// SPDX-License-Identifier: GPL-2.0 /* * This file contains core generic KASAN code. * * Copyright (c) 2014 Samsung Electronics Co., Ltd. * Author: Andrey Ryabinin * * Some code borrowed from https://github.com/xairy/kasan-prototype by * Andrey Konovalov */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "kasan.h" #include "../slab.h" /* * All functions below always inlined so compiler could * perform better optimizations in each of __asan_loadX/__assn_storeX * depending on memory access size X. */ static __always_inline bool memory_is_poisoned_1(const void *addr) { s8 shadow_value = *(s8 *)kasan_mem_to_shadow(addr); if (unlikely(shadow_value)) { s8 last_accessible_byte = (unsigned long)addr & KASAN_GRANULE_MASK; return unlikely(last_accessible_byte >= shadow_value); } return false; } static __always_inline bool memory_is_poisoned_2_4_8(const void *addr, unsigned long size) { u8 *shadow_addr = (u8 *)kasan_mem_to_shadow(addr); /* * Access crosses 8(shadow size)-byte boundary. Such access maps * into 2 shadow bytes, so we need to check them both. */ if (unlikely((((unsigned long)addr + size - 1) & KASAN_GRANULE_MASK) < size - 1)) return *shadow_addr || memory_is_poisoned_1(addr + size - 1); return memory_is_poisoned_1(addr + size - 1); } static __always_inline bool memory_is_poisoned_16(const void *addr) { u16 *shadow_addr = (u16 *)kasan_mem_to_shadow(addr); /* Unaligned 16-bytes access maps into 3 shadow bytes. */ if (unlikely(!IS_ALIGNED((unsigned long)addr, KASAN_GRANULE_SIZE))) return *shadow_addr || memory_is_poisoned_1(addr + 15); return *shadow_addr; } static __always_inline unsigned long bytes_is_nonzero(const u8 *start, size_t size) { while (size) { if (unlikely(*start)) return (unsigned long)start; start++; size--; } return 0; } static __always_inline unsigned long memory_is_nonzero(const void *start, const void *end) { unsigned int words; unsigned long ret; unsigned int prefix = (unsigned long)start % 8; if (end - start <= 16) return bytes_is_nonzero(start, end - start); if (prefix) { prefix = 8 - prefix; ret = bytes_is_nonzero(start, prefix); if (unlikely(ret)) return ret; start += prefix; } words = (end - start) / 8; while (words) { if (unlikely(*(u64 *)start)) return bytes_is_nonzero(start, 8); start += 8; words--; } return bytes_is_nonzero(start, (end - start) % 8); } static __always_inline bool memory_is_poisoned_n(const void *addr, size_t size) { unsigned long ret; ret = memory_is_nonzero(kasan_mem_to_shadow(addr), kasan_mem_to_shadow(addr + size - 1) + 1); if (unlikely(ret)) { const void *last_byte = addr + size - 1; s8 *last_shadow = (s8 *)kasan_mem_to_shadow(last_byte); s8 last_accessible_byte = (unsigned long)last_byte & KASAN_GRANULE_MASK; if (unlikely(ret != (unsigned long)last_shadow || last_accessible_byte >= *last_shadow)) return true; } return false; } static __always_inline bool memory_is_poisoned(const void *addr, size_t size) { if (__builtin_constant_p(size)) { switch (size) { case 1: return memory_is_poisoned_1(addr); case 2: case 4: case 8: return memory_is_poisoned_2_4_8(addr, size); case 16: return memory_is_poisoned_16(addr); default: BUILD_BUG(); } } return memory_is_poisoned_n(addr, size); } static __always_inline bool check_region_inline(const void *addr, size_t size, bool write, unsigned long ret_ip) { if (!kasan_arch_is_ready()) return true; if (unlikely(size == 0)) return true; if (unlikely(addr + size < addr)) return !kasan_report(addr, size, write, ret_ip); if (unlikely(!addr_has_metadata(addr))) return !kasan_report(addr, size, write, ret_ip); if (likely(!memory_is_poisoned(addr, size))) return true; return !kasan_report(addr, size, write, ret_ip); } bool kasan_check_range(const void *addr, size_t size, bool write, unsigned long ret_ip) { return check_region_inline(addr, size, write, ret_ip); } bool kasan_byte_accessible(const void *addr) { s8 shadow_byte; if (!kasan_arch_is_ready()) return true; shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(addr)); return shadow_byte >= 0 && shadow_byte < KASAN_GRANULE_SIZE; } void kasan_cache_shrink(struct kmem_cache *cache) { kasan_quarantine_remove_cache(cache); } void kasan_cache_shutdown(struct kmem_cache *cache) { if (!