// SPDX-License-Identifier: GPL-2.0-or-later /* * Routines having to do with the 'struct sk_buff' memory handlers. * * Authors: Alan Cox * Florian La Roche * * Fixes: * Alan Cox : Fixed the worst of the load * balancer bugs. * Dave Platt : Interrupt stacking fix. * Richard Kooijman : Timestamp fixes. * Alan Cox : Changed buffer format. * Alan Cox : destructor hook for AF_UNIX etc. * Linus Torvalds : Better skb_clone. * Alan Cox : Added skb_copy. * Alan Cox : Added all the changed routines Linus * only put in the headers * Ray VanTassle : Fixed --skb->lock in free * Alan Cox : skb_copy copy arp field * Andi Kleen : slabified it. * Robert Olsson : Removed skb_head_pool * * NOTE: * The __skb_ routines should be called with interrupts * disabled, or you better be *real* sure that the operation is atomic * with respect to whatever list is being frobbed (e.g. via lock_sock() * or via disabling bottom half handlers, etc). */ /* * The functions in this file will not compile correctly with gcc 2.4.x */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_NET_CLS_ACT #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "dev.h" #include "sock_destructor.h" struct kmem_cache *skbuff_cache __ro_after_init; static struct kmem_cache *skbuff_fclone_cache __ro_after_init; #ifdef CONFIG_SKB_EXTENSIONS static struct kmem_cache *skbuff_ext_cache __ro_after_init; #endif static struct kmem_cache *skb_small_head_cache __ro_after_init; #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(MAX_TCP_HEADER) /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two. * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique * size, and we can differentiate heads from skb_small_head_cache * vs system slabs by looking at their size (skb_end_offset()). */ #define SKB_SMALL_HEAD_CACHE_SIZE \ (is_power_of_2(SKB_SMALL_HEAD_SIZE) ? \ (SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) : \ SKB_SMALL_HEAD_SIZE) #define SKB_SMALL_HEAD_HEADROOM \ SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; EXPORT_SYMBOL(sysctl_max_skb_frags); #undef FN #define FN(reason) [SKB_DROP_REASON_##reason] = #reason, static const char * const drop_reasons[] = { [SKB_CONSUMED] = "CONSUMED", DEFINE_DROP_REASON(FN, FN) }; static const struct drop_reason_list drop_reasons_core = { .reasons = drop_reasons, .n_reasons = ARRAY_SIZE(drop_reasons), }; const struct drop_reason_list __rcu * drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = { [SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core), }; EXPORT_SYMBOL(drop_reasons_by_subsys); /** * drop_reasons_register_subsys - register another drop reason subsystem * @subsys: the subsystem to register, must not be the core * @list: the list of drop reasons within the subsystem, must point to * a statically initialized list */ void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys, const struct drop_reason_list *list) { if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE || subsys >= ARRAY_SIZE(drop_reasons_by_subsys), "invalid subsystem %d\n", subsys)) return; /* must point to statically allocated memory, so INIT is OK */ RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list); } EXPORT_SYMBOL_GPL(drop_reasons_register_subsys); /** * drop_reasons_unregister_subsys - unregister a drop reason subsystem * @subsys: the subsystem to remove, must not be the core * * Note: This will synchronize_rcu() to ensure no users when it returns. */ void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys) { if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE || subsys >= ARRAY_SIZE(drop_reasons_by_subsys), "invalid subsystem %d\n", subsys)) return; RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL); synchronize_rcu(); } EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys); /** * skb_panic - private function for out-of-line support * @skb: buffer * @sz: size * @addr: address * @msg: skb_over_panic or skb_under_panic * * Out-of-line support for skb_put() and skb_push(). * Called via the wrapper skb_over_panic() or skb_under_panic(). * Keep out of line to prevent kernel bloat. * __builtin_return_address is not used because it is not always reliable. */ static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, const char msg[]) { pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", msg, addr, skb->len, sz, skb->head, skb->data, (unsigned long)skb->tail, (unsigned long)skb->end, skb->dev ? skb->dev->name : ""); BUG(); } static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) { skb_panic(skb, sz, addr, __func__); } static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) { skb_panic(skb, sz, addr, __func__); } #define NAPI_SKB_CACHE_SIZE 64 #define NAPI_SKB_CACHE_BULK 16 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2) #if PAGE_SIZE == SZ_4K #define NAPI_HAS_SMALL_PAGE_FRAG 1 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc) ((nc).pfmemalloc) /* specialized page frag allocator using a single order 0 page * and slicing it into 1K sized fragment. Constrained to systems * with a very limited amount of 1K fragments fitting a single * page - to avoid excessive truesize underestimation */ struct page_frag_1k { void *va; u16 offset; bool pfmemalloc; }; static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp) { struct page *page; int offset; offset = nc->offset - SZ_1K; if (likely(offset >= 0)) goto use_frag; page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); if (!page) return NULL; nc->va = page_address(page); nc->pfmemalloc = page_is_pfmemalloc(page); offset = PAGE_SIZE - SZ_1K; page_ref_add(page, offset / SZ_1K); use_frag: nc->offset = offset; return nc->va + offset; } #else /* the small page is actually unused in this build; add dummy helpers * to please the compiler and avoid later preprocessor's conditionals */ #define NAPI_HAS_SMALL_PAGE_FRAG 0 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc) false struct page_frag_1k { }; static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask) { return NULL; } #endif struct napi_alloc_cache { struct page_frag_cache page; struct page_frag_1k page_small; unsigned int skb_count; void *skb_cache[NAPI_SKB_CACHE_SIZE]; }; static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); /* Double check that napi_get_frags() allocates skbs with * skb->head being backed by slab, not a page fragment. * This is to make sure bug fixed in 3226b158e67c * ("net: