// SPDX-License-Identifier: GPL-2.0 /* * Ceph msgr2 protocol implementation * * Copyright (C) 2020 Ilya Dryomov */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "crypto.h" /* for CEPH_KEY_LEN and CEPH_MAX_CON_SECRET_LEN */ #define FRAME_TAG_HELLO 1 #define FRAME_TAG_AUTH_REQUEST 2 #define FRAME_TAG_AUTH_BAD_METHOD 3 #define FRAME_TAG_AUTH_REPLY_MORE 4 #define FRAME_TAG_AUTH_REQUEST_MORE 5 #define FRAME_TAG_AUTH_DONE 6 #define FRAME_TAG_AUTH_SIGNATURE 7 #define FRAME_TAG_CLIENT_IDENT 8 #define FRAME_TAG_SERVER_IDENT 9 #define FRAME_TAG_IDENT_MISSING_FEATURES 10 #define FRAME_TAG_SESSION_RECONNECT 11 #define FRAME_TAG_SESSION_RESET 12 #define FRAME_TAG_SESSION_RETRY 13 #define FRAME_TAG_SESSION_RETRY_GLOBAL 14 #define FRAME_TAG_SESSION_RECONNECT_OK 15 #define FRAME_TAG_WAIT 16 #define FRAME_TAG_MESSAGE 17 #define FRAME_TAG_KEEPALIVE2 18 #define FRAME_TAG_KEEPALIVE2_ACK 19 #define FRAME_TAG_ACK 20 #define FRAME_LATE_STATUS_ABORTED 0x1 #define FRAME_LATE_STATUS_COMPLETE 0xe #define FRAME_LATE_STATUS_ABORTED_MASK 0xf #define IN_S_HANDLE_PREAMBLE 1 #define IN_S_HANDLE_CONTROL 2 #define IN_S_HANDLE_CONTROL_REMAINDER 3 #define IN_S_PREPARE_READ_DATA 4 #define IN_S_PREPARE_READ_DATA_CONT 5 #define IN_S_PREPARE_READ_ENC_PAGE 6 #define IN_S_PREPARE_SPARSE_DATA 7 #define IN_S_PREPARE_SPARSE_DATA_CONT 8 #define IN_S_HANDLE_EPILOGUE 9 #define IN_S_FINISH_SKIP 10 #define OUT_S_QUEUE_DATA 1 #define OUT_S_QUEUE_DATA_CONT 2 #define OUT_S_QUEUE_ENC_PAGE 3 #define OUT_S_QUEUE_ZEROS 4 #define OUT_S_FINISH_MESSAGE 5 #define OUT_S_GET_NEXT 6 #define CTRL_BODY(p) ((void *)(p) + CEPH_PREAMBLE_LEN) #define FRONT_PAD(p) ((void *)(p) + CEPH_EPILOGUE_SECURE_LEN) #define MIDDLE_PAD(p) (FRONT_PAD(p) + CEPH_GCM_BLOCK_LEN) #define DATA_PAD(p) (MIDDLE_PAD(p) + CEPH_GCM_BLOCK_LEN) #define CEPH_MSG_FLAGS (MSG_DONTWAIT | MSG_NOSIGNAL) static int do_recvmsg(struct socket *sock, struct iov_iter *it) { struct msghdr msg = { .msg_flags = CEPH_MSG_FLAGS }; int ret; msg.msg_iter = *it; while (iov_iter_count(it)) { ret = sock_recvmsg(sock, &msg, msg.msg_flags); if (ret <= 0) { if (ret == -EAGAIN) ret = 0; return ret; } iov_iter_advance(it, ret); } WARN_ON(msg_data_left(&msg)); return 1; } /* * Read as much as possible. * * Return: * 1 - done, nothing (else) to read * 0 - socket is empty, need to wait * <0 - error */ static int ceph_tcp_recv(struct ceph_connection *con) { int ret; dout("%s con %p %s %zu\n", __func__, con, iov_iter_is_discard(&con->v2.in_iter) ? "discard" : "need", iov_iter_count(&con->v2.in_iter)); ret = do_recvmsg(con->sock, &con->v2.in_iter); dout("%s con %p ret %d left %zu\n", __func__, con, ret, iov_iter_count(&con->v2.in_iter)); return ret; } static int do_sendmsg(struct socket *sock, struct iov_iter *it) { struct msghdr msg = { .msg_flags = CEPH_MSG_FLAGS }; int ret; msg.msg_iter = *it; while (iov_iter_count(it)) { ret = sock_sendmsg(sock, &msg); if (ret <= 0) { if (ret == -EAGAIN) ret = 0; return ret; } iov_iter_advance(it, ret); } WARN_ON(msg_data_left(&msg)); return 1; } static int do_try_sendpage(struct socket *sock, struct iov_iter *it) { struct msghdr msg = { .msg_flags = CEPH_MSG_FLAGS }; struct bio_vec bv; int ret; if (WARN_ON(!iov_iter_is_bvec(it))) return -EINVAL; while (iov_iter_count(it)) { /* iov_iter_iovec() for ITER_BVEC */ bvec_set_page(&bv, it->bvec->bv_page, min(iov_iter_count(it), it->bvec->bv_len - it->iov_offset), it->bvec->bv_offset + it->iov_offset); /* * MSG_SPLICE_PAGES cannot properly handle pages with * page_count == 0, we need to fall back to sendmsg if * that's the case. * * Same goes for slab pages: skb_can_coalesce() allows * coalescing neighboring slab objects into a single frag * which triggers one of hardened usercopy checks. */ if (sendpage_ok(bv.bv_page)) msg.msg_flags |= MSG_SPLICE_PAGES; else msg.msg_flags &= ~MSG_SPLICE_PAGES; iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bv, 1, bv.bv_len); ret = sock_sendmsg(sock, &msg); if (ret <= 0) { if (ret == -EAGAIN) ret = 0; return ret; } iov_iter_advance(it, ret); } return 1; } /* * Write as much as possible. The socket is expected to be corked, * so we don't bother with MSG_MORE here. * * Return: * 1 - done, nothing (else) to write * 0 - socket is full, need to wait * <0 - error */ static int ceph_tcp_send(struct ceph_connection *con) { int ret; dout("%s con %p have %zu try_sendpage %d\n", __func__, con, iov_iter_count(&con->v2.out_iter), con->v2.out_iter_sendpage); if (con->v2.out_iter_sendpage) ret = do_try_sendpage(con->sock, &con->v2.out_iter); else ret = do_sendmsg(con->sock, &con->v2.out_iter); dout("%s con %p ret %d left %zu\n", __func__, con, ret, iov_iter_count(&con->v2.out_iter)); return ret; } static void add_in_kvec(struct ceph_connection *con, void *buf, int len) { BUG_ON(con->v2.in_kvec_cnt >= ARRAY_SIZE(con->v2.in_kvecs)); WARN_ON(!iov_iter_is_kvec(&con->v2.in_iter)); con->v2.in_kvecs[con->v2.in_kvec_cnt].iov_base = buf; con->v2.in_kvecs[con->v2.in_kvec_cnt].iov_len = len; con->v2.in_kvec_cnt++; con->v2.in_iter.nr_segs++; con->v2.in_iter.count += len; } static void reset_in_kvecs(struct ceph_connection *con) { WARN_ON(iov_iter_count(&con->v2.in_iter)); con->v2.in_kvec_cnt = 0; iov_iter_kvec(&con->v2.in_iter, ITER_DEST, con->v2.in_kvecs, 0, 0); } static void set_in_bvec(struct ceph_connection *con, const struct bio_vec *bv) { WARN_ON(iov_iter_count(&con->v2.in_iter)); con->v2.in_bvec = *bv; iov_iter_bvec(&con->v2.in_iter, ITER_DEST, &con->v2.in_bvec, 1, bv->bv_len); } static void set_in_skip(struct ceph_connection *con, int len) { WARN_ON(iov_iter_count(&con->v2.in_iter)); dout("%s con %p len %d\n", __func__, con, len); iov_iter_discard(&con->v2.in_iter, ITER_DEST, len); } static void add_out_kvec(struct ceph_connection *con, void *buf, int len) { BUG_ON(con->v2.out_kvec_cnt >= ARRAY_SIZE(con->v2.out_kvecs)); WARN_ON(!iov_iter_is_kvec(&con->v2.out_iter)); WARN_ON(con->v2.out_zero); con->v2.out_kvecs[con->v2.out_kvec_cnt].iov_base = buf; con->v2.out_kvecs[con->v2.out_kvec_cnt].iov_len = len; con->v2.out_kvec_cnt++; con->v2.out_iter.nr_segs++; con->v2.out_iter.count += len; } static void reset_out_kvecs(struct ceph_connection *con) { WARN_ON(iov_iter_count(&con->v2.out_iter)); WARN_ON(con->v2.out_zero); con->v2.out_kvec_cnt = 0; iov_iter_kvec(&con->v2.out_iter, ITER_SOURCE, con->v2.out_kvecs, 0, 0); con->v2.out_iter_sendpage = false; } static void set_out_bvec(struct ceph_connection *con, const struct bio_vec *bv, bool zerocopy) { WARN_ON(iov_iter_count(&con->v2.out_iter)); WARN_ON(con->v2.out_zero); con->v2.out_bvec = *bv; con->v2.out_iter_sendpage = zerocopy; iov_iter_bvec(&con->v2.out_iter, ITER_SOURCE, &con->v2.out_bvec, 1, con->v2.out_bvec.bv_len); } static void set_out_bvec_zero(struct ceph_connection *con) { WARN_ON(iov_iter_count(&con->v2.out_iter)); WARN_ON(!con->v2.out_zero); bvec_set_page(&con->v2.out_bvec, ceph_zero_page, min(con->v2.out_zero, (int)PAGE_SIZE), 0); con->v2.out_iter_sendpage = true; iov_iter_bvec(&con->v2.out_iter, ITER_SOURCE, &con->v2.out_bvec, 1, con->v2.out_bvec.bv_len); } static void out_zero_add(struct ceph_connection *con, int len) { dout("%s con %p len %d\n", __func__, con, len); con->v2.out_zero += len; } static void *alloc_conn_buf(struct ceph_connection *con, int len) { void *buf; dout("%s con %p len %d\n", __func__, con, len); if (WARN_ON(con->v2.conn_buf_cnt >= ARRAY_SIZE(con->v2.conn_bufs))) return NULL; buf = kvmalloc(len, GFP_NOIO); if (!buf) return NULL; con->v2.conn_bufs[con->v2.conn_buf_cnt++] = buf; return buf; } static void free_conn_bufs(struct ceph_connection *con) { while (con->v2.conn_buf_cnt) kvfree(con->v2.conn_bufs[--con->v2.conn_buf_cnt]); } static void add_in_sign_kvec(struct ceph_connection *con, void *buf, int len) { BUG_ON(con->v2.in_sign_kvec_cnt >= ARRAY_SIZE(con->v2.in_sign_kvecs)); con->v2.in_sign_kvecs[con->v2.in_sign_kvec_cnt].iov_base = buf; con->v2.in_sign_kvecs[con->v2.in_sign_kvec_cnt].iov_len = len; con->v2.in_sign_kvec_cnt++; } static void clear_in_sign_kvecs(struct ceph_connection *con) { con->v2.in_sign_kvec_cnt = 0; } static void add_out_sign_kvec(struct ceph_connection *con, void *buf, int len) { BUG_ON(con->v2.out_sign_kvec_cnt >= ARRAY_SIZE(con->v2.out_sign_kvecs)); con->v2.out_sign_kvecs[con->v2.out_sign_kvec_cnt].iov_base = buf; con->v2.out_sign_kvecs[con->v2.out_sign_kvec_cnt].iov_len = len; con->v2.out_sign_kvec_cnt++; } static void clear_out_sign_kvecs(struct ceph_connection *con) { con->v2.out_sign_kvec_cnt = 0; } static bool con_secure(struct ceph_connection *con) { return con->v2.con_mode == CEPH_CON_MODE_SECURE; } static int front_len(const struct ceph_msg *msg) { return le32_to_cpu(msg->hdr.front_len); } static int middle_len(const struct ceph_msg *msg) { return le32_to_cpu(msg->hdr.middle_len); } static int data_len(const struct ceph_msg *msg) { return le32_to_cpu(msg->hdr.data_len); } static bool need_padding(int len) { return !IS_ALIGNED(len, CEPH_GCM_BLOCK_LEN); } static int padded_len(int len) { return ALIGN(len, CEPH_GCM_BLOCK_LEN); } static int padding_len(int len) { return padded_len(len) - len; } /* preamble + control segment */ static int head_onwire_len(int ctrl_len, bool secure) { int head_len; int rem_len; BUG_ON(ctrl_len < 0 || ctrl_len > CEPH_MSG_MAX_CONTROL_LEN); if (secure) { head_len = CEPH_PREAMBLE_SECURE_LEN; if (ctrl_len > CEPH_PREAMBLE_INLINE_LEN) { rem_len = ctrl_len - CEPH_PREAMBLE_INLINE_LEN; head_len += padded_len(rem_len) + CEPH_GCM_TAG_LEN; } } else { head_len = CEPH_PREAMBLE_PLAIN_LEN; if (ctrl_len) head_len += ctrl_len + CEPH_CRC_LEN; } return head_len; } /* front, middle and data segments + epilogue */ static int __tail_onwire_len(int front_len, int middle_len, int data_len, bool secure) { BUG_ON(front_len < 0 || front_len > CEPH_MSG_MAX_FRONT_LEN || middle_len < 0 || middle_len > CEPH_MSG_MAX_MIDDLE_LEN || data_len < 0 || data_len > CEPH_MSG_MAX_DATA_LEN); if (!front_len && !middle_len && !data_len) return 0; if (!secure) return front_len + middle_len + data_len + CEPH_EPILOGUE_PLAIN_LEN; return padded_len(front_len) + padded_len(middle_len) + padded_len(data_len) + CEPH_EPILOGUE_SECURE_LEN; } static int tail_onwire_len(const struct ceph_msg *msg, bool secure) { return __tail_onwire_len(front_len(msg), middle_len(msg), data_len(msg), secure); } /* head_onwire_len(sizeof(struct ceph_msg_header2), false) */ #define MESSAGE_HEAD_PLAIN_LEN (CEPH_PREAMBLE_PLAIN_LEN + \ sizeof(struct ceph_msg_header2) + \ CEPH_CRC_LEN) static const int frame_aligns[] = { sizeof(void *), sizeof(void *), sizeof(void *), PAGE_SIZE }; /* * Discards trailing empty segments, unless there is just one segment. * A frame always has at least one (possibly empty) segment. */ static int calc_segment_count(const int *lens, int len_cnt) { int i; for (i = len_cnt - 1; i >= 0; i--) { if (lens[i]) return i + 1; } return 1; } static void init_frame_desc(struct ceph_frame_desc *desc, int tag, const int *lens, int len_cnt) { int i; memset(desc, 0, sizeof(*desc)); desc->fd_tag = tag; desc->fd_seg_cnt = calc_segment_count(lens, len_cnt); BUG_ON(desc->fd_seg_cnt > CEPH_FRAME_MAX_SEGMENT_COUNT); for (i = 0; i < desc->fd_seg_cnt; i++) { desc->fd_lens[i] = lens[i]; desc->fd_aligns[i] = frame_aligns[i]; } } /* * Preamble crc covers everything up to itself (28 bytes) and * is calculated and verified irrespective of the connection mode * (i.e. even if the frame is encrypted). */ static void encode_preamble(const struct ceph_frame_desc *desc, void *p) { void *crcp = p + CEPH_PREAMBLE_LEN - CEPH_CRC_LEN; void *start = p; int i; memset(p, 0, CEPH_PREAMBLE_LEN); ceph_encode_8(&p, desc->fd_tag); ceph_encode_8(&p, desc->fd_seg_cnt); for (i = 0; i < desc->fd_seg_cnt; i++) { ceph_encode_32(&p, desc->fd_lens[i]); ceph_encode_16(&p, desc->fd_aligns[i]); } put_unaligned_le32(crc32c(0, start, crcp - start), crcp); } static int decode_preamble(void *p, struct ceph_frame_desc *desc) { void *crcp = p + CEPH_PREAMBLE_LEN - CEPH_CRC_LEN; u32 crc, expected_crc; int i; crc = crc32c(0, p, crcp - p); expected_crc = get_unaligned_le32(crcp); if (crc != expected_crc) { pr_err("bad preamble crc, calculated %u, expected %u\n", crc, expected_crc); return -EBADMSG; } memset(desc, 0, sizeof(*desc)); desc->fd_tag = ceph_decode_8(&p); desc->fd_seg_cnt = ceph_decode_8(&p); if (desc->fd_seg_cnt < 1 || desc->fd_seg_cnt > CEPH_FRAME_MAX_SEGMENT_COUNT) { pr_err("bad segment count %d\n", desc->fd_seg_cnt); return -EINVAL; } for (i = 0; i < desc->fd_seg_cnt; i++) { desc->fd_lens[i] = ceph_decode_32(&p); desc->fd_aligns[i] = ceph_decode_16(&p); } if (desc->fd_lens[0] < 0 || desc->fd_lens[0] > CEPH_MSG_MAX_CONTROL_LEN) { pr_err("bad control segment length %d\n", desc->fd_lens[0]); return -EINVAL; } if (desc->fd_lens[1] < 0 || desc->fd_lens[1] > CEPH_MSG_MAX_FRONT_LEN) { pr_err("bad front segment length %d\n", desc->fd_lens[1]); return -EINVAL; } if (desc->fd_lens[2] < 0 || desc->fd_lens[2] > CEPH_MSG_MAX_MIDDLE_LEN) { pr_err("bad middle segment length %d\n", desc->fd_lens[2]); return -EINVAL; } if (desc->fd_lens[3] < 0 || desc->fd_lens[3] > CEPH_MSG_MAX_DATA_LEN) { pr_err("bad data segment length %d\n", desc->fd_lens[3]); return -EINVAL; } /* * This would fire for FRAME_TAG_WAIT (it has one empty * segment), but we should never get it as client. */ if (!desc->fd_lens[desc->fd_seg_cnt - 1]) { pr_err("last segment empty, segment count %d\n", desc->fd_seg_cnt); return -EINVAL; } return 0; } static void encode_epilogue_plain(struct ceph_connection *con, bool aborted) { con->v2.out_epil.late_status = aborted ? FRAME_LATE_STATUS_ABORTED : FRAME_LATE_STATUS_COMPLETE; cpu_to_le32s(&con->v2.out_epil.front_crc); cpu_to_le32s(&con->v2.out_epil.middle_crc); cpu_to_le32s(&con->v2.out_epil.data_crc); } static void encode_epilogue_secure(struct ceph_connection *con, bool aborted) { memset(&con->v2.out_epil, 0, sizeof(con->v2.out_epil)); con->v2.out_epil.late_status = aborted ? FRAME_LATE_STATUS_ABORTED : FRAME_LATE_STATUS_COMPLETE; } static int decode_epilogue(void *p, u32 *front_crc, u32 *middle_crc, u32 *data_crc) { u8 late_status; late_status = ceph_decode_8(&p); if ((late_status & FRAME_LATE_STATUS_ABORTED_MASK) != FRAME_LATE_STATUS_COMPLETE) { /* we should never get an aborted message as client */ pr_err("bad late_status 0x%x\n", late_status); return -EINVAL; } if (front_crc && middle_crc && data_crc) { *front_crc = ceph_decode_32(&p); *middle_crc = ceph_decode_32(&p); *data_crc = ceph_decode_32(&p); } return 0; } static void fill_header(struct ceph_msg_header *hdr, const struct ceph_msg_header2 *hdr2, int front_len, int middle_len, int data_len, const struct ceph_entity_name *peer_name) { hdr->seq = hdr2->seq; hdr->tid = hdr2->tid; hdr->type = hdr2->type; hdr->priority = hdr2->priority; hdr->version = hdr2->version; hdr->front_len = cpu_to_le32(front_len); hdr->middle_len = cpu_to_le32(middle_len); hdr->data_len = cpu_to_le32(data_len); hdr->data_off = hdr2->data_off; hdr->src = *peer_name; hdr->compat_version = hdr2->compat_version; hdr->reserved = 0; hdr->crc = 0; } static void fill_header2(struct ceph_msg_header2 *hdr2, const struct ceph_msg_header *hdr, u64 ack_seq) { hdr2->seq = hdr->seq; hdr2->tid = hdr->tid; hdr2->type = hdr->type; hdr2->priority = hdr->priority; hdr2->version = hdr->version; hdr2->data_pre_padding_len = 0; hdr2->data_off = hdr->data_off; hdr2->ack_seq = cpu_to_le64(ack_seq); hdr2->flags = 0; hdr2->compat_version = hdr->compat_version; hdr2->reserved = 0; } static int verify_control_crc(struct ceph_connection *con) { int ctrl_len = con->v2.in_desc.fd_lens[0]; u32 crc, expected_crc; WARN_ON(con->v2.in_kvecs[0].iov_len != ctrl_len); WARN_ON(con->v2.in_kvecs[1].iov_len != CEPH_CRC_LEN); crc = crc32c(-1, con->v2.in_kvecs[0].iov_base, ctrl_len); expected_crc = get_unaligned_le32(con->v2.in_kvecs[1].iov_base); if (crc != expected_crc) { pr_err("bad control crc, calculated %u, expected %u\n", crc, expected_crc); return -EBADMSG; } return 0; } static int verify_epilogue_crcs(struct ceph_connection *con, u32 front_crc, u32 middle_crc, u32 data_crc) { if (front_len(con->in_msg)) { con->in_front_crc = crc32c(-1, con->in_msg->front.iov_base, front_len(con->in_msg)); } else { WARN_ON(!middle_len(con->in_msg) && !data_len(con->in_msg)); con->in_front_crc = -1; } if (middle_len(con->in_msg)) con->in_middle_crc = crc32c(-1, con->in_msg->middle->vec.iov_base, middle_len(con->in_msg)); else if (data_len(con->in_msg)) con->in_middle_crc = -1; else con->in_middle_crc = 0; if (!data_len(con->in_msg)) con->in_data_crc = 0; dout("%s con %p msg %p crcs %u %u %u\n", __func__, con, con->in_msg, con->in_front_crc, con->in_middle_crc, con->in_data_crc); if (con->in_front_crc != front_crc) { pr_err("bad front crc, calculated %u, expected %u\n", con->in_front_crc, front_crc); return -EBADMSG; } if (con->in_middle_crc != middle_crc) { pr_err("bad middle crc, calculated %u, expected %u\n", con->in_middle_crc, middle_crc); return -EBADMSG; } if (con->in_data_crc != data_crc) { pr_err("bad data crc, calculated %u, expected %u\n", con->in_data_crc, data_crc); return -EBADMSG; } return 0; } static int setup_crypto(struct ceph_connection *con, const u8 *session_key, int session_key_len, const u8 *con_secret, int con_secret_len) { unsigned int noio_flag; int ret; dout("%s con %p con_mode %d session_key_len %d con_secret_len %d\n", __func__, con, con->v2.con_mode, session_key_len, con_secret_len); WARN_ON(con->v2.hmac_tfm || con->v2.gcm_tfm || con->v2.gcm_req); if (con->v2.con_mode != CEPH_CON_MODE_CRC && con->v2.con_mode != CEPH_CON_MODE_SECURE) { pr_err("bad con_mode %d\n", con->v2.con_mode); return -EINVAL; } if (!session_key_len) { WARN_ON(con->v2.con_mode != CEPH_CON_MODE_CRC); WARN_ON(con_secret_len); return 0; /* auth_none */ } noio_flag = memalloc_noio_save(); con->v2.hmac_tfm = crypto_alloc_shash("hmac(sha256)", 0, 0); memalloc_noio_restore(noio_flag); if (IS_ERR(con->v2.hmac_tfm)) { ret = PTR_ERR(con->v2.hmac_tfm); con->v2.hmac_tfm = NULL; pr_err("failed to allocate hmac tfm context: %d\n", ret); return ret; } ret = crypto_shash_setkey(con->v2.hmac_tfm, session_key, session_key_len); if (ret) { pr_err("failed to set hmac key: %d\n", ret); return ret; } if (con->v2.con_mode == CEPH_CON_MODE_CRC) { WARN_ON(con_secret_len); return 0; /* auth_x, plain mode */ } if (con_secret_len < CEPH_GCM_KEY_LEN + 2 * CEPH_GCM_IV_LEN) { pr_err("con_secret too small %d\n", con_secret_len); return -EINVAL; } noio_flag = memalloc_noio_save(); con->v2.gcm_tfm = crypto_alloc_aead("gcm(aes)", 0, 0); memalloc_noio_restore(noio_flag); if (IS_ERR(con->v2.gcm_tfm)) { ret = PTR_ERR(con->v2.gcm_tfm); con->v2.gcm_tfm = NULL; pr_err("failed to allocate gcm tfm context: %d\n", ret); return ret; } WARN_ON((unsigned long)con_secret & crypto_aead_alignmask(con->v2.gcm_tfm)); ret = crypto_aead_setkey(con->v2.gcm_tfm, con_secret, CEPH_GCM_KEY_LEN); if (ret) { pr_err("failed to set gcm key: %d\n", ret); return ret; } WARN_ON(crypto_aead_ivsize(con->v2.gcm_tfm) != CEPH_GCM_IV_LEN); ret = crypto_aead_setauthsize(con->v2.gcm_tfm, CEPH_GCM_TAG_LEN); if (ret) { pr_err("failed to set gcm tag size: %d\n", ret); return ret; } con->v2.gcm_req = aead_request_alloc(con->v2.gcm_tfm, GFP_NOIO); if (!con->v2.gcm_req) { pr_err("failed to allocate gcm request\n"); return -ENOMEM; } crypto_init_wait(&con->v2.gcm_wait); aead_request_set_callback(con->v2.gcm_req, CRYPTO_TFM_REQ_MAY_BACKLOG, crypto_req_done, &con->v2.gcm_wait); memcpy(&con->v2.in_gcm_nonce, con_secret + CEPH_GCM_KEY_LEN, CEPH_GCM_IV_LEN); memcpy(&con->v2.out_gcm_nonce, con_secret + CEPH_GCM_KEY_LEN + CEPH_GCM_IV_LEN, CEPH_GCM_IV_LEN); return 0; /* auth_x, secure mode */ } static int hmac_sha256(struct ceph_connection *con, const struct kvec *kvecs, int kvec_cnt, u8 *hmac) { SHASH_DESC_ON_STACK(desc, con->v2.hmac_tfm); /* tfm arg is ignored */ int ret; int i; dout("%s con %p hmac_tfm %p kvec_cnt %d\n", __func__, con, con->v2.hmac_tfm, kvec_cnt); if (!con->v2.hmac_tfm) { memset(hmac, 0, SHA256_DIGEST_SIZE); return 0; /* auth_none */ } desc->tfm = con->v2.hmac_tfm; ret = crypto_shash_init(desc); if (ret) goto out; for (i = 0; i < kvec_cnt; i++) { ret = crypto_shash_update(desc, kvecs[i].iov_base, kvecs[i].iov_len); if (ret) goto out; } ret = crypto_shash_final(desc, hmac); out: shash_desc_zero(desc); return ret; /* auth_x, both plain and secure modes */ } static void gcm_inc_nonce(struct ceph_gcm_nonce *nonce) { u64 counter; counter = le64_to_cpu(nonce->counter); nonce->counter = cpu_to_le64(counter + 1); } static int gcm_crypt(struct ceph_connection *con, bool encrypt, struct scatterlist *src, struct scatterlist *dst, int src_len) { struct ceph_gcm_nonce *nonce; int ret; nonce = encrypt ? &con->v2.out_gcm_nonce : &con->v2.in_gcm_nonce; aead_request_set_ad(con->v2.gcm_req, 0); /* no AAD */ aead_request_set_crypt(con->v2.gcm_req, src, dst, src_len, (u8 *)nonce); ret = crypto_wait_req(encrypt ? crypto_aead_encrypt(con->v2.gcm_req) : crypto_aead_decrypt(con->v2.gcm_req), &con->v2.gcm_wait); if (ret) return ret; gcm_inc_nonce(nonce); return 0; } static void get_bvec_at(struct ceph_msg_data_cursor *cursor, struct bio_vec *bv) { struct page *page; size_t off, len; WARN_ON(!cursor->total_resid); /* skip zero-length data items */ while (!cursor->resid) ceph_msg_data_advance(cursor, 0); /* get a piece of data, cursor isn't advanced */ page = ceph_msg_data_next(cursor, &off, &len); bvec_set_page(bv, page, len, off); } static int calc_sg_cnt(void *buf, int buf_len) { int sg_cnt; if (!buf_len) return 0; sg_cnt = need_padding(buf_len) ? 1 : 0; if (is_vmalloc_addr(buf)) { WARN_ON(offset_in_page(buf)); sg_cnt += PAGE_ALIGN(buf_len) >> PAGE_SHIFT; } else { sg_cnt++; } return sg_cnt; } static int calc_sg_cnt_cursor(struct ceph_msg_data_cursor *cursor) { int data_len = cursor->total_resid; struct bio_vec bv; int sg_cnt; if (!data_len) return 0; sg_cnt = need_padding(data_len) ? 