__kmem_cache_empty(cache)) kasan_quarantine_remove_cache(cache); } static void register_global(struct kasan_global *global) { size_t aligned_size = round_up(global->size, KASAN_GRANULE_SIZE); kasan_unpoison(global->beg, global->size, false); kasan_poison(global->beg + aligned_size, global->size_with_redzone - aligned_size, KASAN_GLOBAL_REDZONE, false); } void __asan_register_globals(void *ptr, ssize_t size) { int i; struct kasan_global *globals = ptr; for (i = 0; i < size; i++) register_global(&globals[i]); } EXPORT_SYMBOL(__asan_register_globals); void __asan_unregister_globals(void *ptr, ssize_t size) { } EXPORT_SYMBOL(__asan_unregister_globals); #define DEFINE_ASAN_LOAD_STORE(size) \ void __asan_load##size(void *addr) \ { \ check_region_inline(addr, size, false, _RET_IP_); \ } \ EXPORT_SYMBOL(__asan_load##size); \ __alias(__asan_load##size) \ void __asan_load##size##_noabort(void *); \ EXPORT_SYMBOL(__asan_load##size##_noabort); \ void __asan_store##size(void *addr) \ { \ check_region_inline(addr, size, true, _RET_IP_); \ } \ EXPORT_SYMBOL(__asan_store##size); \ __alias(__asan_store##size) \ void __asan_store##size##_noabort(void *); \ EXPORT_SYMBOL(__asan_store##size##_noabort) DEFINE_ASAN_LOAD_STORE(1); DEFINE_ASAN_LOAD_STORE(2); DEFINE_ASAN_LOAD_STORE(4); DEFINE_ASAN_LOAD_STORE(8); DEFINE_ASAN_LOAD_STORE(16); void __asan_loadN(void *addr, ssize_t size) { kasan_check_range(addr, size, false, _RET_IP_); } EXPORT_SYMBOL(__asan_loadN); __alias(__asan_loadN) void __asan_loadN_noabort(void *, ssize_t); EXPORT_SYMBOL(__asan_loadN_noabort); void __asan_storeN(void *addr, ssize_t size) { kasan_check_range(addr, size, true, _RET_IP_); } EXPORT_SYMBOL(__asan_storeN); __alias(__asan_storeN) void __asan_storeN_noabort(void *, ssize_t); EXPORT_SYMBOL(__asan_storeN_noabort); /* to shut up compiler complaints */ void __asan_handle_no_return(void) {} EXPORT_SYMBOL(__asan_handle_no_return); /* Emitted by compiler to poison alloca()ed objects. */ void __asan_alloca_poison(void *addr, ssize_t size) { size_t rounded_up_size = round_up(size, KASAN_GRANULE_SIZE); size_t padding_size = round_up(size, KASAN_ALLOCA_REDZONE_SIZE) - rounded_up_size; size_t rounded_down_size = round_down(size, KASAN_GRANULE_SIZE); const void *left_redzone = (const void *)(addr - KASAN_ALLOCA_REDZONE_SIZE); const void *right_redzone = (const void *)(addr + rounded_up_size); WARN_ON(!IS_ALIGNED((unsigned long)addr, KASAN_ALLOCA_REDZONE_SIZE)); kasan_unpoison((const void *)(addr + rounded_down_size), size - rounded_down_size, false); kasan_poison(left_redzone, KASAN_ALLOCA_REDZONE_SIZE, KASAN_ALLOCA_LEFT, false); kasan_poison(right_redzone, padding_size + KASAN_ALLOCA_REDZONE_SIZE, KASAN_ALLOCA_RIGHT, false); } EXPORT_SYMBOL(__asan_alloca_poison); /* Emitted by compiler to unpoison alloca()ed areas when the stack unwinds. */ void __asan_allocas_unpoison(void *stack_top, ssize_t stack_bottom) { if (unlikely(!stack_top || stack_top > (void *)stack_bottom)) return; kasan_unpoison(stack_top, (void *)stack_bottom - stack_top, false); } EXPORT_SYMBOL(__asan_allocas_unpoison); /* Emitted by the compiler to [un]poison local variables. */ #define DEFINE_ASAN_SET_SHADOW(byte) \ void __asan_set_shadow_##byte(const