avoid 32 x truesize under-estimation for tiny skbs") * does not accidentally come back. */ void napi_get_frags_check(struct napi_struct *napi) { struct sk_buff *skb; local_bh_disable(); skb = napi_get_frags(napi); WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag); napi_free_frags(napi); local_bh_enable(); } void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) { struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); fragsz = SKB_DATA_ALIGN(fragsz); return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask); } EXPORT_SYMBOL(__napi_alloc_frag_align); void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) { void *data; fragsz = SKB_DATA_ALIGN(fragsz); if (in_hardirq() || irqs_disabled()) { struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache); data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask); } else { struct napi_alloc_cache *nc; local_bh_disable(); nc = this_cpu_ptr(&napi_alloc_cache); data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask); local_bh_enable(); } return data; } EXPORT_SYMBOL(__netdev_alloc_frag_align); static struct sk_buff *napi_skb_cache_get(void) { struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); struct sk_buff *skb; if (unlikely(!nc->skb_count)) { nc->skb_count = kmem_cache_alloc_bulk(skbuff_cache, GFP_ATOMIC, NAPI_SKB_CACHE_BULK, nc->skb_cache); if (unlikely(!nc->skb_count)) return NULL; } skb = nc->skb_cache[--nc->skb_count]; kasan_mempool_unpoison_object(skb, kmem_cache_size(skbuff_cache)); return skb; } static inline void __finalize_skb_around(struct sk_buff *skb, void *data, unsigned int size) { struct skb_shared_info *shinfo; size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); /* Assumes caller memset cleared SKB */ skb->truesize = SKB_TRUESIZE(size); refcount_set(&skb->users, 1); skb->head = data; skb->data = data; skb_reset_tail_pointer(skb); skb_set_end_offset(skb, size); skb->mac_header = (typeof(skb->mac_header))~0U; skb->transport_header = (typeof(skb->transport_header))~0U; skb->alloc_cpu = raw_smp_processor_id(); /* make sure we initialize shinfo sequentially */ shinfo = skb_shinfo(skb); memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); atomic_set(&shinfo->dataref, 1); skb_set_kcov_handle(skb, kcov_common_handle()); } static inline void *__slab_build_skb(struct sk_buff *skb, void *data, unsigned int *size) { void *resized; /* Must find the allocation size (and grow it to match). */ *size = ksize(data); /* krealloc() will immediately return "data" when * "ksize(data)" is requested: it is the existing upper * bounds. As a result, GFP_ATOMIC will be ignored. Note * that this "new" pointer needs to be passed back to the * caller for use so the __alloc_size hinting will be * tracked correctly. */ resized = krealloc(data, *size, GFP_ATOMIC); WARN_ON_ONCE(resized != data); return resized; } /* build_skb() variant which can operate on slab buffers. * Note that this should be used sparingly as slab buffers * cannot be combined efficiently by GRO! */ struct sk_buff *slab_build_skb(void *data) { struct sk_buff *skb; unsigned int size; skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC); if (unlikely(!skb)) return NULL; memset(skb, 0, offsetof(struct sk_buff, tail)); data = __slab_build_skb(skb, data, &size); __finalize_skb_around(skb, data, size); return skb; } EXPORT_SYMBOL(slab_build_skb); /* Caller must provide SKB that is memset cleared */ static void __build_skb_around(struct sk_buff *skb, void *data, unsigned int frag_size) { unsigned int size = frag_size; /* frag_size == 0 is considered deprecated now. Callers * using slab buffer should use slab_build_skb() instead. */ if (WARN_ONCE(size == 0, "Use slab_build_skb() instead")) data = __slab_build_skb(skb, data, &size); __finalize_skb_around(skb, data, size); } /** * __build_skb - build a network buffer * @data: data buffer provided by caller * @frag_size: size of data (must not be 0) * * Allocate a new &sk_buff. Caller provides space holding head and * skb_shared_info. @data must have been allocated from the page * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc() * allocation is deprecated, and callers should use slab_build_skb() * instead.) * The return is the new skb buffer. * On a failure the return is %NULL, and @data is not freed. * Notes : * Before IO, driver allocates only data buffer where NIC put incoming frame * Driver should add room at head (NET_SKB_PAD) and * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) * After IO, driver calls build_skb(), to allocate sk_buff and populate it * before giving packet to stack. * RX rings only contains data buffers, not full skbs. */ struct sk_buff *__build_skb(void *data, unsigned int frag_size) { struct sk_buff *skb; skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC); if (unlikely(!skb)) return NULL; memset(skb, 0, offsetof(struct sk_buff, tail)); __build_skb_around(skb, data, frag_size); return skb; } /* build_skb() is wrapper over __build_skb(), that specifically * takes care of skb->head and skb->pfmemalloc */ struct sk_buff *build_skb(void *data, unsigned int frag_size) { struct sk_buff *skb = __build_skb(data, frag_size); if (likely(skb && frag_size)) { skb->head_frag = 1; skb_propagate_pfmemalloc(virt_to_head_page(data), skb); } return skb; } EXPORT_SYMBOL(build_skb); /** * build_skb_around - build a network buffer around provided skb * @skb: sk_buff provide by caller, must be memset cleared * @data: data buffer provided by caller * @frag_size: size of data */ struct sk_buff *build_skb_around(struct sk_buff *skb, void *data, unsigned int frag_size) { if (unlikely(!skb)) return NULL; __build_skb_around(skb, data, frag_size); if (frag_size) { skb->head_frag = 1; skb_propagate_pfmemalloc(virt_to_head_page(data), skb); } return skb; } EXPORT_SYMBOL(build_skb_around); /** * __napi_build_skb - build a network buffer * @data: data buffer provided by caller * @frag_size: size of data * * Version of __build_skb() that uses NAPI percpu caches to obtain * skbuff_head instead of inplace allocation. * * Returns a new &sk_buff on success, %NULL on allocation failure. */ static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size) { struct sk_buff *skb; skb = napi_skb_cache_get(); if (unlikely(!skb)) return NULL; memset(skb, 0, offsetof(struct sk_buff, tail)); __build_skb_around(skb, data, frag_size); return