __cgroup_account_cputime(struct cgroup *cgrp, u64 delta_exec) { struct cgroup_rstat_base_cpu *rstatbc; unsigned long flags; rstatbc = cgroup_base_stat_cputime_account_begin(cgrp, &flags); rstatbc->bstat.cputime.sum_exec_runtime += delta_exec; cgroup_base_stat_cputime_account_end(cgrp, rstatbc, flags); } void __cgroup_account_cputime_field(struct cgroup *cgrp, enum cpu_usage_stat index, u64 delta_exec) { struct cgroup_rstat_base_cpu *rstatbc; unsigned long flags; rstatbc = cgroup_base_stat_cputime_account_begin(cgrp, &flags); switch (index) { case CPUTIME_NICE: rstatbc->bstat.ntime += delta_exec; fallthrough; case CPUTIME_USER: rstatbc->bstat.cputime.utime += delta_exec; break; case CPUTIME_SYSTEM: case CPUTIME_IRQ: case CPUTIME_SOFTIRQ: rstatbc->bstat.cputime.stime += delta_exec; break; #ifdef CONFIG_SCHED_CORE case CPUTIME_FORCEIDLE: rstatbc->bstat.forceidle_sum += delta_exec; break; #endif default: break; } cgroup_base_stat_cputime_account_end(cgrp, rstatbc, flags); } /* * compute the cputime for the root cgroup by getting the per cpu data * at a global level, then categorizing the fields in a manner consistent * with how it is done by __cgroup_account_cputime_field for each bit of * cpu time attributed to a cgroup. */ static void root_cgroup_cputime(struct cgroup_base_stat *bstat) { struct task_cputime *cputime = &bstat->cputime; int i; memset(bstat, 0, sizeof(*bstat)); for_each_possible_cpu(i) { struct kernel_cpustat kcpustat; u64 *cpustat = kcpustat.cpustat; u64 user = 0; u64 sys = 0; kcpustat_cpu_fetch(&kcpustat, i); user += cpustat[CPUTIME_USER]; user += cpustat[CPUTIME_NICE]; cputime->utime += user; sys += cpustat[CPUTIME_SYSTEM]; sys += cpustat[CPUTIME_IRQ]; sys += cpustat[CPUTIME_SOFTIRQ]; cputime->stime += sys; cputime->sum_exec_runtime += user; cputime->sum_exec_runtime += sys; #ifdef CONFIG_SCHED_CORE bstat->forceidle_sum += cpustat[CPUTIME_FORCEIDLE]; #endif bstat->ntime += cpustat[CPUTIME_NICE]; } } static void cgroup_force_idle_show(struct seq_file *seq, struct cgroup_base_stat *bstat) { #ifdef CONFIG_SCHED_CORE u64 forceidle_time = bstat->forceidle_sum; do_div(forceidle_time, NSEC_PER_USEC); seq_printf(seq, "core_sched.force_idle_usec %llu\n", forceidle_time); #endif } void cgroup_base_stat_cputime_show(struct seq_file *seq) { struct cgroup *cgrp = seq_css(seq)->cgroup; struct cgroup_base_stat bstat; if (cgroup_parent(cgrp)) { css_rstat_flush(&cgrp->self); __css_rstat_lock(&cgrp->self, -1); bstat = cgrp->bstat; cputime_adjust(&cgrp->bstat.cputime, &cgrp->prev_cputime, &bstat.cputime.utime, &bstat.cputime.stime); __css_rstat_unlock(&cgrp->self, -1); } else { root_cgroup_cputime(&bstat); } do_div(bstat.cputime.sum_exec_runtime, NSEC_PER_USEC); do_div(bstat.cputime.utime, NSEC_PER_USEC); do_div(bstat.cputime.stime, NSEC_PER_USEC); do_div(bstat.ntime, NSEC_PER_USEC); seq_printf(seq, "usage_usec %llu\n" "user_usec %llu\n" "system_usec %llu\n" "nice_usec %llu\n", bstat.cputime.sum_exec_runtime, bstat.cputime.utime, bstat.cputime.stime, bstat.ntime); cgroup_force_idle_show(seq, &bstat); } /* Add bpf kfuncs for css_rstat_updated() and css_rstat_flush() */ BTF_KFUNCS_START(bpf_rstat_kfunc_ids) BTF_ID_FLAGS(func, css_rstat_updated) BTF_ID_FLAGS(func, css_rstat_flush, KF_SLEEPABLE) BTF_KFUNCS_END(bpf_rstat_kfunc_ids) static const struct btf_kfunc_id_set bpf_rstat_kfunc_set = { .owner = THIS_MODULE, .set = &bpf_rstat_kfunc_ids, }; static int __init bpf_rstat_kfunc_init(void) { return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &bpf_rstat_kfunc_set); } late_initcall(bpf_rstat_kfunc_init);