void *addr, ssize_t size) \ { \ __memset((void *)addr, 0x##byte, size); \ } \ EXPORT_SYMBOL(__asan_set_shadow_##byte) DEFINE_ASAN_SET_SHADOW(00); DEFINE_ASAN_SET_SHADOW(f1); DEFINE_ASAN_SET_SHADOW(f2); DEFINE_ASAN_SET_SHADOW(f3); DEFINE_ASAN_SET_SHADOW(f5); DEFINE_ASAN_SET_SHADOW(f8); /* Only allow cache merging when no per-object metadata is present. */ slab_flags_t kasan_never_merge(void) { if (!kasan_requires_meta()) return 0; return SLAB_KASAN; } /* * Adaptive redzone policy taken from the userspace AddressSanitizer runtime. * For larger allocations larger redzones are used. */ static inline unsigned int optimal_redzone(unsigned int object_size) { return object_size <= 64 - 16 ? 16 : object_size <= 128 - 32 ? 32 : object_size <= 512 - 64 ? 64 : object_size <= 4096 - 128 ? 128 : object_size <= (1 << 14) - 256 ? 256 : object_size <= (1 << 15) - 512 ? 512 : object_size <= (1 << 16) - 1024 ? 1024 : 2048; } void kasan_cache_create(struct kmem_cache *cache, unsigned int *size, slab_flags_t *flags) { unsigned int ok_size; unsigned int optimal_size; unsigned int rem_free_meta_size; unsigned int orig_alloc_meta_offset; if (!kasan_requires_meta()) return; /* * SLAB_KASAN is used to mark caches that are sanitized by KASAN * and that thus have per-object metadata. * Currently this flag is used in two places: * 1. In slab_ksize() to account for per-object metadata when * calculating the size of the accessible memory within the object. * 2. In slab_common.c via kasan_never_merge() to prevent merging of * caches with per-object metadata. */ *flags |= SLAB_KASAN; ok_size = *size; /* Add alloc meta into the redzone. */ cache->kasan_info.alloc_meta_offset = *size; *size += sizeof(struct kasan_alloc_meta); /* If alloc meta doesn't fit, don't add it. */ if (*size > KMALLOC_MAX_SIZE) { cache->kasan_info.alloc_meta_offset = 0; *size = ok_size; /* Continue, since free meta might still fit. */ } ok_size = *size; orig_alloc_meta_offset = cache->kasan_info.alloc_meta_offset; /* * Store free meta in the redzone when it's not possible to store * it in the object. This is the case when: * 1. Object is SLAB_TYPESAFE_BY_RCU, which means that it can * be touched after it was freed, or * 2. Object has a constructor, which means it's expected to * retain its content until the next allocation. */ if ((cache->flags & SLAB_TYPESAFE_BY_RCU) || cache->ctor) { cache->kasan_info.free_meta_offset = *size; *size += sizeof(struct kasan_free_meta); goto free_meta_added; } /* * Otherwise, if the object is large enough to contain free meta, * store it within the object. */ if (sizeof(struct kasan_free_meta) <= cache->object_size) { /* cache->kasan_info.free_meta_offset = 0 is implied. */ goto free_meta_added; } /* * For smaller objects, store the beginning of free meta within the * object and the end in the redzone. And thus shift the location of * alloc meta to free up space for free meta. * This is only possible when slub_debug is disabled, as otherwise * the end of free meta will overlap with slub_debug metadata. */ if (!__slub_debug_enabled()) { rem_free_meta_size = sizeof(struct kasan_free_meta) - cache->object_size; *size += rem_free_meta_size; if (cache->kasan_info.alloc_meta_offset != 0) cache->kasan_info.alloc_meta_offset += rem_free_meta_size; goto free_meta_added; } /* * If the object is small and slub_debug is enabled, store free meta * in the redzone after alloc meta. */ cache->kasan_info.free_meta_offset = *size; *size += sizeof(struct kasan_free_meta); free_meta_added: /* If free meta doesn't fit, don't add it. */ if (*size > KMALLOC_MAX_SIZE) { cache->kasan_info.free_meta_offset = KASAN_NO_FREE_META; cache->kasan_info.alloc_meta_offset = orig_alloc_meta_offset; *size = ok_size; } /* Calculate size with optimal redzone. */ optimal_size = cache->object_size + optimal_redzone(cache->object_size); /* Limit it with KMALLOC_MAX_SIZE. */ if (optimal_size > KMALLOC_MAX_SIZE) optimal_size = KMALLOC_MAX_SIZE; /* Use optimal size if the size with added metas is not large enough. */ if (*size < optimal_size) *size = optimal_size; } struct kasan_alloc_meta *kasan_get_alloc_meta(struct kmem_cache *cache, const void *object) { if (!cache->kasan_info.alloc_meta_offset) return NULL; return (void *)object + cache->kasan_info.alloc_meta_offset; } struct kasan_free_meta *kasan_get_free_meta(struct kmem_cache *cache, const void *object) { BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32); if (cache->kasan_info.free_meta_offset == KASAN_NO_FREE_META) return NULL; return (void *)object + cache->kasan_info.free_meta_offset; } void kasan_init_object_meta(struct kmem_cache *cache, const void *object) { struct kasan_alloc_meta *alloc_meta; alloc_meta = kasan_get_alloc_meta(cache, object); if (alloc_meta) { /* Zero out alloc meta to mark it as invalid. */ __memset(alloc_meta, 0, sizeof(*alloc_meta)); } /* * Explicitly marking free meta as invalid is not required: the shadow * value for the first 8 bytes of a newly allocated object is not * KASAN_SLAB_FREE_META. */ } static void release_alloc_meta(struct kasan_alloc_meta *meta) { /* Zero out alloc meta to mark it as invalid. */ __memset(meta, 0, sizeof(*meta)); } static void release_free_meta(const void *object, struct kasan_free_meta *meta) { if (!kasan_arch_is_ready()) return; /* Check if free meta is valid. */ if (*(u8 *)kasan_mem_to_shadow(object) != KASAN_SLAB_FREE_META) return; /* Mark free meta as invalid. */ *(u8 *)kasan_mem_to_shadow(object) = KASAN_SLAB_FREE; } size_t kasan_metadata_size(struct kmem_cache *cache, bool in_object) { struct kasan_cache *info = &cache->kasan_info; if (!kasan_requires_meta()) return 0; if (in_object) return (info->free_meta_offset ? 0 : sizeof(struct kasan_free_meta)); else return (info->alloc_meta_offset ? sizeof(struct kasan_alloc_meta) : 0) + ((info->free_meta_offset && info->free_meta_offset != KASAN_NO_FREE_META) ? sizeof(struct kasan_free_meta) : 0); } static void __kasan_record_aux_stack(void *addr, depot_flags_t depot_flags) { struct slab *slab = kasan_addr_to_slab(addr); struct kmem_cache *cache; struct kasan_alloc_meta *alloc_meta; void *object; if (is_kfence_address(addr) || !slab) return; cache = slab->slab_cache; object = nearest_obj(cache, slab, addr); alloc_meta = kasan_get_alloc_meta(cache, object); if (!alloc_meta) return; alloc_meta->aux_stack[1] = alloc_meta->aux_stack[0]; alloc_meta->aux_stack[0] = kasan_save_stack(0, depot_flags); } void kasan_record_aux_stack(void *addr) { return __kasan_record_aux_stack(addr, STACK_DEPOT_FLAG_CAN_ALLOC); } void kasan_record_aux_stack_noalloc(void *addr) { return __kasan_record_aux_stack(addr, 0); } void kasan_save_alloc_info(struct kmem_cache *cache, void *object, gfp_t flags) { struct kasan_alloc_meta *alloc_meta; alloc_meta = kasan_get_alloc_meta(cache, object); if (!alloc_meta) return; /* Invalidate previous stack traces (might exist for krealloc or mempool). */ release_alloc_meta(alloc_meta); kasan_save_track(&alloc_meta->alloc_track, flags); } void kasan_save_free_info(struct kmem_cache *cache, void *object) { struct kasan_free_meta *free_meta; free_meta = kasan_get_free_meta(cache, object); if (!free_meta) return; /* Invalidate previous stack trace (might exist for mempool). */ release_free_meta(object, free_meta); kasan_save_track(&free_meta->free_track, 0); /* Mark free meta as valid. */ *(u8 *)kasan_mem_to_shadow(object) = KASAN_SLAB_FREE_META; }