skb; } /** * napi_build_skb - build a network buffer * @data: data buffer provided by caller * @frag_size: size of data * * Version of __napi_build_skb() that takes care of skb->head_frag * and skb->pfmemalloc when the data is a page or page fragment. * * Returns a new &sk_buff on success, %NULL on allocation failure. */ struct sk_buff *napi_build_skb(void *data, unsigned int frag_size) { struct sk_buff *skb = __napi_build_skb(data, frag_size); if (likely(skb) && frag_size) { skb->head_frag = 1; skb_propagate_pfmemalloc(virt_to_head_page(data), skb); } return skb; } EXPORT_SYMBOL(napi_build_skb); /* * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells * the caller if emergency pfmemalloc reserves are being used. If it is and * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves * may be used. Otherwise, the packet data may be discarded until enough * memory is free */ static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node, bool *pfmemalloc) { bool ret_pfmemalloc = false; size_t obj_size; void *obj; obj_size = SKB_HEAD_ALIGN(*size); if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE && !(flags & KMALLOC_NOT_NORMAL_BITS)) { obj = kmem_cache_alloc_node(skb_small_head_cache, flags | __GFP_NOMEMALLOC | __GFP_NOWARN, node); *size = SKB_SMALL_HEAD_CACHE_SIZE; if (obj || !(gfp_pfmemalloc_allowed(flags))) goto out; /* Try again but now we are using pfmemalloc reserves */ ret_pfmemalloc = true; obj = kmem_cache_alloc_node(skb_small_head_cache, flags, node); goto out; } obj_size = kmalloc_size_roundup(obj_size); /* The following cast might truncate high-order bits of obj_size, this * is harmless because kmalloc(obj_size >= 2^32) will fail anyway. */ *size = (unsigned int)obj_size; /* * Try a regular allocation, when that fails and we're not entitled * to the reserves, fail. */ obj = kmalloc_node_track_caller(obj_size, flags | __GFP_NOMEMALLOC | __GFP_NOWARN, node); if (obj || !(gfp_pfmemalloc_allowed(flags))) goto out; /* Try again but now we are using pfmemalloc reserves */ ret_pfmemalloc = true; obj = kmalloc_node_track_caller(obj_size, flags, node); out: if (pfmemalloc) *pfmemalloc = ret_pfmemalloc; return obj; } /* Allocate a new skbuff. We do this ourselves so we can fill in a few * 'private' fields and also do memory statistics to find all the * [BEEP] leaks. * */ /** * __alloc_skb - allocate a network buffer * @size: size to allocate * @gfp_mask: allocation mask * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache * instead of head cache and allocate a cloned (child) skb. * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for * allocations in case the data is required for writeback * @node: numa node to allocate memory on * * Allocate a new &sk_buff. The returned buffer has no headroom and a * tail room of at least size bytes. The object has a reference count * of one. The return is the buffer. On a failure the return is %NULL. * * Buffers may only be allocated from interrupts using a @gfp_mask of * %GFP_ATOMIC. */ struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, int flags, int node) { struct kmem_cache *cache; struct sk_buff *skb; bool pfmemalloc; u8 *data; cache = (flags & SKB_ALLOC_FCLONE) ? skbuff_fclone_cache : skbuff_cache; if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) gfp_mask |= __GFP_MEMALLOC; /* Get the HEAD */ if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI && likely(node == NUMA_NO_NODE || node == numa_mem_id())) skb = napi_skb_cache_get(); else skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node); if (unlikely(!skb)) return NULL; prefetchw(skb); /* We do our best to align skb_shared_info on a separate cache * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives * aligned memory blocks, unless SLUB/SLAB debug is enabled. * Both skb->head and skb_shared_info are cache line aligned. */ data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc); if (unlikely(!data)) goto nodata; /* kmalloc_size_roundup() might give us more room than requested. * Put skb_shared_info exactly at the end of allocated zone, * to allow max possible filling before reallocation. */ prefetchw(data + SKB_WITH_OVERHEAD(size)); /* * Only clear those fields we need to clear, not those that we will * actually initialise below. Hence, don't put any more fields after * the tail pointer in struct sk_buff! */ memset(skb, 0, offsetof(struct sk_buff, tail)); __build_skb_around(skb, data, size); skb->pfmemalloc = pfmemalloc; if (flags & SKB_ALLOC_FCLONE) { struct sk_buff_fclones *fclones; fclones = container_of(skb, struct sk_buff_fclones, skb1); skb->fclone = SKB_FCLONE_ORIG; refcount_set(&fclones->fclone_ref, 1); } return skb; nodata: kmem_cache_free(cache, skb); return NULL; } EXPORT_SYMBOL(__alloc_skb); /** * __netdev_alloc_skb - allocate an skbuff for rx on a specific device * @dev: network device to receive on * @len: length to allocate * @gfp_mask: get_free_pages mask, passed to alloc_skb * * Allocate a new &sk_buff and assign it a usage count of one. The * buffer has NET_SKB_PAD headroom built in. Users should allocate * the headroom they think they need without accounting for the * built in space. The built in space is used for optimisations. * * %NULL is returned if there is no free memory. */ struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, gfp_t gfp_mask) { struct page_frag_cache *nc; struct sk_buff *skb; bool pfmemalloc; void *data; len += NET_SKB_PAD; /* If requested length is either too small or too big, * we use kmalloc() for skb->head allocation. */ if (len <= SKB_WITH_OVERHEAD(1024) || len > SKB_WITH_OVERHEAD(PAGE_SIZE) || (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); if (!skb) goto skb_fail; goto skb_success; } len = SKB_HEAD_ALIGN(len); if (sk_memalloc_socks()) gfp_mask |= __GFP_MEMALLOC; if (in_hardirq() || irqs_disabled()) { nc = this_cpu_ptr(&netdev_alloc_cache); data = page_frag_alloc(nc, len, gfp_mask); pfmemalloc = nc->pfmemalloc; } else { local_bh_disable(); nc = this_cpu_ptr(&napi_alloc_cache.page); data = page_frag_alloc(nc, len, gfp_mask); pfmemalloc = nc->pfmemalloc; local_bh_enable(); } if (unlikely(!data)) return NULL; skb = __build_skb(data, len); if (unlikely(!skb)) { skb_free_frag(data); return NULL; } if (pfmemalloc) skb->pfmemalloc = 1; skb->head_frag = 1; skb_success: skb_reserve(skb, NET_SKB_PAD); skb->dev = dev; skb_fail: return