1 : 0; do { get_bvec_at(cursor, &bv); sg_cnt++; ceph_msg_data_advance(cursor, bv.bv_len); } while (cursor->total_resid); return sg_cnt; } static void init_sgs(struct scatterlist **sg, void *buf, int buf_len, u8 *pad) { void *end = buf + buf_len; struct page *page; int len; void *p; if (!buf_len) return; if (is_vmalloc_addr(buf)) { p = buf; do { page = vmalloc_to_page(p); len = min_t(int, end - p, PAGE_SIZE); WARN_ON(!page || !len || offset_in_page(p)); sg_set_page(*sg, page, len, 0); *sg = sg_next(*sg); p += len; } while (p != end); } else { sg_set_buf(*sg, buf, buf_len); *sg = sg_next(*sg); } if (need_padding(buf_len)) { sg_set_buf(*sg, pad, padding_len(buf_len)); *sg = sg_next(*sg); } } static void init_sgs_cursor(struct scatterlist **sg, struct ceph_msg_data_cursor *cursor, u8 *pad) { int data_len = cursor->total_resid; struct bio_vec bv; if (!data_len) return; do { get_bvec_at(cursor, &bv); sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset); *sg = sg_next(*sg); ceph_msg_data_advance(cursor, bv.bv_len); } while (cursor->total_resid); if (need_padding(data_len)) { sg_set_buf(*sg, pad, padding_len(data_len)); *sg = sg_next(*sg); } } /** * init_sgs_pages: set up scatterlist on an array of page pointers * @sg: scatterlist to populate * @pages: pointer to page array * @dpos: position in the array to start (bytes) * @dlen: len to add to sg (bytes) * @pad: pointer to pad destination (if any) * * Populate the scatterlist from the page array, starting at an arbitrary * byte in the array and running for a specified length. */ static void init_sgs_pages(struct scatterlist **sg, struct page **pages, int dpos, int dlen, u8 *pad) { int idx = dpos >> PAGE_SHIFT; int off = offset_in_page(dpos); int resid = dlen; do { int len = min(resid, (int)PAGE_SIZE - off); sg_set_page(*sg, pages[idx], len, off); *sg = sg_next(*sg); off = 0; ++idx; resid -= len; } while (resid); if (need_padding(dlen)) { sg_set_buf(*sg, pad, padding_len(dlen)); *sg = sg_next(*sg); } } static int setup_message_sgs(struct sg_table *sgt, struct ceph_msg *msg, u8 *front_pad, u8 *middle_pad, u8 *data_pad, void *epilogue, struct page **pages, int dpos, bool add_tag) { struct ceph_msg_data_cursor cursor; struct scatterlist *cur_sg; int dlen = data_len(msg); int sg_cnt; int ret; if (!front_len(msg) && !middle_len(msg) && !data_len(msg)) return 0; sg_cnt = 1; /* epilogue + [auth tag] */ if (front_len(msg)) sg_cnt += calc_sg_cnt(msg->front.iov_base, front_len(msg)); if (middle_len(msg)) sg_cnt += calc_sg_cnt(msg->middle->vec.iov_base, middle_len(msg)); if (dlen) { if (pages) { sg_cnt += calc_pages_for(dpos, dlen); if (need_padding(dlen)) sg_cnt++; } else { ceph_msg_data_cursor_init(&cursor, msg, dlen); sg_cnt += calc_sg_cnt_cursor(&cursor); } } ret = sg_alloc_table(sgt, sg_cnt, GFP_NOIO); if (ret) return ret; cur_sg = sgt->sgl; if (front_len(msg)) init_sgs(&cur_sg, msg->front.iov_base, front_len(msg), front_pad); if (middle_len(msg)) init_sgs(&cur_sg, msg->middle->vec.iov_base, middle_len(msg), middle_pad); if (dlen) { if (pages) { init_sgs_pages(&cur_sg, pages, dpos, dlen, data_pad); } else { ceph_msg_data_cursor_init(&cursor, msg, dlen); init_sgs_cursor(&cur_sg, &cursor, data_pad); } } WARN_ON(!sg_is_last(cur_sg)); sg_set_buf(cur_sg, epilogue, CEPH_GCM_BLOCK_LEN + (add_tag ? CEPH_GCM_TAG_LEN : 0)); return 0; } static int decrypt_preamble(struct ceph_connection *con) { struct scatterlist sg; sg_init_one(&sg, con->v2.in_buf, CEPH_PREAMBLE_SECURE_LEN); return gcm_crypt(con, false, &sg, &sg, CEPH_PREAMBLE_SECURE_LEN); } static int decrypt_control_remainder(struct ceph_connection *con) { int ctrl_len = con->v2.in_desc.fd_lens[0]; int rem_len = ctrl_len - CEPH_PREAMBLE_INLINE_LEN; int pt_len = padding_len(rem_len) + CEPH_GCM_TAG_LEN; struct scatterlist sgs[2]; WARN_ON(con->v2.in_kvecs[0].iov_len != rem_len); WARN_ON(con->v2.in_kvecs[1].iov_len != pt_len); sg_init_table(sgs, 2); sg_set_buf(&sgs[0], con->v2.in_kvecs[0].iov_base, rem_len); sg_set_buf(&sgs[1], con->v2.in_buf, pt_len); return gcm_crypt(con, false, sgs, sgs, padded_len(rem_len) + CEPH_GCM_TAG_LEN); } /* Process sparse read data that lives in a buffer */ static int process_v2_sparse_read(struct ceph_connection *con, struct page **pages, int spos) { struct ceph_msg_data_cursor *cursor = &con->v2.in_cursor; int ret; for (;;) { char *buf = NULL; ret = con->ops->sparse_read(con, cursor, &buf); if (ret <= 0) return ret; dout("%s: sparse_read return %x buf %p\n", __func__, ret, buf); do { int idx = spos >> PAGE_SHIFT; int soff = offset_in_page(spos); struct page *spage = con->v2.in_enc_pages[idx]; int len = min_t(int, ret, PAGE_SIZE - soff); if (buf) { memcpy_from_page(buf, spage, soff, len); buf += len; } else { struct bio_vec bv; get_bvec_at(cursor, &bv); len = min_t(int, len, bv.bv_len); memcpy_page(bv.bv_page, bv.bv_offset, spage, soff, len); ceph_msg_data_advance(cursor, len); } spos += len; ret -= len; } while (ret); } } static int decrypt_tail(struct ceph_connection *con) { struct sg_table enc_sgt = {}; struct sg_table sgt = {}; struct page **pages = NULL; bool sparse = !!con->in_msg->sparse_read_total; int dpos = 0; int tail_len; int ret; tail_len = tail_onwire_len(con->in_msg, true); ret = sg_alloc_table_from_pages(&enc_sgt, con->v2.in_enc_pages, con->v2.in_enc_page_cnt, 0, tail_len, GFP_NOIO); if (ret) goto out; if (sparse) { dpos = padded_len(front_len(con->in_msg) + padded_len(middle_len(con->in_msg))); pages = con->v2.in_enc_pages; } ret = setup_message_sgs(&sgt, con->in_msg, FRONT_PAD(con->v2.in_buf), MIDDLE_PAD(con->v2.in_buf), DATA_PAD(con->v2.in_buf), con->v2.in_buf, pages, dpos, true); if (ret) goto out; dout("%s con %p msg %p enc_page_cnt %d sg_cnt %d\n", __func__, con, con->in_msg, con->v2.in_enc_page_cnt, sgt.orig_nents); ret = gcm_crypt(con, false, enc_sgt.sgl, sgt.sgl, tail_len); if (ret) goto out; if (sparse && data_len(con->in_msg)) { ret = process_v2_sparse_read(con, con->v2.in_enc_pages, dpos); if (ret) goto out; } WARN_ON(!con->v2.in_enc_page_cnt); ceph_release_page_vector(con->v2.in_enc_pages, con->v2.in_enc_page_cnt); con->v2.in_enc_pages = NULL; con->v2.in_enc_page_cnt = 0; out: sg_free_table(&sgt); sg_free_table(&enc_sgt); return ret; } static int prepare_banner(struct ceph_connection *con) { int buf_len = CEPH_BANNER_V2_LEN + 2 + 8 + 8; void *buf, *p; buf = alloc_conn_buf(con, buf_len); if (!buf) return -ENOMEM; p = buf; ceph_encode_copy(&p, CEPH_BANNER_V2, CEPH_BANNER_V2_LEN); ceph_encode_16(&p, sizeof(u64) + sizeof(u64)); ceph_encode_64(&p, CEPH_MSGR2_SUPPORTED_FEATURES); ceph_encode_64(&p, CEPH_MSGR2_REQUIRED_FEATURES); WARN_ON(p != buf + buf_len); add_out_kvec(con, buf, buf_len); add_out_sign_kvec(con, buf, buf_len); ceph_con_flag_set(con, CEPH_CON_F_WRITE_PENDING); return 0; } /* * base: * preamble * control body (ctrl_len bytes) * space for control crc * * extdata (optional): * control body (extdata_len bytes) * * Compute control crc and gather base and extdata into: * * preamble * control body (ctrl_len + extdata_len bytes) * control crc * * Preamble should already be encoded at the start of base. */ static void prepare_head_plain(struct ceph_connection *con, void *base, int ctrl_len, void *extdata, int extdata_len, bool to_be_signed) { int base_len = CEPH_PREAMBLE_LEN + ctrl_len + CEPH_CRC_LEN; void *crcp = base + base_len - CEPH_CRC_LEN; u32 crc; crc = crc32c(-1, CTRL_BODY(base), ctrl_len); if (extdata_len) crc = crc32c(crc, extdata, extdata_len); put_unaligned_le32(crc, crcp); if (!extdata_len) { add_out_kvec(con, base, base_len); if (to_be_signed) add_out_sign_kvec(con, base, base_len); return; } add_out_kvec(con, base, crcp - base); add_out_kvec(con, extdata, extdata_len); add_out_kvec(con, crcp, CEPH_CRC_LEN); if (to_be_signed) { add_out_sign_kvec(con, base, crcp - base); add_out_sign_kvec(con, extdata, extdata_len); add_out_sign_kvec(con, crcp, CEPH_CRC_LEN); } } static int prepare_head_secure_small(struct ceph_connection *con, void *base, int ctrl_len) { struct scatterlist sg; int ret; /* inline buffer padding? */ if (ctrl_len < CEPH_PREAMBLE_INLINE_LEN) memset(CTRL_BODY(base) + ctrl_len, 0, CEPH_PREAMBLE_INLINE_LEN - ctrl_len); sg_init_one(&sg, base, CEPH_PREAMBLE_SECURE_LEN); ret = gcm_crypt(con, true, &sg, &sg, CEPH_PREAMBLE_SECURE_LEN - CEPH_GCM_TAG_LEN); if (ret) return ret; add_out_kvec(con, base, CEPH_PREAMBLE_SECURE_LEN); return 0; } /* * base: * preamble * control body (ctrl_len bytes) * space for padding, if needed * space for control remainder auth tag * space for preamble auth tag * * Encrypt preamble and the inline portion, then encrypt the remainder * and gather into: * * preamble * control body (48 bytes) * preamble auth tag * control body (ctrl_len - 48 bytes) * zero padding, if needed * control remainder auth tag * * Preamble should already be encoded at the start of base. */ static int prepare_head_secure_big(struct ceph_connection *con, void *base, int ctrl_len) { int rem_len = ctrl_len - CEPH_PREAMBLE_INLINE_LEN; void *rem = CTRL_BODY(base) + CEPH_PREAMBLE_INLINE_LEN; void *rem_tag = rem + padded_len(rem_len); void *pmbl_tag = rem_tag + CEPH_GCM_TAG_LEN; struct scatterlist sgs[2]; int ret; sg_init_table(sgs, 2); sg_set_buf(&sgs[0], base, rem - base); sg_set_buf(&sgs[1], pmbl_tag, CEPH_GCM_TAG_LEN); ret = gcm_crypt(con, true, sgs, sgs, rem - base); if (ret) return ret; /* control remainder padding? */ if (need_padding(rem_len)) memset(rem + rem_len, 0, padding_len(rem_len)); sg_init_one(&sgs[0], rem, pmbl_tag - rem); ret = gcm_crypt(con, true, sgs, sgs, rem_tag - rem); if (ret) return ret; add_out_kvec(con, base, rem - base); add_out_kvec(con, pmbl_tag, CEPH_GCM_TAG_LEN); add_out_kvec(con, rem, pmbl_tag - rem); return 0; } static int __prepare_control(struct ceph_connection *con, int tag, void *base, int ctrl_len, void *extdata, int extdata_len, bool to_be_signed) { int total_len = ctrl_len + extdata_len; struct ceph_frame_desc desc; int ret; dout("%s con %p tag %d len %d (%d+%d)\n", __func__, con, tag, total_len, ctrl_len, extdata_len); /* extdata may be vmalloc'ed but not base */ if (WARN_ON(is_vmalloc_addr(base) || !ctrl_len)) return -EINVAL; init_frame_desc(&desc, tag, &total_len, 1); encode_preamble(&desc, base); if (con_secure(con)) { if (WARN_ON(extdata_len || to_be_signed)) return -EINVAL; if (ctrl_len <= CEPH_PREAMBLE_INLINE_LEN) /* fully inlined, inline buffer may need padding */ ret = prepare_head_secure_small(con, base, ctrl_len); else /* partially inlined, inline buffer is full */ ret = prepare_head_secure_big(con, base, ctrl_len); if (ret) return ret; } else { prepare_head_plain(con, base, ctrl_len, extdata, extdata_len, to_be_signed); } ceph_con_flag_set(con, CEPH_CON_F_WRITE_PENDING); return 0; } static int prepare_control(struct ceph_connection *con, int tag, void *base, int ctrl_len) { return __prepare_control(con, tag, base, ctrl_len, NULL, 0, false); } static int prepare_hello(struct ceph_connection *con) { void *buf, *p; int ctrl_len; ctrl_len = 1 + ceph_entity_addr_encoding_len(&con->peer_addr); buf = alloc_conn_buf(con, head_onwire_len(ctrl_len, false)); if (!buf) return -ENOMEM; p = CTRL_BODY(buf); ceph_encode_8(&p, CEPH_ENTITY_TYPE_CLIENT); ceph_encode_entity_addr(&p, &con->peer_addr); WARN_ON(p != CTRL_BODY(buf) + ctrl_len); return __prepare_control(con, FRAME_TAG_HELLO, buf, ctrl_len, NULL, 0, true); } /* so that head_onwire_len(AUTH_BUF_LEN, false) is 512 */ #define AUTH_BUF_LEN (512 - CEPH_CRC_LEN - CEPH_PREAMBLE_PLAIN_LEN) static int prepare_auth_request(struct ceph_connection *con) { void *authorizer, *authorizer_copy; int ctrl_len, authorizer_len; void *buf; int ret; ctrl_len = AUTH_BUF_LEN; buf = alloc_conn_buf(con, head_onwire_len(ctrl_len, false)); if (!buf) return -ENOMEM; mutex_unlock(&con->mutex); ret = con->ops->get_auth_request(con, CTRL_BODY(buf), &ctrl_len, &authorizer, &authorizer_len); mutex_lock(&con->mutex); if (con->state != CEPH_CON_S_V2_HELLO) { dout("%s con %p state changed to %d\n", __func__, con, con->state); return -EAGAIN; } dout("%s con %p get_auth_request ret %d\n", __func__, con, ret); if (ret) return ret; authorizer_copy = alloc_conn_buf(con, authorizer_len); if (!authorizer_copy) return -ENOMEM; memcpy(authorizer_copy, authorizer, authorizer_len); return __prepare_control(con, FRAME_TAG_AUTH_REQUEST, buf, ctrl_len, authorizer_copy, authorizer_len, true); } static int prepare_auth_request_more(struct ceph_connection *con, void *reply, int reply_len) { int ctrl_len, authorizer_len; void *authorizer; void *buf; int ret; ctrl_len = AUTH_BUF_LEN; buf = alloc_conn_buf(con, head_onwire_len(ctrl_len, false)); if (!buf) return -ENOMEM; mutex_unlock(&con->mutex); ret = con->ops->handle_auth_reply_more(con, reply, reply_len, CTRL_BODY(buf), &ctrl_len, &authorizer, &authorizer_len); mutex_lock(&con->mutex); if (con->state != CEPH_CON_S_V2_AUTH) { dout("%s con %p state changed to %d\n", __func__, con, con->state); return -EAGAIN; } dout("%s con %p handle_auth_reply_more ret %d\n", __func__, con, ret); if (ret) return ret; return __prepare_control(con, FRAME_TAG_AUTH_REQUEST_MORE, buf, ctrl_len, authorizer, authorizer_len, true); } static int prepare_auth_signature(struct ceph_connection *con) { void *buf; int ret; buf = alloc_conn_buf(con, head_onwire_len(SHA256_DIGEST_SIZE, con_secure(con))); if (!buf) return -ENOMEM; ret = hmac_sha256(con, con->v2.in_sign_kvecs, con->v2.in_sign_kvec_cnt, CTRL_BODY(buf)); if (ret) return ret; return prepare_control(con, FRAME_TAG_AUTH_SIGNATURE, buf, SHA256_DIGEST_SIZE); } static int prepare_client_ident(struct ceph_connection *con) { struct ceph_entity_addr *my_addr = &con->msgr->inst.addr; struct ceph_client *client = from_msgr(con->msgr); u64 global_id = ceph_client_gid(client); void *buf, *p; int ctrl_len; WARN_ON(con->v2.server_cookie); WARN_ON(con->v2.connect_seq); WARN_ON(con->v2.peer_global_seq); if (!con->v2.client_cookie) { do { get_random_bytes(&con->v2.client_cookie, sizeof(con->v2.client_cookie)); } while (!con->v2.client_cookie); dout("%s con %p generated cookie 0x%llx\n", __func__, con, con->v2.client_cookie); } else { dout("%s con %p cookie already set 0x%llx\n", __func__, con, con->v2.client_cookie); } dout("%s con %p my_addr %s/%u peer_addr %s/%u global_id %llu global_seq %llu features 0x%llx required_features 0x%llx cookie 0x%llx\n", __func__, con, ceph_pr_addr(my_addr), le32_to_cpu(my_addr->nonce), ceph_pr_addr(&con->peer_addr), le32_to_cpu(con->peer_addr.nonce), global_id, con->v2.global_seq, client->supported_features, client->required_features, con->v2.client_cookie); ctrl_len = 1 + 4 + ceph_entity_addr_encoding_len(my_addr) + ceph_entity_addr_encoding_len(&con->peer_addr) + 6 * 8; buf = alloc_conn_buf(con, head_onwire_len(ctrl_len, con_secure(con))); if (!buf) return -ENOMEM; p = CTRL_BODY(buf); ceph_encode_8(&p, 2); /* addrvec marker */ ceph_encode_32(&p, 1); /* addr_cnt */ ceph_encode_entity_addr(&p, my_addr); ceph_encode_entity_addr(&p, &con->peer_addr); ceph_encode_64(&p, global_id); ceph_encode_64(&p, con->v2.global_seq); ceph_encode_64(&p, client->supported_features); ceph_encode_64(&p, client->required_features); ceph_encode_64(&p, 0); /* flags */ ceph_encode_64(&p, con->v2.client_cookie); WARN_ON(p != CTRL_BODY(buf) + ctrl_len); return prepare_control(con, FRAME_TAG_CLIENT_IDENT, buf, ctrl_len); } static int prepare_session_reconnect(struct ceph_connection *con) { struct ceph_entity_addr *my_addr = &con->msgr->inst.addr; void *buf, *p; int ctrl_len; WARN_ON(!con->v2.client_cookie); WARN_ON(!con->v2.server_cookie); WARN_ON(!con->v2.connect_seq); WARN_ON(!con->v2.peer_global_seq); dout("%s con %p my_addr %s/%u client_cookie 0x%llx server_cookie 0x%llx global_seq %llu connect_seq %llu in_seq %llu\n", __func__, con, ceph_pr_addr(my_addr), le32_to_cpu(my_addr->nonce), con->v2.client_cookie, con->v2.server_cookie, con->v2.global_seq, con->v2.connect_seq, con->in_seq); ctrl_len = 1 + 4 + ceph_entity_addr_encoding_len(my_addr) + 5 * 8; buf = alloc_conn_buf(con, head_onwire_len(ctrl_len, con_secure(con))); if (!buf) return -ENOMEM; p = CTRL_BODY(buf); ceph_encode_8(&p, 2); /* entity_addrvec_t marker */ ceph_encode_32(&p, 1); /* my_addrs len */ ceph_encode_entity_addr(&p, my_addr); ceph_encode_64(&p, con->v2.client_cookie); ceph_encode_64(&p, con->v2.server_cookie); ceph_encode_64(&p, con->v2.global_seq); ceph_encode_64(&p, con->v2.connect_seq); ceph_encode_64(&p, con->in_seq); WARN_ON(p != CTRL_BODY(buf) + ctrl_len); return prepare_control(con, FRAME_TAG_SESSION_RECONNECT, buf, ctrl_len); } static int prepare_keepalive2(struct ceph_connection *con) { struct ceph_timespec *ts = CTRL_BODY(con->v2.out_buf); struct timespec64 now; ktime_get_real_ts64(&now); dout("%s con %p timestamp %lld.%09ld\n", __func__, con, now.tv_sec, now.tv_nsec); ceph_encode_timespec64(ts, &now); reset_out_kvecs(con); return prepare_control(con, FRAME_TAG_KEEPALIVE2, con->v2.out_buf, sizeof(struct ceph_timespec)); } static int prepare_ack(struct ceph_connection *con) { void *p; dout("%s con %p in_seq_acked %llu -> %llu\n", __func__, con, con->in_seq_acked, con->in_seq); con->in_seq_acked = con->in_seq; p = CTRL_BODY(con->v2.out_buf); ceph_encode_64(&p, con->in_seq_acked); reset_out_kvecs(con); return prepare_control(con, FRAME_TAG_ACK, con->v2.out_buf, 8); } static void prepare_epilogue_plain(struct ceph_connection *con, bool aborted) { dout("%s con %p msg %p aborted %d crcs %u %u %u\n", __func__, con, con->out_msg, aborted, con->v2.out_epil.front_crc, con->v2.out_epil.middle_crc, con->v2.out_epil.data_crc); encode_epilogue_plain(con, aborted); add_out_kvec(con, &con->v2.out_epil, CEPH_EPILOGUE_PLAIN_LEN); } /* * For "used" empty segments, crc is -1. For unused (trailing) * segments, crc is 0. */ static void prepare_message_plain(struct ceph_connection *con) { struct ceph_msg *msg = con->out_msg; prepare_head_plain(con, con->v2.out_buf, sizeof(struct ceph_msg_header2), NULL, 0, false); if (!front_len(msg) && !middle_len(msg)) { if (!data_len(msg)) { /* * Empty message: once the head is written, * we are done -- there is no epilogue. */ con->v2.out_state = OUT_S_FINISH_MESSAGE; return; } con->v2.out_epil.front_crc = -1; con->v2.out_epil.middle_crc = -1; con->v2.out_state = OUT_S_QUEUE_DATA; return; } if (front_len(msg)) { con->v2.out_epil.front_crc = crc32c(-1, msg->front.iov_base, front_len(msg)); add_out_kvec(con, msg->front.iov_base, front_len(msg)); } else { /* middle (at least) is there, checked above */ con->v2.out_epil.front_crc = -1; } if (middle_len(msg)) { con->v2.out_epil.middle_crc = crc32c(-1, msg->middle->vec.iov_base, middle_len(msg)); add_out_kvec(con, msg->middle->vec.iov_base, middle_len(msg)); } else { con->v2.out_epil.middle_crc = data_len(msg) ? -1 : 0; } if (data_len(msg)) { con->v2.out_state = OUT_S_QUEUE_DATA; } else { con->v2.out_epil.data_crc = 0; prepare_epilogue_plain(con, false); con->v2.out_state = OUT_S_FINISH_MESSAGE; } } /* * Unfortunately the kernel crypto API doesn't support streaming * (piecewise) operation for AEAD algorithms, so we can't get away * with a fixed size buffer and a couple sgs. Instead, we have to * allocate pages for the entire tail of the message (currently up * to ~32M) and two sgs arrays (up to ~256K each)... */ static int prepare_message_secure(struct ceph_connection *con) { void *zerop = page_address(ceph_zero_page); struct sg_table enc_sgt = {}; struct sg_table sgt = {}; struct page **enc_pages; int enc_page_cnt; int tail_len; int ret; ret = prepare_head_secure_small(con, con->v2.out_buf, sizeof(struct ceph_msg_header2)); if (ret) return ret; tail_len = tail_onwire_len(con->out_msg, true); if (!tail_len) { /* * Empty message: once the head is written, * we are done -- there is no epilogue. */ con->v2.out_state = OUT_S_FINISH_MESSAGE; return 0; } encode_epilogue_secure(con, false); ret = setup_message_sgs(&sgt, con->out_msg, zerop, zerop, zerop, &con->v2.out_epil, NULL, 0, false); if (ret) goto out; enc_page_cnt = calc_pages_for(0, tail_len); enc_pages = ceph_alloc_page_vector(enc_page_cnt, GFP_NOIO); if (IS_ERR(enc_pages)) { ret = PTR_ERR(enc_pages); goto out; } WARN_ON(con->v2.out_enc_pages || con->v2.out_enc_page_cnt); con->v2.out_enc_pages = enc_pages; con->v2.out_enc_page_cnt = enc_page_cnt; con->v2.out_enc_resid = tail_len; con->v2.out_enc_i = 0; ret = sg_alloc_table_from_pages(&enc_sgt, enc_pages, enc_page_cnt, 0, tail_len, GFP_NOIO); if (ret) goto out; ret = gcm_crypt(con, true, sgt.sgl, enc_sgt.sgl, tail_len - CEPH_GCM_TAG_LEN); if (ret) goto out; dout("%s con %p msg %p sg_cnt %d enc_page_cnt %d\n", __func__, con, con->out_msg, sgt.orig_nents, enc_page_cnt); con->v2.out_state = OUT_S_QUEUE_ENC_PAGE; out: sg_free_table(&sgt); sg_free_table(&enc_sgt); return ret; } static int prepare_message(struct ceph_connection *con) { int lens[] = { sizeof(struct ceph_msg_header2), front_len(con->out_msg), middle_len(con->out_msg), data_len(con->out_msg) }; struct ceph_frame_desc desc; int ret; dout("%s con %p msg %p logical %d+%d+%d+%d\n", __func__, con, con->out_msg, lens[0], lens[1], lens[2], lens[3]); if (con->in_seq > con->in_seq_acked) { dout("%s con %p in_seq_acked %llu -> %llu\n", __func__, con, con->in_seq_acked, con->in_seq); con->in_seq_acked = con->in_seq; } reset_out_kvecs(con); init_frame_desc(&desc, FRAME_TAG_MESSAGE, lens, 4); encode_preamble(&desc, con->v2.out_buf); fill_header2(CTRL_BODY(con->v2.out_buf), &con->out_msg->hdr, con->in_seq_acked); if (con_secure(con)) { ret = prepare_message_secure(con); if (ret) return ret; } else { prepare_message_plain(con); } ceph_con_flag_set(con, CEPH_CON_F_WRITE_PENDING); return 0; } static int prepare_read_banner_prefix(struct ceph_connection *con) { void *buf; buf = alloc_conn_buf(con, CEPH_BANNER_V2_PREFIX_LEN); if (!buf) return -ENOMEM; reset_in_kvecs(con); add_in_kvec(con, buf, CEPH_BANNER_V2_PREFIX_LEN); add_in_sign_kvec(con, buf, CEPH_BANNER_V2_PREFIX_LEN); con->state = CEPH_CON_S_V2_BANNER_PREFIX; return 0; } static int prepare_read_banner_payload(struct ceph_connection *con, int payload_len) { void *buf; buf = alloc_conn_buf(con, payload_len); if (!buf) return -ENOMEM; reset_in_kvecs(con); add_in_kvec(con, buf, payload_len); add_in_sign_kvec(con, buf, payload_len); con->state = CEPH_CON_S_V2_BANNER_PAYLOAD; return 0; } static void prepare_read_preamble(struct ceph_connection *con) { reset_in_kvecs(con); add_in_kvec(con, con->v2.in_buf, con_secure(con) ? CEPH_PREAMBLE_SECURE_LEN : CEPH_PREAMBLE_PLAIN_LEN); con->v2.in_state = IN_S_HANDLE_PREAMBLE; } static int prepare_read_control(struct ceph_connection *con) { int ctrl_len = con->v2.in_desc.fd_lens[0]; int head_len; void *buf; reset_in_kvecs(con); if (con->state == CEPH_CON_S_V2_HELLO || con->state == CEPH_CON_S_V2_AUTH) { head_len = head_onwire_len(ctrl_len, false); buf = alloc_conn_buf(con, head_len); if (!buf) return -ENOMEM; /* preserve preamble */ memcpy(buf, con->v2.in_buf, CEPH_PREAMBLE_LEN); add_in_kvec(con, CTRL_BODY(buf), ctrl_len); add_in_kvec(con, CTRL_BODY(buf) + ctrl_len, CEPH_CRC_LEN); add_in_sign_kvec(con, buf, head_len); } else { if (ctrl_len > CEPH_PREAMBLE_INLINE_LEN) { buf = alloc_conn_buf(con, ctrl_len); if (!buf) return -ENOMEM; add_in_kvec(con, buf, ctrl_len); } else { add_in_kvec(con, CTRL_BODY(con->v2.in_buf), ctrl_len); } add_in_kvec(con, con->v2.in_buf, CEPH_CRC_LEN); } con->v2.in_state = IN_S_HANDLE_CONTROL; return 0; } static int prepare_read_control_remainder(struct ceph_connection *con) { int ctrl_len = con->v2.in_desc.fd_lens[0]; int rem_len = ctrl_len - CEPH_PREAMBLE_INLINE_LEN; void *buf; buf = alloc_conn_buf(con, ctrl_len); if (!buf) return -ENOMEM; memcpy(buf, CTRL_BODY(con->v2.in_buf), CEPH_PREAMBLE_INLINE_LEN); reset_in_kvecs(con); add_in_kvec(con, buf + CEPH_PREAMBLE_INLINE_LEN, rem_len); add_in_kvec(con, con->v2.in_buf, padding_len(rem_len) + CEPH_GCM_TAG_LEN); con->v2.in_state = IN_S_HANDLE_CONTROL_REMAINDER; return 0; } static int prepare_read_data(struct ceph_connection *con) { struct bio_vec bv; con->in_data_crc = -1; ceph_msg_data_cursor_init(&con->v2.in_cursor, con->in_msg, data_len(con->in_msg)); get_bvec_at(&con->v2.in_cursor, &bv); if (ceph_test_opt(from_msgr(con->msgr), RXBOUNCE)) { if (unlikely(!con->bounce_page)) { con->bounce_page = alloc_page(GFP_NOIO); if (!con->bounce_page) { pr_err("failed to allocate bounce page\n"); return -ENOMEM; } } bv.bv_page = con->bounce_page; bv.bv_offset = 0; } set_in_bvec(con, &bv); con->v2.in_state = IN_S_PREPARE_READ_DATA_CONT; return 0; } static void prepare_read_data_cont(struct ceph_connection *con) { struct bio_vec bv; if (ceph_test_opt(from_msgr(con->msgr), RXBOUNCE)) { con->in_data_crc = crc32c(con->in_data_crc, page_address(con->bounce_page), con->v2.in_bvec.bv_len); get_bvec_at(&con->v2.in_cursor, &bv); memcpy_to_page(bv.bv_page, bv.bv_offset, page_address(con->bounce_page), con->v2.in_bvec.bv_len); } else { con->in_data_crc = ceph_crc32c_page(con->in_data_crc, con->v2.in_bvec.bv_page, con->v2.in_bvec.bv_offset, con->v2.in_bvec.bv_len); } ceph_msg_data_advance(&con->v2.in_cursor, con->v2.in_bvec.bv_len); if (con->v2.in_cursor.total_resid) { get_bvec_at(&con->v2.in_cursor, &bv); if (ceph_test_opt(from_msgr(con->msgr), RXBOUNCE)) { bv.bv_page = con->bounce_page; bv.bv_offset = 0; } set_in_bvec(con, &bv); WARN_ON(con->v2.in_state != IN_S_PREPARE_READ_DATA_CONT); return; } /* * We've read all data. Prepare to read epilogue. */ reset_in_kvecs(con); add_in_kvec(con, con->v2.in_buf, CEPH_EPILOGUE_PLAIN_LEN); con->v2.in_state = IN_S_HANDLE_EPILOGUE; } static int prepare_sparse_read_cont(struct ceph_connection *con) { int ret; struct bio_vec bv; char *buf = NULL; struct ceph_msg_data_cursor *cursor = &con->v2.in_cursor; WARN_ON(con->v2.in_state != IN_S_PREPARE_SPARSE_DATA_CONT); if (iov_iter_is_bvec(&con->v2.in_iter)) { if (ceph_test_opt(from_msgr(con->msgr), RXBOUNCE)) { con->in_data_crc = crc32c(con->in_data_crc, page_address(con->bounce_page), con->v2.in_bvec.bv_len); get_bvec_at(cursor, &bv); memcpy_to_page(bv.bv_page, bv.bv_offset, page_address(con->bounce_page), con->v2.in_bvec.bv_len); } else { con->in_data_crc = ceph_crc32c_page(con->in_data_crc, con->v2.in_bvec.bv_page, con->v2.in_bvec.bv_offset, con->v2.in_bvec.bv_len); } ceph_msg_data_advance(cursor, con->v2.in_bvec.bv_len); cursor->sr_resid -= con->v2.in_bvec.bv_len; dout("%s: advance by 0x%x sr_resid 0x%x\n", __func__, con->v2.in_bvec.bv_len, cursor->sr_resid); WARN_ON_ONCE(cursor->sr_resid > cursor->total_resid); if (cursor->sr_resid) { get_bvec_at(cursor, &bv); if (bv.bv_len > cursor->sr_resid) bv.bv_len = cursor->sr_resid; if (ceph_test_opt(from_msgr(con->msgr), RXBOUNCE)) { bv.bv_page = con->bounce_page; bv.bv_offset = 0; } set_in_bvec(con, &bv); con->v2.data_len_remain -= bv.bv_len; return 0; } } else if (iov_iter_is_kvec(&con->v2.in_iter)) { /* On first call, we have no kvec so don't compute crc */ if (con->v2.in_kvec_cnt) { WARN_ON_ONCE(con->v2.in_kvec_cnt > 1); con->in_data_crc = crc32c(con->in_data_crc, con->v2.in_kvecs[0].iov_base, con->v2.in_kvecs[0].iov_len); } } else { return -EIO; } /* get next extent */ ret = con->ops->sparse_read(con, cursor, &buf); if (ret <= 0) { if (ret < 0) return ret; reset_in_kvecs(con); add_in_kvec(con, con->v2.in_buf, CEPH_EPILOGUE_PLAIN_LEN); con->v2.in_state = IN_S_HANDLE_EPILOGUE; return 0; } if (buf) { /* receive into buffer */ reset_in_kvecs(con); add_in_kvec(con, buf, ret); con->v2.data_len_remain -= ret; return 0; } if (ret > cursor->total_resid) { pr_warn("%s: ret 0x%x total_resid 0x%zx resid 0x%zx\n", __func__, ret, cursor->total_resid, cursor->resid); return -EIO; } get_bvec_at(cursor, &bv); if (bv.bv_len > cursor->sr_resid) bv.bv_len = cursor->sr_resid; if (ceph_test_opt(from_msgr(con->msgr), RXBOUNCE)) { if (unlikely(!con->bounce_page)) { con->bounce_page = alloc_page(GFP_NOIO); if (!con->bounce_page) { pr_err("failed to allocate bounce page\n"); return -ENOMEM; } } bv.bv_page = con->bounce_page; bv.bv_offset = 0; } set_in_bvec(con, &bv); con->v2.data_len_remain -= ret; return ret; } static int prepare_sparse_read_data(struct ceph_connection *con) { struct ceph_msg *msg = con->in_msg; dout("%s: starting sparse read\n", __func__); if (WARN_ON_ONCE(!con->ops->sparse_read)) return -EOPNOTSUPP; if (!con_secure(con)) con->in_data_crc = -1; ceph_msg_data_cursor_init(&con->v2.in_cursor, msg, msg->sparse_read_total); reset_in_kvecs(con); con->v2.in_state = IN_S_PREPARE_SPARSE_DATA_CONT; con->v2.data_len_remain = data_len(msg); return prepare_sparse_read_cont(con); } static int prepare_read_tail_plain(struct ceph_connection *con) { struct ceph_msg *msg = con->in_msg; if (!front_len(msg) && !middle_len(msg)) { WARN_ON(!data_len(msg)); return prepare_read_data(con); } reset_in_kvecs(con); if (front_len(msg)) { add_in_kvec(con, msg->front.iov_base, front_len(msg)); WARN_ON(msg->front.iov_len != front_len(msg)); } if (middle_len(msg)) { add_in_kvec(con, msg->middle->vec.iov_base, middle_len(msg)); WARN_ON(msg->middle->vec.iov_len != middle_len(msg)); } if (data_len(msg)) { if (msg->sparse_read_total) con->v2.in_state = IN_S_PREPARE_SPARSE_DATA; else con->v2.in_state = IN_S_PREPARE_READ_DATA; } else { add_in_kvec(con, con->v2.in_buf, CEPH_EPILOGUE_PLAIN_LEN); con->v2.in_state = IN_S_HANDLE_EPILOGUE; } return 0; } static void prepare_read_enc_page(struct ceph_connection *con) { struct bio_vec bv; dout("%s con %p i %d resid %d\n", __func__, con, con->v2.in_enc_i, con->v2.in_enc_resid); WARN_ON(!con->v2.in_enc_resid); bvec_set_page(&bv, con->v2.in_enc_pages[con->v2.in_enc_i], min(con->v2.in_enc_resid, (int)PAGE_SIZE), 0); set_in_bvec(con, &bv); con->v2.in_enc_i++; con->v2.in_enc_resid -= bv.bv_len; if (con->v2.in_enc_resid) { con->v2.in_state = IN_S_PREPARE_READ_ENC_PAGE; return; } /* * We are set to read the last piece of ciphertext (ending * with epilogue) + auth tag. */ WARN_ON(con->v2.in_enc_i != con->v2.in_enc_page_cnt); con->v2.in_state = IN_S_HANDLE_EPILOGUE; } static int prepare_read_tail_secure(struct ceph_connection *con) { struct page **enc_pages; int enc_page_cnt; int tail_len; tail_len = tail_onwire_len(con->in_msg, true); WARN_ON(!tail_len); enc_page_cnt = calc_pages_for(0, tail_len); enc_pages = ceph_alloc_page_vector(enc_page_cnt, GFP_NOIO); if (IS_ERR(enc_pages)) return PTR_ERR(enc_pages); WARN_ON(con->v2.in_enc_pages || con->v2.in_enc_page_cnt); con->v2.in_enc_pages = enc_pages; con->v2.in_enc_page_cnt = enc_page_cnt; con->v2.in_enc_resid = tail_len; con->v2.in_enc_i = 0; prepare_read_enc_page(con); return 0; } static void __finish_skip(struct ceph_connection *con) { con->in_seq++; prepare_read_preamble(con); } static void prepare_skip_message(struct ceph_connection *con) { struct ceph_frame_desc *desc = &con->v2.in_desc; int tail_len; dout("%s con %p %d+%d+%d\n", __func__, con, desc->fd_lens[1], desc->fd_lens[2], desc->fd_lens[3]); tail_len = __tail_onwire_len(desc->fd_lens[1], desc->fd_lens[2], desc->fd_lens[3], con_secure(con)); if (!tail_len) { __finish_skip(con); } else { set_in_skip(con, tail_len); con->v2.in_state = IN_S_FINISH_SKIP; } } static int process_banner_prefix(struct ceph_connection *con) { int payload_len; void *p; WARN_ON(con->v2.in_kvecs[0].iov_len != CEPH_BANNER_V2_PREFIX_LEN); p = con->v2.in_kvecs[0].iov_base; if (memcmp(p, CEPH_BANNER_V2, CEPH_BANNER_V2_LEN)) { if (!memcmp(p, CEPH_BANNER, CEPH_BANNER_LEN)) con->error_msg = "server is speaking msgr1 protocol"; else con->error_msg = "protocol error, bad banner"; return -EINVAL; } p += CEPH_BANNER_V2_LEN; payload_len = ceph_decode_16(&p); dout("%s con %p payload_len %d\n", __func__, con, payload_len); return prepare_read_banner_payload(con, payload_len); } static int process_banner_payload(struct ceph_connection *con) { void *end = con->v2.in_kvecs[0].iov_base + con->v2.in_kvecs[0].iov_len; u64 feat = CEPH_MSGR2_SUPPORTED_FEATURES; u64 req_feat = CEPH_MSGR2_REQUIRED_FEATURES; u64 server_feat, server_req_feat; void *p; int ret; p = con->v2.in_kvecs[0].iov_base; ceph_decode_64_safe(&p, end, server_feat, bad); ceph_decode_64_safe(&p, end, server_req_feat, bad); dout("%s con %p server_feat 0x%llx server_req_feat 0x%llx\n", __func__, con, server_feat, server_req_feat); if (req_feat & ~server_feat) { pr_err("msgr2 feature set mismatch: my required > server's supported 0x%llx, need 0x%llx\n", server_feat, req_feat & ~server_feat); con->error_msg = "missing required protocol features"; return -EINVAL; } if (server_req_feat & ~feat) { pr_err("msgr2 feature set mismatch: server's required > my supported 0x%llx, missing 0x%llx\n", feat, server_req_feat & ~feat); con->error_msg = "missing required protocol features"; return -EINVAL; } /* no reset_out_kvecs() as our banner may still be pending */ ret = prepare_hello(con); if (ret) { pr_err("prepare_hello failed: %d\n", ret); return ret; } con->state = CEPH_CON_S_V2_HELLO; prepare_read_preamble(con); return 0; bad: pr_err("failed to decode banner payload\n"); return -EINVAL; } static int process_hello(struct ceph_connection *con, void *p, void *end) { struct ceph_entity_addr *my_addr = &con->msgr->inst.addr; struct ceph_entity_addr addr_for_me; u8 entity_type; int ret; if (con->state != CEPH_CON_S_V2_HELLO) { con->error_msg = "protocol error, unexpected hello"; return -EINVAL; } ceph_decode_8_safe(&p, end, entity_type, bad); ret = ceph_decode_entity_addr(&p, end, &addr_for_me); if (ret) { pr_err("failed to decode addr_for_me: %d\n", ret); return ret; } dout("%s con %p entity_type %d addr_for_me %s\n", __func__, con, entity_type, ceph_pr_addr(&addr_for_me)); if (entity_type != con->peer_name.type) { pr_err("bad peer type, want %d, got %d\n", con->peer_name.type, entity_type); con->error_msg = "wrong peer at address"; return -EINVAL; } /* * Set our address to the address our first peer (i.e. monitor) * sees that we are connecting from. If we are behind some sort * of NAT and want to be identified by some private (not NATed) * address, ip option should be used. */ if (ceph_addr_is_blank(my_addr)) { memcpy(&my_addr->in_addr, &addr_for_me.in_addr, sizeof(my_addr->in_addr)); ceph_addr_set_port(my_addr, 0); dout("%s con %p set my addr %s, as seen by peer %s\n", __func__, con, ceph_pr_addr(my_addr), ceph_pr_addr(&con->peer_addr)); } else { dout("%s con %p my addr already set %s\n", __func__, con, ceph_pr_addr(my_addr)); } WARN_ON(ceph_addr_is_blank(my_addr) || ceph_addr_port(my_addr)); WARN_ON(my_addr->type != CEPH_ENTITY_ADDR_TYPE_ANY); WARN_ON(!my_addr->nonce); /* no reset_out_kvecs() as our hello may still be pending */ ret = prepare_auth_request(con); if (ret) { if (ret != -EAGAIN) pr_err("prepare_auth_request failed: %d\n", ret); return ret; } con->state = CEPH_CON_S_V2_AUTH; return 0; bad: pr_err("failed to decode hello\n"); return -EINVAL; } static int process_auth_bad_method(struct ceph_connection *con, void *p, void *end) { int allowed_protos[8], allowed_modes[8]; int allowed_proto_cnt, allowed_mode_cnt; int used_proto, result; int ret; int i; if (con->state != CEPH_CON_S_V2_AUTH) { con->error_msg = "protocol error, unexpected auth_bad_method"; return -EINVAL; } ceph_decode_32_safe(&p, end, used_proto, bad); ceph_decode_32_safe(&p, end, result, bad); dout("%s con %p used_proto %d result %d\n", __func__, con, used_proto, result); ceph_decode_32_safe(&p, end, allowed_proto_cnt, bad); if (allowed_proto_cnt > ARRAY_SIZE(allowed_protos)) { pr_err("allowed_protos too big %d\n", allowed_proto_cnt); return -EINVAL; } for (i = 0; i < allowed_proto_cnt; i++) { ceph_decode_32_safe(&p, end, allowed_protos[i], bad); dout("%s con %p allowed_protos[%d] %d\n", __func__, con, i, allowed_protos[i]); } ceph_decode_32_safe(&p, end, allowed_mode_cnt, bad); if (allowed_mode_cnt > ARRAY_SIZE(allowed_modes)) { pr_err("allowed_modes too big %d\n", allowed_mode_cnt); return -EINVAL; } for (i = 0; i < allowed_mode_cnt; i++) { ceph_decode_32_safe(&p, end, allowed_modes[i], bad); dout("%s con %p allowed_modes[%d] %d\n", __func__, con, i, allowed_modes[i]); } mutex_unlock(&con->mutex); ret = con->ops->handle_auth_bad_method(con, used_proto, result, allowed_protos, allowed_proto_cnt, allowed_modes, allowed_mode_cnt); mutex_lock(&con->mutex); if (con->state != CEPH_CON_S_V2_AUTH) { dout("%s con %p state changed to %d\n", __func__, con, con->state); return -EAGAIN; } dout("%s con %p handle_auth_bad_method ret %d\n", __func__, con, ret); return ret; bad: pr_err("failed to decode auth_bad_method\n"); return -EINVAL; } static int process_auth_reply_more(struct ceph_connection *con, void *p, void *end) { int payload_len; int ret; if (con->state != CEPH_CON_S_V2_AUTH) { con->error_msg = "protocol error, unexpected auth_reply_more"; return -EINVAL; } ceph_decode_32_safe(&p, end, payload_len, bad); ceph_decode_need(&p, end, payload_len, bad); dout("%s con %p payload_len %d\n", __func__, con, payload_len); reset_out_kvecs(con); ret = prepare_auth_request_more(con, p, payload_len); if (ret) { if (ret != -EAGAIN) pr_err("prepare_auth_request_more failed: %d\n", ret); return ret; } return 0; bad: pr_err("failed to decode auth_reply_more\n"); return -EINVAL; } /* * Align session_key and con_secret to avoid GFP_ATOMIC allocation * inside crypto_shash_setkey() and crypto_aead_setkey() called from * setup_crypto(). __aligned(16) isn't guaranteed to work for stack * objects, so do it by hand. */ static int process_auth_done(struct ceph_connection *con, void *p, void *end) { u8 session_key_buf[CEPH_KEY_LEN + 16]; u8 con_secret_buf[CEPH_MAX_CON_SECRET_LEN + 16]; u8 *session_key = PTR_ALIGN(&session_key_buf[0], 16); u8 *con_secret = PTR_ALIGN(&con_secret_buf[0], 16); int session_key_len, con_secret_len; int payload_len; u64 global_id; int ret; if (con->state != CEPH_CON_S_V2_AUTH) { con->error_msg = "protocol error, unexpected auth_done"; return -EINVAL; } ceph_decode_64_safe(&p, end, global_id, bad); ceph_decode_32_safe(&p, end, con->v2.con_mode, bad); ceph_decode_32_safe(&p, end, payload_len, bad); dout("%s con %p global_id %llu con_mode %d payload_len %d\n", __func__, con, global_id, con->v2.con_mode, payload_len); mutex_unlock(&con->mutex); session_key_len = 0; con_secret_len = 0; ret = con->ops->handle_auth_done(con, global_id, p, payload_len, session_key, &session_key_len, con_secret, &con_secret_len); mutex_lock(&con->mutex); if (con->state != CEPH_CON_S_V2_AUTH) { dout("%s con %p state changed to %d\n", __func__, con, con->state); ret = -EAGAIN; goto out; } dout("%s con %p handle_auth_done ret %d\n", __func__, con, ret); if (ret) goto out; ret = setup_crypto(con, session_key, session_key_len, con_secret, con_secret_len); if (ret) goto out; reset_out_kvecs(con); ret = prepare_auth_signature(con); if (ret) { pr_err("prepare_auth_signature failed: %d\n", ret); goto out; } con->state = CEPH_CON_S_V2_AUTH_SIGNATURE; out: memzero_explicit(session_key_buf, sizeof(session_key_buf)); memzero_explicit(con_secret_buf, sizeof(con_secret_buf)); return ret; bad: pr_err("failed to decode auth_done\n"); return -EINVAL; } static int process_auth_signature(struct ceph_connection *con, void *p, void *end) { u8 hmac[SHA256_DIGEST_SIZE]; int ret; if (con->state != CEPH_CON_S_V2_AUTH_SIGNATURE) { con->error_msg = "protocol error, unexpected auth_signature"; return -EINVAL; } ret = hmac_sha256(con, con->v2.out_sign_kvecs, con->v2.out_sign_kvec_cnt, hmac); if (ret) return ret; ceph_decode_need(&p, end, SHA256_DIGEST_SIZE, bad); if (crypto_memneq(p, hmac, SHA256_DIGEST_SIZE)) { con->error_msg = "integrity error, bad auth signature"; return -EBADMSG; } dout("%s con %p auth signature ok\n", __func__, con); /* no reset_out_kvecs() as our auth_signature may still be pending */ if (!con->v2.server_cookie) { ret = prepare_client_ident(con); if (ret) { pr_err("prepare_client_ident failed: %d\n", ret); return ret; } con->state = CEPH_CON_S_V2_SESSION_CONNECT; } else { ret = prepare_session_reconnect(con); if (ret) { pr_err("prepare_session_reconnect failed: %d\n", ret); return ret; } con->state = CEPH_CON_S_V2_SESSION_RECONNECT; } return 0; bad: pr_err("failed to decode auth_signature\n"); return -EINVAL; } static int process_server_ident(struct ceph_connection *con, void *p, void *end) { struct ceph_client *client = from_msgr(con->msgr); u64 features, required_features; struct ceph_entity_addr addr; u64 global_seq; u64 global_id; u64 cookie; u64 flags; int ret; if (con->state != CEPH_CON_S_V2_SESSION_CONNECT) { con->error_msg = "protocol error, unexpected server_ident"; return -EINVAL; } ret = ceph_decode_entity_addrvec(&p, end, true, &addr); if (ret) { pr_err("failed to decode server addrs: %d\n", ret); return ret; } ceph_decode_64_safe(&p, end, global_id, bad); ceph_decode_64_safe(&p, end, global_seq, bad); ceph_decode_64_safe(&p, end, features, bad); ceph_decode_64_safe(&p, end, required_features, bad); ceph_decode_64_safe(&p, end, flags, bad); ceph_decode_64_safe(&p, end, cookie, bad); dout("%s con %p addr %s/%u global_id %llu global_seq %llu features 0x%llx required_features 0x%llx flags 0x%llx cookie 0x%llx\n", __func__, con, ceph_pr_addr(&addr), le32_to_cpu(addr.nonce), global_id, global_seq, features, required_features, flags, cookie); /* is this who we intended to talk to? */ if (memcmp(&addr, &con->peer_addr, sizeof(con->peer_addr))) { pr_err("bad peer addr/nonce, want %s/%u, got %s/%u\n", ceph_pr_addr(&con->peer_addr), le32_to_cpu(con->peer_addr.nonce), ceph_pr_addr(&addr), le32_to_cpu(addr.nonce)); con->error_msg = "wrong peer at address"; return -EINVAL; } if (client->required_features & ~features) { pr_err("RADOS feature set mismatch: my required > server's supported 0x%llx, need 0x%llx\n", features, client->required_features & ~features); con->error_msg = "missing required protocol features"; return -EINVAL; } /* * Both name->type and name->num are set in ceph_con_open() but * name->num may be bogus in the initial monmap. name->type is * verified in handle_hello(). */ WARN_ON(!con->peer_name.type); con->peer_name.num = cpu_to_le64(global_id); con->v2.peer_global_seq = global_seq; con->peer_features = features; WARN_ON(required_features & ~client->supported_features); con->v2.server_cookie = cookie; if (flags & CEPH_MSG_CONNECT_LOSSY) { ceph_con_flag_set(con, CEPH_CON_F_LOSSYTX); WARN_ON(con->v2.server_cookie); } else { WARN_ON(!con->v2.server_cookie); } clear_in_sign_kvecs(con); clear_out_sign_kvecs(con); free_conn_bufs(con); con->delay = 0; /* reset backoff memory */ con->state = CEPH_CON_S_OPEN; con->v2.out_state = OUT_S_GET_NEXT; return 0; bad: pr_err("failed to decode server_ident\n"); return -EINVAL; } static int process_ident_missing_features(struct ceph_connection *con, void *p, void *end) { struct ceph_client *client = from_msgr(con->msgr); u64 missing_features; if (con->state != CEPH_CON_S_V2_SESSION_CONNECT) { con->error_msg = "protocol error, unexpected ident_missing_features"; return -EINVAL; } ceph_decode_64_safe(&p, end, missing_features, bad); pr_err("RADOS feature set mismatch: server's required > my supported 0x%llx, missing 0x%llx\n", client->supported_features, missing_features); con->error_msg = "missing required protocol features"; return -EINVAL; bad: pr_err("failed to decode ident_missing_features\n"); return -EINVAL; } static int process_session_reconnect_ok(struct ceph_connection *con, void *p, void *end) { u64 seq; if (con->state != CEPH_CON_S_V2_SESSION_RECONNECT) { con->error_msg = "protocol error, unexpected session_reconnect_ok"; return -EINVAL; } ceph_decode_64_safe(&p, end, seq, bad); dout("%s con %p seq %llu\n", __func__, con, seq); ceph_con_discard_requeued(con, seq); clear_in_sign_kvecs(con); clear_out_sign_kvecs(con); free_conn_bufs(con); con->delay = 0; /* reset backoff memory */ con->state = CEPH_CON_S_OPEN; con->v2.out_state = OUT_S_GET_NEXT; return 0; bad: pr_err("failed to decode session_reconnect_ok\n"); return -EINVAL; } static int process_session_retry(struct ceph_connection *con, void *p, void *end) { u64 connect_seq; int ret; if (con->state != CEPH_CON_S_V2_SESSION_RECONNECT) { con->error_msg = "protocol error, unexpected session_retry"; return -EINVAL; } ceph_decode_64_safe(&p, end, connect_seq, bad); dout("%s con %p connect_seq %llu\n", __func__, con, connect_seq); WARN_ON(connect_seq <= con->v2.connect_seq); con->v2.connect_seq = connect_seq + 1; free_conn_bufs(con); reset_out_kvecs(con); ret = prepare_session_reconnect(con); if (ret) { pr_err("prepare_session_reconnect (cseq) failed: %d\n", ret); return ret; } return 0; bad: pr_err("failed to decode session_retry\n"); return -EINVAL; } static int process_session_retry_global(struct ceph_connection *con, void *p, void *end) { u64 global_seq; int ret; if (con->state != CEPH_CON_S_V2_SESSION_RECONNECT) { con->error_msg = "protocol error, unexpected session_retry_global"; return -EINVAL; } ceph_decode_64_safe(&p, end, global_seq, bad); dout("%s con %p global_seq %llu\n", __func__, con, global_seq); WARN_ON(global_seq <= con->v2.global_seq); con->v2.global_seq = ceph_get_global_seq(con->msgr, global_seq); free_conn_bufs(con); reset_out_kvecs(con); ret = prepare_session_reconnect(con); if (ret) { pr_err("prepare_session_reconnect (gseq) failed: %d\n", ret); return ret; } return 0; bad: pr_err("failed to decode session_retry_global\n"); return -EINVAL; } static int process_session_reset(struct ceph_connection *con, void *p, void *end) { bool full; int ret; if (con->state != CEPH_CON_S_V2_SESSION_RECONNECT) { con->error_msg = "protocol error, unexpected session_reset"; return -EINVAL; } ceph_decode_8_safe(&p, end, full, bad); if (!full) { con->error_msg = "protocol error, bad session_reset"; return -EINVAL; } pr_info("%s%lld %s session reset\n", ENTITY_NAME(con->peer_name), ceph_pr_addr(&con->peer_addr)); ceph_con_reset_session(con); mutex_unlock(&con->mutex); if (con->ops->peer_reset) con->ops->peer_reset(con); mutex_lock(&con->mutex); if (con->state != CEPH_CON_S_V2_SESSION_RECONNECT) { dout("%s con %p state changed to %d\n", __func__, con, con->state); return -EAGAIN; } free_conn_bufs(con); reset_out_kvecs(con); ret = prepare_client_ident(con); if (ret) { pr_err("prepare_client_ident (rst) failed: %d\n", ret); return ret; } con->state = CEPH_CON_S_V2_SESSION_CONNECT; return 0; bad: pr_err("failed to decode session_reset\n"); return -EINVAL; } static int process_keepalive2_ack(struct ceph_connection *con, void *p, void *end) { if (con->state != CEPH_CON_S_OPEN) { con->error_msg = "protocol error, unexpected keepalive2_ack"; return -EINVAL; } ceph_decode_need(&p, end, sizeof(struct ceph_timespec), bad); ceph_decode_timespec64(&con->last_keepalive_ack, p); dout("%s con %p timestamp %lld.%09ld\n", __func__, con, con->last_keepalive_ack.tv_sec, con->last_keepalive_ack.tv_nsec); return 0; bad: pr_err("failed to decode keepalive2_ack\n"); return -EINVAL; } static int process_ack(struct ceph_connection *con, void *p, void *end) { u64 seq; if (con->state != CEPH_CON_S_OPEN) { con->error_msg = "protocol error, unexpected ack"; return -EINVAL; } ceph_decode_64_safe(&p, end, seq, bad); dout("%s con %p seq %llu\n", __func__, con, seq); ceph_con_discard_sent(con, seq); return 0; bad: pr_err("failed to decode ack\n"); return -EINVAL; } static int process_control(struct ceph_connection *con, void *p, void *end) { int tag = con->v2.in_desc.fd_tag; int ret; dout("%s con %p tag %d len %d\n", __func__, con, tag, (int)(end - p)); switch (tag) { case FRAME_TAG_HELLO: ret = process_hello(con, p, end); break; case FRAME_TAG_AUTH_BAD_METHOD: ret = process_auth_bad_method(con, p, end); break; case FRAME_TAG_AUTH_REPLY_MORE: ret = process_auth_reply_more(con, p, end); break; case FRAME_TAG_AUTH_DONE: ret = process_auth_done(con, p, end); break; case FRAME_TAG_AUTH_SIGNATURE: ret = process_auth_signature(con, p, end); break; case FRAME_TAG_SERVER_IDENT: ret = process_server_ident(con, p, end); break; case FRAME_TAG_IDENT_MISSING_FEATURES: ret = process_ident_missing_features(con, p, end); break; case FRAME_TAG_SESSION_RECONNECT_OK: ret = process_session_reconnect_ok(con, p, end); break; case FRAME_TAG_SESSION_RETRY: ret = process_session_retry(con, p, end); break; case FRAME_TAG_SESSION_RETRY_GLOBAL: ret = process_session_retry_global(con, p, end); break; case FRAME_TAG_SESSION_RESET: ret = process_session_reset(con, p, end); break; case FRAME_TAG_KEEPALIVE2_ACK: ret = process_keepalive2_ack(con, p, end); break; case FRAME_TAG_ACK: ret = process_ack(con, p, end); break; default: pr_err("bad tag %d\n", tag); con->error_msg = "protocol error, bad tag"; return -EINVAL; } if (ret) { dout("%s con %p error %d\n", __func__, con, ret); return ret; } prepare_read_preamble(con); return 0; } /* * Return: * 1 - con->in_msg