skb; } EXPORT_SYMBOL(__netdev_alloc_skb); /** * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance * @napi: napi instance this buffer was allocated for * @len: length to allocate * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages * * Allocate a new sk_buff for use in NAPI receive. This buffer will * attempt to allocate the head from a special reserved region used * only for NAPI Rx allocation. By doing this we can save several * CPU cycles by avoiding having to disable and re-enable IRQs. * * %NULL is returned if there is no free memory. */ struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, gfp_t gfp_mask) { struct napi_alloc_cache *nc; struct sk_buff *skb; bool pfmemalloc; void *data; DEBUG_NET_WARN_ON_ONCE(!in_softirq()); len += NET_SKB_PAD + NET_IP_ALIGN; /* If requested length is either too small or too big, * we use kmalloc() for skb->head allocation. * When the small frag allocator is available, prefer it over kmalloc * for small fragments */ if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) || len > SKB_WITH_OVERHEAD(PAGE_SIZE) || (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI, NUMA_NO_NODE); if (!skb) goto skb_fail; goto skb_success; } nc = this_cpu_ptr(&napi_alloc_cache); if (sk_memalloc_socks()) gfp_mask |= __GFP_MEMALLOC; if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) { /* we are artificially inflating the allocation size, but * that is not as bad as it may look like, as: * - 'len' less than GRO_MAX_HEAD makes little sense * - On most systems, larger 'len' values lead to fragment * size above 512 bytes * - kmalloc would use the kmalloc-1k slab for such values * - Builds with smaller GRO_MAX_HEAD will very likely do * little networking, as that implies no WiFi and no * tunnels support, and 32 bits arches. */ len = SZ_1K; data = page_frag_alloc_1k(&nc->page_small, gfp_mask); pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small); } else { len = SKB_HEAD_ALIGN(len); data = page_frag_alloc(&nc->page, len, gfp_mask); pfmemalloc = nc->page.pfmemalloc; } if (unlikely(!data)) return NULL; skb = __napi_build_skb(data, len); if (unlikely(!skb)) { skb_free_frag(data); return NULL; } if (pfmemalloc) skb->pfmemalloc = 1; skb->head_frag = 1; skb_success: skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); skb->dev = napi->dev; skb_fail: return skb; } EXPORT_SYMBOL(__napi_alloc_skb); void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, int size, unsigned int truesize) { DEBUG_NET_WARN_ON_ONCE(size > truesize); skb_fill_page_desc(skb, i, page, off, size); skb->len += size; skb->data_len += size; skb->truesize += truesize; } EXPORT_SYMBOL(skb_add_rx_frag); void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, unsigned int truesize) { skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; DEBUG_NET_WARN_ON_ONCE(size > truesize); skb_frag_size_add(frag, size); skb->len += size; skb->data_len += size; skb->truesize += truesize; } EXPORT_SYMBOL(skb_coalesce_rx_frag); static void skb_drop_list(struct sk_buff **listp) { kfree_skb_list(*listp); *listp = NULL; } static inline void skb_drop_fraglist(struct sk_buff *skb) { skb_drop_list(&skb_shinfo(skb)->frag_list); } static void skb_clone_fraglist(struct sk_buff *skb) { struct sk_buff *list; skb_walk_frags(skb, list) skb_get(list); } static bool is_pp_page(struct page *page) { return (page->pp_magic & ~0x3UL) == PP_SIGNATURE; } #if IS_ENABLED(CONFIG_PAGE_POOL) bool napi_pp_put_page(struct page *page, bool napi_safe) { bool allow_direct = false; struct page_pool *pp; page = compound_head(page); /* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation * in order to preserve any existing bits, such as bit 0 for the * head page of compound page and bit 1 for pfmemalloc page, so * mask those bits for freeing side when doing below checking, * and page_is_pfmemalloc() is checked in __page_pool_put_page() * to avoid recycling the pfmemalloc page. */ if (unlikely(!is_pp_page(page))) return false; pp = page->pp; /* Allow direct recycle if we have reasons to believe that we are * in the same context as the consumer would run, so there's * no possible race. * __page_pool_put_page() makes sure we're not in hardirq context * and interrupts are enabled prior to accessing the cache. */ if (napi_safe || in_softirq()) { const struct napi_struct *napi = READ_ONCE(pp->p.napi); allow_direct = napi && READ_ONCE(napi->list_owner) == smp_processor_id(); } /* Driver set this to memory recycling info. Reset it on recycle. * This will *not* work for NIC using a split-page memory model. * The page will be returned to the pool here regardless of the * 'flipped' fragment being in use or not. */ page_pool_put_full_page(pp, page, allow_direct); return true; } EXPORT_SYMBOL(napi_pp_put_page); #endif static bool skb_pp_recycle(struct sk_buff *skb, void *data, bool napi_safe) { if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle) return false; return napi_pp_put_page(virt_to_page(data), napi_safe); } /** * skb_pp_frag_ref() - Increase fragment references of a page pool aware skb * @skb: page pool aware skb * * Increase the fragment reference count (pp_ref_count) of a skb. This is * intended to gain fragment references only for page pool aware skbs, * i.e. when skb->pp_recycle is true, and not for fragments in a * non-pp-recycling skb. It has a fallback to increase references on normal * pages, as page pool aware skbs may also have normal page fragments. */ static int skb_pp_frag_ref(struct sk_buff *skb) { struct skb_shared_info *shinfo; struct page *head_page; int i; if (!skb->pp_recycle) return -EINVAL; shinfo = skb_shinfo(skb); for (i = 0; i < shinfo->nr_frags; i++) { head_page = compound_head(skb_frag_page(&shinfo->frags[i])); if (likely(is_pp_page(head_page))) page_pool_ref_page(head_page); else page_ref_inc(head_page); } return 0; } static void skb_kfree_head(void *head, unsigned int end_offset) { if (end_offset == SKB_SMALL_HEAD_HEADROOM) kmem_cache_free(skb_small_head_cache, head); else kfree(head); } static void skb_free_head(struct sk_buff *skb, bool napi_safe) { unsigned char *head = skb->head; if (skb->head_frag) { if (skb_pp_recycle(skb, head, napi_safe)) return; skb_free_frag(head); } else { skb_kfree_head(head, skb_end_offset(skb)); } } static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason, bool napi_safe) { struct skb_shared_info *shinfo = skb_shinfo(skb); int