set, read message * 0 - skip message * <0 - error */ static int process_message_header(struct ceph_connection *con, void *p, void *end) { struct ceph_frame_desc *desc = &con->v2.in_desc; struct ceph_msg_header2 *hdr2 = p; struct ceph_msg_header hdr; int skip; int ret; u64 seq; /* verify seq# */ seq = le64_to_cpu(hdr2->seq); if ((s64)seq - (s64)con->in_seq < 1) { pr_info("%s%lld %s skipping old message: seq %llu, expected %llu\n", ENTITY_NAME(con->peer_name), ceph_pr_addr(&con->peer_addr), seq, con->in_seq + 1); return 0; } if ((s64)seq - (s64)con->in_seq > 1) { pr_err("bad seq %llu, expected %llu\n", seq, con->in_seq + 1); con->error_msg = "bad message sequence # for incoming message"; return -EBADE; } ceph_con_discard_sent(con, le64_to_cpu(hdr2->ack_seq)); fill_header(&hdr, hdr2, desc->fd_lens[1], desc->fd_lens[2], desc->fd_lens[3], &con->peer_name); ret = ceph_con_in_msg_alloc(con, &hdr, &skip); if (ret) return ret; WARN_ON(!con->in_msg ^ skip); if (skip) return 0; WARN_ON(!con->in_msg); WARN_ON(con->in_msg->con != con); return 1; } static int process_message(struct ceph_connection *con) { ceph_con_process_message(con); /* * We could have been closed by ceph_con_close() because * ceph_con_process_message() temporarily drops con->mutex. */ if (con->state != CEPH_CON_S_OPEN) { dout("%s con %p state changed to %d\n", __func__, con, con->state); return -EAGAIN; } prepare_read_preamble(con); return 0; } static int __handle_control(struct ceph_connection *con, void *p) { void *end = p + con->v2.in_desc.fd_lens[0]; struct ceph_msg *msg; int ret; if (con->v2.in_desc.fd_tag != FRAME_TAG_MESSAGE) return process_control(con, p, end); ret = process_message_header(con, p, end); if (ret < 0) return ret; if (ret == 0) { prepare_skip_message(con); return 0; } msg = con->in_msg; /* set in process_message_header() */ if (front_len(msg)) { WARN_ON(front_len(msg) > msg->front_alloc_len); msg->front.iov_len = front_len(msg); } else { msg->front.iov_len = 0; } if (middle_len(msg)) { WARN_ON(middle_len(msg) > msg->middle->alloc_len); msg->middle->vec.iov_len = middle_len(msg); } else if (msg->middle) { msg->middle->vec.iov_len = 0; } if (!front_len(msg) && !middle_len(msg) && !data_len(msg)) return process_message(con); if (con_secure(con)) return prepare_read_tail_secure(con); return prepare_read_tail_plain(con); } static int handle_preamble(struct ceph_connection *con) { struct ceph_frame_desc *desc = &con->v2.in_desc; int ret; if (con_secure(con)) { ret = decrypt_preamble(con); if (ret) { if (ret == -EBADMSG) con->error_msg = "integrity error, bad preamble auth tag"; return ret; } } ret = decode_preamble(con->v2.in_buf, desc); if (ret) { if (ret == -EBADMSG) con->error_msg = "integrity error, bad crc"; else con->error_msg = "protocol error, bad preamble"; return ret; } dout("%s con %p tag %d seg_cnt %d %d+%d+%d+%d\n", __func__, con, desc->fd_tag, desc->fd_seg_cnt, desc->fd_lens[0], desc->fd_lens[1], desc->fd_lens[2], desc->fd_lens[3]); if (!con_secure(con)) return prepare_read_control(con); if (desc->fd_lens[0] > CEPH_PREAMBLE_INLINE_LEN) return prepare_read_control_remainder(con); return __handle_control(con, CTRL_BODY(con->v2.in_buf)); } static int handle_control(struct ceph_connection *con) { int ctrl_len = con->v2.in_desc.fd_lens[0]; void *buf; int ret; WARN_ON(con_secure(con)); ret = verify_control_crc(con); if (ret) { con->error_msg = "integrity error, bad crc"; return ret; } if (con->state == CEPH_CON_S_V2_AUTH) { buf = alloc_conn_buf(con, ctrl_len); if (!buf) return -ENOMEM; memcpy(buf, con->v2.in_kvecs[0].iov_base, ctrl_len); return __handle_control(con, buf); } return __handle_control(con, con->v2.in_kvecs[0].iov_base); } static int handle_control_remainder(struct ceph_connection *con) { int ret; WARN_ON(!con_secure(con)); ret = decrypt_control_remainder(con); if (ret) { if (ret == -EBADMSG) con->error_msg = "integrity error, bad control remainder auth tag"; return ret; } return __handle_control(con, con->v2.in_kvecs[0].iov_base - CEPH_PREAMBLE_INLINE_LEN); } static int handle_epilogue(struct ceph_connection *con) { u32 front_crc, middle_crc, data_crc; int ret; if (con_secure(con)) { ret = decrypt_tail(con); if (ret) { if (ret == -EBADMSG) con->error_msg = "integrity error, bad epilogue auth tag"; return ret; } /* just late_status */ ret = decode_epilogue(con->v2.in_buf, NULL, NULL, NULL); if (ret) { con->error_msg = "protocol error, bad epilogue"; return ret; } } else { ret = decode_epilogue(con->v2.in_buf, &front_crc, &middle_crc, &data_crc); if (ret) { con->error_msg = "protocol error, bad epilogue"; return ret; } ret = verify_epilogue_crcs(con, front_crc, middle_crc, data_crc); if (ret) { con->error_msg = "integrity error, bad crc"; return ret; } } return process_message(con); } static void finish_skip(struct ceph_connection *con) { dout("%s con %p\n", __func__, con); if (con_secure(con)) gcm_inc_nonce(&con->v2.in_gcm_nonce); __finish_skip(con); } static int populate_in_iter(struct ceph_connection *con) { int ret; dout("%s con %p state %d in_state %d\n", __func__, con, con->state, con->v2.in_state); WARN_ON(iov_iter_count(&con->v2.in_iter)); if (con->state == CEPH_CON_S_V2_BANNER_PREFIX) { ret = process_banner_prefix(con); } else if (con->state == CEPH_CON_S_V2_BANNER_PAYLOAD) { ret = process_banner_payload(con); } else if ((con->state >= CEPH_CON_S_V2_HELLO && con->state <= CEPH_CON_S_V2_SESSION_RECONNECT) || con->state == CEPH_CON_S_OPEN) { switch (con->v2.in_state) { case IN_S_HANDLE_PREAMBLE: ret = handle_preamble(con); break; case IN_S_HANDLE_CONTROL: ret = handle_control(con); break; case IN_S_HANDLE_CONTROL_REMAINDER: ret = handle_control_remainder(con); break; case IN_S_PREPARE_READ_DATA: ret = prepare_read_data(con); break; case IN_S_PREPARE_READ_DATA_CONT: prepare_read_data_cont(con); ret = 0; break; case IN_S_PREPARE_READ_ENC_PAGE: prepare_read_enc_page(con); ret = 0; break; case IN_S_PREPARE_SPARSE_DATA: ret = prepare_sparse_read_data(con); break; case IN_S_PREPARE_SPARSE_DATA_CONT: ret = prepare_sparse_read_cont(con); break; case IN_S_HANDLE_EPILOGUE: ret = handle_epilogue(con); break; case IN_S_FINISH_SKIP: finish_skip(con); ret = 0; break; default: WARN(1, "bad in_state %d", con->v2.in_state); return -EINVAL; } } else { WARN(1, "bad state %d", con->state); return -EINVAL; } if (ret) { dout("%s con %p error %d\n", __func__, con, ret); return ret; } if (WARN_ON(!iov_iter_count(&con->v2.in_iter))) return -ENODATA; dout("%s con %p populated %zu\n", __func__, con, iov_iter_count(&con->v2.in_iter)); return 1; } int ceph_con_v2_try_read(struct ceph_connection *con) { int ret; dout("%s con %p state %d need %zu\n", __func__, con, con->state, iov_iter_count(&con->v2.in_iter)); if (con->state == CEPH_CON_S_PREOPEN) return 0; /* * We should always have something pending here. If not, * avoid calling populate_in_iter() as if we read something * (ceph_tcp_recv() would immediately return 1). */ if (WARN_ON(!iov_iter_count(&con->v2.in_iter))) return -ENODATA; for (;;) { ret = ceph_tcp_recv(con); if (ret <= 0) return ret; ret = populate_in_iter(con); if (ret <= 0) { if (ret && ret != -EAGAIN && !con->error_msg) con->error_msg = "read processing error"; return ret; } } } static void queue_data(struct ceph_connection *con) { struct bio_vec bv; con->v2.out_epil.data_crc = -1; ceph_msg_data_cursor_init(&con->v2.out_cursor, con->out_msg, data_len(con->out_msg)); get_bvec_at(&con->v2.out_cursor, &bv); set_out_bvec(con, &bv, true); con->v2.out_state = OUT_S_QUEUE_DATA_CONT; } static void queue_data_cont(struct ceph_connection *con) { struct bio_vec bv; con->v2.out_epil.data_crc = ceph_crc32c_page( con->v2.out_epil.data_crc, con->v2.out_bvec.bv_page, con->v2.out_bvec.bv_offset, con->v2.out_bvec.bv_len); ceph_msg_data_advance(&con->v2.out_cursor, con->v2.out_bvec.bv_len); if (con->v2.out_cursor.total_resid) { get_bvec_at(&con->v2.out_cursor, &bv); set_out_bvec(con, &bv, true); WARN_ON(con->v2.out_state != OUT_S_QUEUE_DATA_CONT); return; } /* * We've written all data. Queue epilogue. Once it's written, * we are done. */ reset_out_kvecs(con); prepare_epilogue_plain(con, false); con->v2.out_state = OUT_S_FINISH_MESSAGE; } static void queue_enc_page(struct ceph_connection *con) { struct bio_vec bv; dout("%s con %p i %d resid %d\n", __func__, con, con->v2.out_enc_i, con->v2.out_enc_resid); WARN_ON(!con->v2.out_enc_resid); bvec_set_page(&bv, con->v2.out_enc_pages[con->v2.out_enc_i], min(con->v2.out_enc_resid, (int)PAGE_SIZE), 0); set_out_bvec(con, &bv, false); con->v2.out_enc_i++; con->v2.out_enc_resid -= bv.bv_len; if (con->v2.out_enc_resid) { WARN_ON(con->v2.out_state != OUT_S_QUEUE_ENC_PAGE); return; } /* * We've queued the last piece of ciphertext (ending with * epilogue) + auth tag. Once it's written, we are done. */ WARN_ON(con->v2.out_enc_i != con->v2.out_enc_page_cnt); con->v2.out_state = OUT_S_FINISH_MESSAGE; } static void queue_zeros(struct ceph_connection *con) { dout("%s con %p out_zero %d\n", __func__, con, con->v2.out_zero); if (con->v2.out_zero) { set_out_bvec_zero(con); con->v2.out_zero -= con->v2.out_bvec.bv_len; con->v2.out_state = OUT_S_QUEUE_ZEROS; return; } /* * We've zero-filled everything up to epilogue. Queue epilogue * with late_status set to ABORTED and crcs adjusted for zeros. * Once it's written, we are done patching up for the revoke. */ reset_out_kvecs(con); prepare_epilogue_plain(con, true); con->v2.out_state = OUT_S_FINISH_MESSAGE; } static void finish_message(struct ceph_connection *con) { dout("%s con %p msg %p\n", __func__, con, con->out_msg); /* we end up here both plain and secure modes */ if (con->v2.out_enc_pages) { WARN_ON(!con->v2.out_enc_page_cnt); ceph_release_page_vector(con->v2.out_enc_pages, con->v2.out_enc_page_cnt); con->v2.out_enc_pages = NULL; con->v2.out_enc_page_cnt = 0; } /* message may have been revoked */ if (con->out_msg) { ceph_msg_put(con->out_msg); con->out_msg = NULL; } con->v2.out_state = OUT_S_GET_NEXT; } static int populate_out_iter(struct ceph_connection *con) { int ret; dout("%s con %p state %d out_state %d\n", __func__, con, con->state, con->v2.out_state); WARN_ON(iov_iter_count(&con->v2.out_iter)); if (con->state != CEPH_CON_S_OPEN) { WARN_ON(con->state < CEPH_CON_S_V2_BANNER_PREFIX || con->state > CEPH_CON_S_V2_SESSION_RECONNECT); goto nothing_pending; } switch (con->v2.out_state) { case OUT_S_QUEUE_DATA: WARN_ON(!con->out_msg); queue_data(con); goto populated; case OUT_S_QUEUE_DATA_CONT: WARN_ON(!con->out_msg); queue_data_cont(con); goto populated; case OUT_S_QUEUE_ENC_PAGE: queue_enc_page(con); goto populated; case OUT_S_QUEUE_ZEROS: WARN_ON(con->out_msg); /* revoked */ queue_zeros(con); goto populated; case OUT_S_FINISH_MESSAGE: finish_message(con); break; case OUT_S_GET_NEXT: break; default: WARN(1, "bad out_state %d", con->v2.out_state); return -EINVAL; } WARN_ON(con->v2.out_state != OUT_S_GET_NEXT); if (ceph_con_flag_test_and_clear(con, CEPH_CON_F_KEEPALIVE_PENDING)) { ret = prepare_keepalive2(con); if (ret) { pr_err("prepare_keepalive2 failed: %d\n", ret); return ret; } } else if (!list_empty(&con->out_queue)) { ceph_con_get_out_msg(con); ret = prepare_message(con); if (ret) { pr_err("prepare_message failed: %d\n", ret); return ret; } } else if (con->in_seq > con->in_seq_acked) { ret = prepare_ack(con); if (ret) { pr_err("prepare_ack failed: %d\n", ret); return ret; } } else { goto nothing_pending; } populated: if (WARN_ON(!iov_iter_count(&con->v2.out_iter))) return -ENODATA; dout("%s con %p populated %zu\n", __func__, con, iov_iter_count(&con->v2.out_iter)); return 1; nothing_pending: WARN_ON(iov_iter_count(&con->v2.out_iter)); dout("%s con %p nothing pending\n", __func__, con); ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING); return 0; } int ceph_con_v2_try_write(struct ceph_connection *con) { int ret; dout("%s con %p state %d have %zu\n", __func__, con, con->state, iov_iter_count(&con->v2.out_iter)); /* open the socket first? */ if (con->state == CEPH_CON_S_PREOPEN) { WARN_ON(con->peer_addr.type != CEPH_ENTITY_ADDR_TYPE_MSGR2); /* * Always bump global_seq. Bump connect_seq only if * there is a session (i.e. we are reconnecting and will * send session_reconnect instead of client_ident). */ con->v2.global_seq = ceph_get_global_seq(con->msgr, 0); if (con->v2.server_cookie) con->v2.connect_seq++; ret = prepare_read_banner_prefix(con); if (ret) { pr_err("prepare_read_banner_prefix failed: %d\n", ret); con->error_msg = "connect error"; return ret; } reset_out_kvecs(con); ret = prepare_banner(con); if (ret) { pr_err("prepare_banner failed: %d\n", ret); con->error_msg = "connect error"; return ret; } ret = ceph_tcp_connect(con); if (ret) { pr_err("ceph_tcp_connect failed: %d\n", ret); con->error_msg = "connect error"; return ret; } } if (!iov_iter_count(&con->v2.out_iter)) { ret = populate_out_iter(con); if (ret <= 0) { if (ret && ret != -EAGAIN && !con->error_msg) con->error_msg = "write processing error"; return ret; } } tcp_sock_set_cork(con->sock->sk, true); for (;;) { ret = ceph_tcp_send(con); if (ret <= 0) break; ret = populate_out_iter(con); if (ret <= 0) { if (ret && ret != -EAGAIN && !con->error_msg) con->error_msg = "write processing error"; break; } } tcp_sock_set_cork(con->sock->sk, false); return ret; } static u32 crc32c_zeros(u32 crc, int zero_len) { int len; while (zero_len) { len = min(zero_len, (int)PAGE_SIZE); crc = crc32c(crc, page_address(ceph_zero_page), len); zero_len -= len; } return crc; } static void prepare_zero_front(struct ceph_connection *con, int resid) { int sent; WARN_ON(!resid || resid > front_len(con->out_msg)); sent = front_len(con->out_msg) - resid; dout("%s con %p sent %d resid %d\n", __func__, con, sent, resid); if (sent) { con->v2.out_epil.front_crc = crc32c(-1, con->out_msg->front.iov_base, sent); con->v2.out_epil.front_crc = crc32c_zeros(con->v2.out_epil.front_crc, resid); } else { con->v2.out_epil.front_crc = crc32c_zeros(-1, resid); } con->v2.out_iter.count -= resid; out_zero_add(con, resid); } static void prepare_zero_middle(struct ceph_connection *con, int resid) { int sent; WARN_ON(!resid || resid > middle_len(con->out_msg)); sent = middle_len(con->out_msg) - resid; dout("%s con %p sent %d resid %d\n", __func__, con, sent, resid); if (sent) { con->v2.out_epil.middle_crc = crc32c(-1, con->out_msg->middle->vec.iov_base, sent); con->v2.out_epil.middle_crc = crc32c_zeros(con->v2.out_epil.middle_crc, resid); } else { con->v2.out_epil.middle_crc = crc32c_zeros(-1, resid); } con->v2.out_iter.count -= resid; out_zero_add(con, resid); } static void prepare_zero_data(struct ceph_connection *con) { dout("%s con %p\n", __func__, con); con->v2.out_epil.data_crc = crc32c_zeros(-1, data_len(con->out_msg)); out_zero_add(con, data_len(con->out_msg)); } static void revoke_at_queue_data(struct ceph_connection *con) { int boundary; int resid; WARN_ON(!data_len(con->out_msg)); WARN_ON(!iov_iter_is_kvec(&con->v2.out_iter)); resid = iov_iter_count(&con->v2.out_iter); boundary = front_len(con->out_msg) + middle_len(con->out_msg); if (resid > boundary) { resid -= boundary; WARN_ON(resid > MESSAGE_HEAD_PLAIN_LEN); dout("%s con %p was sending head\n", __func__, con); if (front_len(con->out_msg)) prepare_zero_front(con, front_len(con->out_msg)); if (middle_len(con->out_msg)) prepare_zero_middle(con, middle_len(con->out_msg)); prepare_zero_data(con); WARN_ON(iov_iter_count(&con->v2.out_iter) != resid); con->v2.out_state = OUT_S_QUEUE_ZEROS; return; } boundary = middle_len(con->out_msg); if (resid > boundary) { resid -= boundary; dout("%s con %p was sending front\n", __func__, con); prepare_zero_front(con, resid); if (middle_len(con->out_msg)) prepare_zero_middle(con, middle_len(con->out_msg)); prepare_zero_data(con); queue_zeros(con); return; } WARN_ON(!resid); dout("%s con %p was sending middle\n", __func__, con); prepare_zero_middle(con, resid); prepare_zero_data(con); queue_zeros(con); } static void revoke_at_queue_data_cont(struct ceph_connection *con) { int sent, resid; /* current piece of data */ WARN_ON(!data_len(con->out_msg)); WARN_ON(!iov_iter_is_bvec(&con->v2.out_iter)); resid = iov_iter_count(&con->v2.out_iter); WARN_ON(!resid || resid > con->v2.out_bvec.bv_len); sent = con->v2.out_bvec.bv_len - resid; dout("%s con %p sent %d resid %d\n", __func__, con, sent, resid); if (sent) { con->v2.out_epil.data_crc = ceph_crc32c_page( con->v2.out_epil.data_crc, con->v2.out_bvec.bv_page, con->v2.out_bvec.bv_offset, sent); ceph_msg_data_advance(&con->v2.out_cursor, sent); } WARN_ON(resid > con->v2.out_cursor.total_resid); con->v2.out_epil.data_crc = crc32c_zeros(con->v2.out_epil.data_crc, con->v2.out_cursor.total_resid); con->v2.out_iter.count -= resid; out_zero_add(con, con->v2.out_cursor.total_resid); queue_zeros(con); } static void revoke_at_finish_message(struct ceph_connection *con) { int boundary; int resid; WARN_ON(!iov_iter_is_kvec(&con->v2.out_iter)); resid = iov_iter_count(&con->v2.out_iter); if (!front_len(con->out_msg) && !middle_len(con->out_msg) && !data_len(con->out_msg)) { WARN_ON(!resid || resid > MESSAGE_HEAD_PLAIN_LEN); dout("%s con %p was sending head (empty message) - noop\n", __func__, con); return; } boundary = front_len(con->out_msg) + middle_len(con->out_msg) + CEPH_EPILOGUE_PLAIN_LEN; if (resid > boundary) { resid -= boundary; WARN_ON(resid > MESSAGE_HEAD_PLAIN_LEN); dout("%s con %p was sending head\n", __func__, con); if (front_len(con->out_msg)) prepare_zero_front(con, front_len(con->out_msg)); if (middle_len(con->out_msg)) prepare_zero_middle(con, middle_len(con->out_msg)); con->v2.out_iter.count -= CEPH_EPILOGUE_PLAIN_LEN; WARN_ON(iov_iter_count(&con->v2.out_iter) != resid); con->v2.out_state = OUT_S_QUEUE_ZEROS; return; } boundary = middle_len(con->out_msg) + CEPH_EPILOGUE_PLAIN_LEN; if (resid > boundary) { resid -= boundary; dout("%s con %p was sending front\n", __func__, con); prepare_zero_front(con, resid); if (middle_len(con->out_msg)) prepare_zero_middle(con, middle_len(con->out_msg)); con->v2.out_iter.count -= CEPH_EPILOGUE_PLAIN_LEN; queue_zeros(con); return; } boundary = CEPH_EPILOGUE_PLAIN_LEN; if (resid > boundary) { resid -= boundary; dout("%s con %p was sending middle\n", __func__, con); prepare_zero_middle(con, resid); con->v2.out_iter.count -= CEPH_EPILOGUE_PLAIN_LEN; queue_zeros(con); return; } WARN_ON(!resid); dout("%s con %p was sending epilogue - noop\n", __func__, con); } void ceph_con_v2_revoke(struct ceph_connection *con) { WARN_ON(con->v2.out_zero); if (con_secure(con)) { WARN_ON(con->v2.out_state != OUT_S_QUEUE_ENC_PAGE && con->v2.out_state != OUT_S_FINISH_MESSAGE); dout("%s con %p secure - noop\n", __func__, con); return; } switch (con->v2.out_state) { case OUT_S_QUEUE_DATA: revoke_at_queue_data(con); break; case OUT_S_QUEUE_DATA_CONT: revoke_at_queue_data_cont(con); break; case OUT_S_FINISH_MESSAGE: revoke_at_finish_message(con); break; default: WARN(1, "bad out_state %d", con->v2.out_state); break; } } static void revoke_at_prepare_read_data(struct ceph_connection *con) { int remaining; int resid; WARN_ON(con_secure(con)); WARN_ON(!data_len(con->in_msg)); WARN_ON(!iov_iter_is_kvec(&con->v2.in_iter)); resid = iov_iter_count(&con->v2.in_iter); WARN_ON(!resid); remaining = data_len(con->in_msg) + CEPH_EPILOGUE_PLAIN_LEN; dout("%s con %p resid %d remaining %d\n", __func__, con, resid, remaining); con->v2.in_iter.count -= resid; set_in_skip(con, resid + remaining); con->v2.in_state = IN_S_FINISH_SKIP; } static void revoke_at_prepare_read_data_cont(struct ceph_connection *con) { int recved, resid; /* current piece of data */ int remaining; WARN_ON(con_secure(con)); WARN_ON(!data_len(con->in_msg)); WARN_ON(!iov_iter_is_bvec(&con->v2.in_iter)); resid = iov_iter_count(&con->v2.in_iter); WARN_ON(!resid || resid > con->v2.in_bvec.bv_len); recved = con->v2.in_bvec.bv_len - resid; dout("%s con %p recved %d resid %d\n", __func__, con, recved, resid); if (recved) ceph_msg_data_advance(&con->v2.in_cursor, recved); WARN_ON(resid > con->v2.in_cursor.total_resid); remaining = CEPH_EPILOGUE_PLAIN_LEN; dout("%s con %p total_resid %zu remaining %d\n", __func__, con, con->v2.in_cursor.total_resid, remaining); con->v2.in_iter.count -= resid; set_in_skip(con, con->v2.in_cursor.total_resid + remaining); con->v2.in_state = IN_S_FINISH_SKIP; } static void revoke_at_prepare_read_enc_page(struct ceph_connection *con) { int resid; /* current enc page (not necessarily data) */ WARN_ON(!con_secure(con)); WARN_ON(!iov_iter_is_bvec(&con->v2.in_iter)); resid = iov_iter_count(&con->v2.in_iter); WARN_ON(!resid || resid > con->v2.in_bvec.bv_len); dout("%s con %p resid %d enc_resid %d\n", __func__, con, resid, con->v2.in_enc_resid); con->v2.in_iter.count -= resid; set_in_skip(con, resid + con->v2.in_enc_resid); con->v2.in_state = IN_S_FINISH_SKIP; } static void revoke_at_prepare_sparse_data(struct ceph_connection *con) { int resid; /* current piece of data */ int remaining; WARN_ON(con_secure(con)); WARN_ON(!data_len(con->in_msg)); WARN_ON(!iov_iter_is_bvec(&con->v2.in_iter)); resid = iov_iter_count(&con->v2.in_iter); dout("%s con %p resid %d\n", __func__, con, resid); remaining = CEPH_EPILOGUE_PLAIN_LEN + con->v2.data_len_remain; con->v2.in_iter.count -= resid; set_in_skip(con, resid + remaining); con->v2.in_state = IN_S_FINISH_SKIP; } static void revoke_at_handle_epilogue(struct ceph_connection *con) { int resid; resid = iov_iter_count(&con->v2.in_iter); WARN_ON(!resid); dout("%s con %p resid %d\n", __func__, con, resid); con->v2.in_iter.count -= resid; set_in_skip(con, resid); con->v2.in_state = IN_S_FINISH_SKIP; } void ceph_con_v2_revoke_incoming(struct ceph_connection *con) { switch (con->v2.in_state) { case IN_S_PREPARE_SPARSE_DATA: case IN_S_PREPARE_READ_DATA: revoke_at_prepare_read_data(con); break; case IN_S_PREPARE_READ_DATA_CONT: revoke_at_prepare_read_data_cont(con); break; case IN_S_PREPARE_READ_ENC_PAGE: revoke_at_prepare_read_enc_page(con); break; case IN_S_PREPARE_SPARSE_DATA_CONT: revoke_at_prepare_sparse_data(con); break; case IN_S_HANDLE_EPILOGUE: revoke_at_handle_epilogue(con); break; default: WARN(1, "bad in_state %d", con->v2.in_state); break; } } bool ceph_con_v2_opened(struct ceph_connection *con) { return con->v2.peer_global_seq; } void ceph_con_v2_reset_session(struct ceph_connection *con) { con->v2.client_cookie = 0; con->v2.server_cookie = 0; con->v2.global_seq = 0; con->v2.connect_seq = 0; con->v2.peer_global_seq = 0; } void ceph_con_v2_reset_protocol(struct ceph_connection *con) { iov_iter_truncate(&con->v2.in_iter, 0); iov_iter_truncate(&con->v2.out_iter, 0); con->v2.out_zero = 0; clear_in_sign_kvecs(con); clear_out_sign_kvecs(con); free_conn_bufs(con); if (con->v2.in_enc_pages) { WARN_ON(!con->v2.in_enc_page_cnt); ceph_release_page_vector(con->v2.in_enc_pages, con->v2.in_enc_page_cnt); con->v2.in_enc_pages = NULL; con->v2.in_enc_page_cnt = 0; } if (con->v2.out_enc_pages) { WARN_ON(!con->v2.out_enc_page_cnt); ceph_release_page_vector(con->v2.out_enc_pages, con->v2.out_enc_page_cnt); con->v2.out_enc_pages = NULL; con->v2.out_enc_page_cnt = 0; } con->v2.con_mode = CEPH_CON_MODE_UNKNOWN; memzero_explicit(&con->v2.in_gcm_nonce, CEPH_GCM_IV_LEN); memzero_explicit(&con->v2.out_gcm_nonce, CEPH_GCM_IV_LEN); if (con->v2.hmac_tfm) { crypto_free_shash(con->v2.hmac_tfm); con->v2.hmac_tfm = NULL; } if (con->v2.gcm_req) { aead_request_free(con->v2.gcm_req); con->v2.gcm_req = NULL; } if (con->v2.gcm_tfm) { crypto_free_aead(con->v2.gcm_tfm); con->v2.gcm_tfm = NULL; } }