i; if (skb->cloned && atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, &shinfo->dataref)) goto exit; if (skb_zcopy(skb)) { bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS; skb_zcopy_clear(skb, true); if (skip_unref) goto free_head; } for (i = 0; i < shinfo->nr_frags; i++) napi_frag_unref(&shinfo->frags[i], skb->pp_recycle, napi_safe); free_head: if (shinfo->frag_list) kfree_skb_list_reason(shinfo->frag_list, reason); skb_free_head(skb, napi_safe); exit: /* When we clone an SKB we copy the reycling bit. The pp_recycle * bit is only set on the head though, so in order to avoid races * while trying to recycle fragments on __skb_frag_unref() we need * to make one SKB responsible for triggering the recycle path. * So disable the recycling bit if an SKB is cloned and we have * additional references to the fragmented part of the SKB. * Eventually the last SKB will have the recycling bit set and it's * dataref set to 0, which will trigger the recycling */ skb->pp_recycle = 0; } /* * Free an skbuff by memory without cleaning the state. */ static void kfree_skbmem(struct sk_buff *skb) { struct sk_buff_fclones *fclones; switch (skb->fclone) { case SKB_FCLONE_UNAVAILABLE: kmem_cache_free(skbuff_cache, skb); return; case SKB_FCLONE_ORIG: fclones = container_of(skb, struct sk_buff_fclones, skb1); /* We usually free the clone (TX completion) before original skb * This test would have no chance to be true for the clone, * while here, branch prediction will be good. */ if (refcount_read(&fclones->fclone_ref) == 1) goto fastpath; break; default: /* SKB_FCLONE_CLONE */ fclones = container_of(skb, struct sk_buff_fclones, skb2); break; } if (!refcount_dec_and_test(&fclones->fclone_ref)) return; fastpath: kmem_cache_free(skbuff_fclone_cache, fclones); } void skb_release_head_state(struct sk_buff *skb) { skb_dst_drop(skb); if (skb->destructor) { DEBUG_NET_WARN_ON_ONCE(in_hardirq()); skb->destructor(skb); } #if IS_ENABLED(CONFIG_NF_CONNTRACK) nf_conntrack_put(skb_nfct(skb)); #endif skb_ext_put(skb); } /* Free everything but the sk_buff shell. */ static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason, bool napi_safe) { skb_release_head_state(skb); if (likely(skb->head)) skb_release_data(skb, reason, napi_safe); } /** * __kfree_skb - private function * @skb: buffer * * Free an sk_buff. Release anything attached to the buffer. * Clean the state. This is an internal helper function. Users should * always call kfree_skb */ void __kfree_skb(struct sk_buff *skb) { skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED, false); kfree_skbmem(skb); } EXPORT_SYMBOL(__kfree_skb); static __always_inline bool __kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason) { if (unlikely(!skb_unref(skb))) return false; DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET || u32_get_bits(reason, SKB_DROP_REASON_SUBSYS_MASK) >= SKB_DROP_REASON_SUBSYS_NUM); if (reason == SKB_CONSUMED) trace_consume_skb(skb, __builtin_return_address(0)); else trace_kfree_skb(skb, __builtin_return_address(0), reason); return true; } /** * kfree_skb_reason - free an sk_buff with special reason * @skb: buffer to free * @reason: reason why this skb is dropped * * Drop a reference to the buffer and free it if the usage count has * hit zero. Meanwhile, pass the drop reason to 'kfree_skb' * tracepoint. */ void __fix_address kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason) { if (__kfree_skb_reason(skb, reason)) __kfree_skb(skb); } EXPORT_SYMBOL(kfree_skb_reason); #define KFREE_SKB_BULK_SIZE 16 struct skb_free_array { unsigned int skb_count; void *skb_array[KFREE_SKB_BULK_SIZE]; }; static void kfree_skb_add_bulk(struct sk_buff *skb, struct skb_free_array *sa, enum skb_drop_reason reason) { /* if SKB is a clone, don't handle this case */ if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) { __kfree_skb(skb); return; } skb_release_all(skb, reason, false); sa->skb_array[sa->skb_count++] = skb; if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) { kmem_cache_free_bulk(skbuff_cache, KFREE_SKB_BULK_SIZE, sa->skb_array); sa->skb_count = 0; } } void __fix_address kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason) { struct skb_free_array sa; sa.skb_count = 0; while (segs) { struct sk_buff *next = segs->next; if (__kfree_skb_reason(segs, reason)) { skb_poison_list(segs); kfree_skb_add_bulk(segs, &sa, reason); } segs = next; } if (sa.skb_count) kmem_cache_free_bulk(skbuff_cache, sa.skb_count, sa.skb_array); } EXPORT_SYMBOL(kfree_skb_list_reason); /* Dump skb information and contents. * * Must only be called from net_ratelimit()-ed paths. * * Dumps whole packets if full_pkt, only headers otherwise. */ void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) { struct skb_shared_info *sh = skb_shinfo(skb); struct net_device *dev = skb->dev; struct sock *sk = skb->sk; struct sk_buff *list_skb; bool has_mac, has_trans; int headroom, tailroom; int i, len, seg_len; if (full_pkt) len = skb->len; else len = min_t(int, skb->len, MAX_HEADER + 128); headroom = skb_headroom(skb); tailroom = skb_tailroom(skb); has_mac = skb_mac_header_was_set(skb); has_trans = skb_transport_header_was_set(skb); printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n" "mac=(%d,%d) net=(%d,%d) trans=%d\n" "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n" "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n", level, skb->len, headroom, skb_headlen(skb), tailroom, has_mac ? skb->mac_header : -1, has_mac ? skb_mac_header_len(skb) : -1, skb->network_header, has_trans ? skb_network_header_len(skb) : -1, has_trans ? skb->transport_header : -1, sh->tx_flags, sh->nr_frags, sh->gso_size, sh->gso_type, sh->gso_segs, skb->csum, skb->ip_summed, skb->csum_complete_sw, skb->csum_valid, skb->csum_level, skb->hash, skb->sw_hash, skb->l4_hash, ntohs(skb->protocol), skb->pkt_type, skb->skb_iif); if (dev) printk("%sdev name=%s feat=%pNF\n", level, dev->name, &dev->features); if (sk) printk("%ssk family=%hu type=%u proto=%u\n", level, sk->sk_family, sk->sk_type, sk->sk_protocol); if (full_pkt && headroom) print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 16, 1, skb->head, headroom, false); seg_len = min_t(int, skb_headlen(skb), len); if (seg_len) print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 16, 1, skb->data, seg_len, false); len -= seg_len; if (full_pkt && tailroom) print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 16, 1, skb_tail_pointer(skb), tailroom, false); for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; u32 p_off, p_len, copied; struct page *p; u8 *vaddr; skb_frag_foreach_page(frag, skb_frag_off(frag), skb_frag_size(frag), p, p_off, p_len, copied) { seg_len = min_t(int, p_len, len); vaddr = kmap_atomic(p); print_hex_dump(level, "skb frag: ", DUMP_PREFIX_OFFSET, 16, 1, vaddr + p_off, seg_len, false); kunmap_atomic(vaddr); len -= seg_len; if (!len) break; } } if (full_pkt && skb_has_frag_list(skb)) { printk("skb fraglist:\n"); skb_walk_frags(skb, list_skb) skb_dump(level, list_skb, true); } } EXPORT_SYMBOL(skb_dump); /** * skb_tx_error - report an sk_buff xmit error * @skb: buffer that triggered an error * * Report xmit error if a device callback is tracking this skb. * skb must be freed afterwards. */ void skb_tx_error(struct sk_buff *skb) { if (skb) { skb_zcopy_downgrade_managed(skb); skb_zcopy_clear(skb, true); } } EXPORT_SYMBOL(skb_tx_error); #ifdef CONFIG_TRACEPOINTS /** * consume_skb - free an skbuff * @skb: buffer to free * * Drop a ref to the buffer and free it if the usage count has hit zero * Functions identically to kfree_skb, but kfree_skb assumes that the frame * is being dropped after a failure and notes that */ void consume_skb(struct sk_buff *skb) { if (!skb_unref(skb)) return; trace_consume_skb(skb, __builtin_return_address(0)); __kfree_skb(skb); } EXPORT_SYMBOL(consume_skb); #endif /** * __consume_stateless_skb - free an skbuff, assuming it is stateless * @skb: buffer to free * * Alike consume_skb(), but this variant assumes that this is the last * skb reference and all the head states have been already dropped */ void __consume_stateless_skb(struct sk_buff *skb) { trace_consume_skb(skb, __builtin_return_address(0)); skb_release_data(skb, SKB_CONSUMED, false); kfree_skbmem(skb); } static void napi_skb_cache_put(struct sk_buff *skb) { struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); u32 i; if (!kasan_mempool_poison_object(skb)) return; nc->skb_cache[nc->skb_count++] = skb; if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++) kasan_mempool_unpoison_object(nc->skb_cache[i], kmem_cache_size(skbuff_cache)); kmem_cache_free_bulk(skbuff_cache, NAPI_SKB_CACHE_HALF, nc->skb_cache + NAPI_SKB_CACHE_HALF); nc->skb_count = NAPI_SKB_CACHE_HALF; } } void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason) { skb_release_all(skb, reason, true); napi_skb_cache_put(skb); } void napi_skb_free_stolen_head(struct sk_buff *skb) { if (unlikely(skb->slow_gro)) { nf_reset_ct(skb); skb_dst_drop(skb); skb_ext_put(skb); skb_orphan(skb); skb->slow_gro = 0; } napi_skb_cache_put(skb); } void napi_consume_skb(struct sk_buff *skb, int budget) { /* Zero budget indicate non-NAPI context called us, like netpoll */ if (unlikely(!budget)) { dev_consume_skb_any(skb); return; } DEBUG_NET_WARN_ON_ONCE(!in_softirq()); if (!skb_unref(skb)) return; /* if reaching here SKB is ready to free */ trace_consume_skb(skb, __builtin_return_address(0)); /* if SKB is a clone, don't handle this case */ if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { __kfree_skb(skb); return; } skb_release_all(skb, SKB_CONSUMED, !!budget); napi_skb_cache_put(skb); } EXPORT_SYMBOL(napi_consume_skb); /* Make sure a field is contained by headers group */ #define CHECK_SKB_FIELD(field) \ BUILD_BUG_ON(offsetof(struct sk_buff, field) != \ offsetof(struct sk_buff, headers.field)); \ static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) { new->tstamp = old->tstamp; /* We do not copy old->sk */ new->dev = old->dev; memcpy(new->cb, old->cb, sizeof(old->cb)); skb_dst_copy(new, old); __skb_ext_copy(new, old); __nf_copy(new, old, false); /* Note : this field could be in the headers group. * It is not yet because we do not want to have a 16 bit hole */ new->queue_mapping = old->queue_mapping; memcpy(&new->headers, &old->headers, sizeof(new->headers)); CHECK_SKB_FIELD(protocol); CHECK_SKB_FIELD(csum); CHECK_SKB_FIELD(hash); CHECK_SKB_FIELD(priority); CHECK_SKB_FIELD(skb_iif); CHECK_SKB_FIELD(vlan_proto); CHECK_SKB_FIELD(vlan_tci); CHECK_SKB_FIELD(transport_header); CHECK_SKB_FIELD(network_header); CHECK_SKB_FIELD(mac_header); CHECK_SKB_FIELD(inner_protocol); CHECK_SKB_FIELD(inner_transport_header); CHECK_SKB_FIELD(inner_network_header); CHECK_SKB_FIELD(inner_mac_header); CHECK_SKB_FIELD(mark); #ifdef CONFIG_NETWORK_SECMARK CHECK_SKB_FIELD(secmark); #endif #ifdef CONFIG_NET_RX_BUSY_POLL CHECK_SKB_FIELD(napi_id); #endif CHECK_SKB_FIELD(alloc_cpu); #ifdef CONFIG_XPS CHECK_SKB_FIELD(sender_cpu); #endif #ifdef CONFIG_NET_SCHED CHECK_SKB_FIELD(tc_index); #endif } /* * You should not add any new code to this function. Add it to * __copy_skb_header above instead. */ static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) { #define C(x) n->x = skb->x n->next = n->prev = NULL; n->sk = NULL; __copy_skb_header(n, skb); C(len); C(data_len); C(mac_len); n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; n->cloned = 1; n->nohdr = 0; n->peeked = 0; C(pfmemalloc); C(pp_recycle); n->destructor = NULL; C(tail); C(end); C(head); C(head_frag); C(data); C(truesize); refcount_set(&n->users, 1); atomic_inc(&(skb_shinfo(skb)->dataref)); skb->cloned = 1; return n; #undef C } /** * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg * @first: first sk_buff of the msg */ struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) { struct sk_buff *n; n = alloc_skb(0, GFP_ATOMIC); if (!n) return NULL; n->len = first->len; n->data_len = first->len; n->truesize = first->truesize; skb_shinfo(n)->frag_list = first; __copy_skb_header(n, first); n->destructor = NULL; return n; } EXPORT_SYMBOL_GPL(alloc_skb_for_msg); /** * skb_morph - morph one skb into another * @dst: the skb to receive the contents * @src: the skb to supply the contents * * This is identical to skb_clone except that the target skb is * supplied by the user. * * The target skb is returned upon exit. */ struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) { skb_release_all(dst, SKB_CONSUMED, false); return __skb_clone(dst, src); } EXPORT_SYMBOL_GPL(skb_morph); int mm_account_pinned_pages(struct mmpin *mmp, size_t size) { unsigned long max_pg, num_pg, new_pg, old_pg, rlim; struct user_struct *user; if (capable(CAP_IPC_LOCK) || !size) return 0; rlim = rlimit(RLIMIT_MEMLOCK); if (rlim == RLIM_INFINITY) return 0; num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ max_pg = rlim >> PAGE_SHIFT; user = mmp->user ? : current_user(); old_pg = atomic_long_read(&user->locked_vm); do { new_pg = old_pg + num_pg; if (new_pg > max_pg) return -ENOBUFS; } while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg)); if (!mmp->user) { mmp->user = get_uid(user); mmp->num_pg = num_pg; } else { mmp->num_pg += num_pg; } return 0; } EXPORT_SYMBOL_GPL(mm_account_pinned_pages); void mm_unaccount_pinned_pages(struct mmpin *mmp) { if (mmp->user) { atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); free_uid(mmp->user); } } EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size) { struct ubuf_info_msgzc *uarg; struct sk_buff *skb; WARN_ON_ONCE(!in_task()); skb = sock_omalloc(sk, 0, GFP_KERNEL); if (!skb) return NULL; BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); uarg = (void *)skb->cb; uarg->mmp.user = NULL; if (mm_account_pinned_pages(&uarg->mmp, size)) { kfree_skb(skb); return NULL; } uarg->ubuf.callback = msg_zerocopy_callback; uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; uarg->len = 1; uarg->bytelen = size; uarg->zerocopy = 1; uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN; refcount_set(&uarg->ubuf.refcnt, 1); sock_hold(sk); return &uarg->ubuf; } static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg) { return container_of((void *)uarg, struct sk_buff, cb); } struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, struct ubuf_info *uarg) { if (uarg) { struct ubuf_info_msgzc *uarg_zc; const u32 byte_limit = 1 << 19; /* limit to a few TSO */ u32 bytelen, next; /* there might be non MSG_ZEROCOPY users */ if (uarg->callback != msg_zerocopy_callback) return NULL; /* realloc only when socket is locked (TCP, UDP cork), * so uarg->len and sk_zckey access is serialized */ if (!sock_owned_by_user(sk)) { WARN_ON_ONCE(1); return NULL; } uarg_zc = uarg_to_msgzc(uarg); bytelen = uarg_zc->bytelen + size; if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) { /* TCP can create new skb to attach new uarg */ if (sk->sk_type == SOCK_STREAM) goto new_alloc; return NULL; } next = (u32)atomic_read(&sk->sk_zckey); if ((u32)(uarg_zc->id + uarg_zc->len) == next) { if (mm_account_pinned_pages(&uarg_zc->mmp, size)) return NULL; uarg_zc->len++; uarg_zc->bytelen = bytelen; atomic_set(&sk->sk_zckey, ++next); /* no extra ref when appending to datagram (MSG_MORE) */ if (sk->sk_type == SOCK_STREAM) net_zcopy_get(uarg); return uarg; } } new_alloc: return msg_zerocopy_alloc(sk, size); } EXPORT_SYMBOL_GPL(msg_zerocopy_realloc); static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) { struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); u32 old_lo, old_hi; u64 sum_len; old_lo = serr->ee.ee_info; old_hi = serr->ee.ee_data; sum_len = old_hi - old_lo + 1ULL + len; if (sum_len >= (1ULL << 32)) return false; if (lo != old_hi + 1) return false; serr->ee.ee_data += len; return true; } static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg) { struct sk_buff *tail, *skb = skb_from_uarg(uarg); struct sock_exterr_skb *serr; struct sock *sk = skb->sk; struct sk_buff_head *q; unsigned long flags; bool is_zerocopy; u32 lo, hi; u16 len; mm_unaccount_pinned_pages(&uarg->mmp); /* if !len, there was only 1 call, and it was aborted * so do not queue a completion notification */ if (!uarg->len || sock_flag(sk, SOCK_DEAD)) goto release; len = uarg->len; lo = uarg->id; hi = uarg->id + len - 1; is_zerocopy = uarg->zerocopy; serr = SKB_EXT_ERR(skb); memset(serr, 0, sizeof(*serr)); serr->ee.ee_errno = 0; serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; serr->ee.ee_data = hi; serr->ee.ee_info = lo; if (!is_zerocopy) serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; q = &sk->sk_error_queue; spin_lock_irqsave(&q->lock, flags); tail = skb_peek_tail(q); if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || !skb_zerocopy_notify_extend(tail, lo, len)) { __skb_queue_tail(q, skb); skb = NULL; } spin_unlock_irqrestore(&q->lock, flags); sk_error_report(sk); release: consume_skb(skb); sock_put(sk); } void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, bool success) { struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg); uarg_zc->zerocopy = uarg_zc->zerocopy & success; if (refcount_dec_and_test(&uarg->refcnt)) __msg_zerocopy_callback(uarg_zc); } EXPORT_SYMBOL_GPL(msg_zerocopy_callback); void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) { struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk; atomic_dec(&sk->sk_zckey); uarg_to_msgzc(uarg)->len--; if (have_uref) msg_zerocopy_callback(NULL, uarg, true); } EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort); int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, struct msghdr *msg, int len, struct ubuf_info *uarg) { struct ubuf_info *orig_uarg = skb_zcopy(skb); int err, orig_len = skb->len; /* An skb can only point to one uarg. This edge case happens when * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. */ if (orig_uarg && uarg != orig_uarg) return -EEXIST; err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len); if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { struct sock *save_sk = skb->sk; /* Streams do not free skb on error. Reset to prev state. */ iov_iter_revert(&msg->msg_iter, skb->len - orig_len); skb->sk = sk; ___pskb_trim(skb, orig_len); skb->sk = save_sk; return err; } skb_zcopy_set(skb, uarg, NULL); return skb->len - orig_len; } EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); void __skb_zcopy_downgrade_managed(struct sk_buff *skb) { int i; skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS; for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) skb_frag_ref(skb, i); } EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed); static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, gfp_t gfp_mask) { if (skb_zcopy(orig)) { if (skb_zcopy(nskb)) { /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ if (!gfp_mask) { WARN_ON_ONCE(1); return -ENOMEM; } if (skb_uarg(nskb) == skb_uarg(orig)) return 0; if (skb_copy_ubufs(nskb, GFP_ATOMIC)) return -EIO; } skb_zcopy_set(nskb, skb_uarg(orig), NULL); } return 0; } /** * skb_copy_ubufs - copy userspace skb frags buffers to kernel * @skb: the skb to modify * @gfp_mask: allocation priority * * This must be called on skb with SKBFL_ZEROCOPY_ENABLE. * It will copy all frags into kernel and drop the reference * to userspace pages. * * If this function is called from an interrupt gfp_mask() must be * %GFP_ATOMIC. * * Returns 0 on success or a negative error code on failure * to allocate kernel memory to copy to. */ int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) { int num_frags = skb_shinfo(skb)->nr_frags; struct page *page, *head = NULL; int i, order, psize, new_frags; u32 d_off; if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) return -EINVAL; if (!num_frags) goto release; /* We might have to allocate high order pages, so compute what minimum * page order is needed. */ order = 0; while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb)) order++; psize = (PAGE_SIZE << order); new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order); for (i = 0; i < new_frags; i++) { page = alloc_pages(gfp_mask | __GFP_COMP, order); if (!page) { while (head) { struct page *next = (struct page *)page_private(head); put_page(head); head = next; } return -ENOMEM; } set_page_private(page, (unsigned long)head); head = page; } page = head; d_off = 0; for (i = 0; i < num_frags; i++) { skb_frag_t *f = &skb_shinfo(skb)->frags[i]; u32 p_off, p_len, copied; struct page *p; u8 *vaddr; skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), p, p_off, p_len, copied) { u32 copy, done = 0; vaddr = kmap_atomic(p); while (done < p_len) { if (d_off == psize) { d_off = 0; page = (struct page *)page_private(page); } copy = min_t(u32, psize - d_off, p_len - done); memcpy(page_address(page) + d_off, vaddr + p_off + done, copy); done += copy; d_off += copy; } kunmap_atomic(vaddr); } } /* skb frags release userspace buffers */ for (i = 0; i < num_frags; i++) skb_frag_unref(skb, i); /* skb frags point to kernel buffers */ for (i = 0; i < new_frags - 1; i++) { __skb_fill_page_desc(skb, i, head, 0, psize); head = (struct page *)page_private(head); } __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); skb_shinfo(skb)->nr_frags = new_frags; release: skb_zcopy_clear(skb, false); return 0; } EXPORT_SYMBOL_GPL(skb_copy_ubufs); /** * skb_clone - duplicate an sk_buff * @skb: buffer to clone * @gfp_mask: allocation priority * * Duplicate an &sk_buff. The new one is not owned by a socket. Both * copies share the same packet data but not structure. The new * buffer has a reference count of 1. If the allocation fails the * function returns %NULL otherwise the new buffer is returned. * * If this function is called from an interrupt gfp_mask() must be * %GFP_ATOMIC. */ struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) { struct sk_buff_fclones *fclones = container_of(skb, struct sk_buff_fclones, skb1); struct sk_buff *n; if (skb_orphan_frags(skb, gfp_mask)) return NULL; if (skb->fclone == SKB_FCLONE_ORIG && refcount_read(&fclones->fclone_ref) == 1) { n = &fclones->skb2; refcount_set(&fclones->fclone_ref, 2); n->fclone = SKB_FCLONE_CLONE; } else { if (skb_pfmemalloc(skb)) gfp_mask |= __GFP_MEMALLOC; n = kmem_cache_alloc(skbuff_cache, gfp_mask); if (!n) return NULL; n->fclone = SKB_FCLONE_UNAVAILABLE; } return __skb_clone(n, skb); } EXPORT_SYMBOL(skb_clone); void skb_headers_offset_update(struct sk_buff *skb, int off) { /* Only adjust this if it actually is csum_start rather than csum */ if (skb->ip_summed == CHECKSUM_PARTIAL) skb->csum_start += off; /* {transport,network,mac}_header and tail are relative to skb->head */ skb->transport_header += off; skb->network_header += off; if (skb_mac_header_was_set(skb)) skb->mac_header += off; skb->inner_transport_header += off; skb->inner_network_header += off; skb->inner_mac_header += off; } EXPORT_SYMBOL(skb_headers_offset_update); void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) { __copy_skb_header(new, old); skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; } EXPORT_SYMBOL(skb_copy_header); static inline int skb_alloc_rx_flag(const struct sk_buff *skb) { if (skb_pfmemalloc(skb)) return SKB_ALLOC_RX; return 0; } /** * skb_copy - create private copy of an sk_buff * @skb: buffer to copy * @gfp_mask: allocation priority * * Make a copy of both an &sk_buff and its data. This is used when the * caller wishes to modify the data and needs a private copy of the * data to alter. Returns %NULL on failure or the pointer to the buffer * on success. The returned buffer has a reference count of 1. * * As by-product this function converts non-linear &sk_buff to linear * one, so that &sk_buff becomes completely private and caller is allowed * to modify all the data of returned buffer. This means that this * function is not recommended for use in circumstances when only * header is going to be modified. Use pskb_copy() instead. */ struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) { int headerlen = skb_headroom(skb); unsigned int size = skb_end_offset(skb) + skb->data_len; struct sk_buff *n = __alloc_skb(size, gfp_mask, skb_alloc_rx_flag(skb), NUMA_NO_NODE); if (!n) return NULL; /* Set the data pointer */ skb_reserve(n, headerlen); /* Set the tail pointer and length */ skb_put(n, skb->len); BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); skb_copy_header(n, skb); return n; } EXPORT_SYMBOL(skb_copy); /** * __pskb_copy_fclone - create copy of an sk_buff with private head. * @skb: buffer to copy * @headroom: headroom of new skb * @gfp_mask: allocation priority * @fclone: if true allocate the copy of the skb from the fclone * cache instead of the head cache; it is recommended to set this * to true for the cases where the copy will likely be cloned * * Make a copy of both an &sk_buff and part of its data, located * in header. Fragmented data remain shared. This is used when * the caller wishes to modify only header of &sk_buff and needs * private copy of the header to alter. Returns %NULL on failure * or the pointer to the buffer on success. * The returned buffer has a reference count of 1. */ struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, gfp_t gfp_mask, bool fclone) { unsigned int size = skb_headlen(skb) + headroom; int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); if (!n) goto out; /* Set the data pointer */ skb_reserve(n, headroom); /* Set the tail pointer and length */ skb_put(n, skb_headlen(skb)); /* Copy the bytes */ skb_copy_from_linear_data(skb, n->data, n->len); n->truesize += skb->data_len; n->data_len = skb->data_len; n->len = skb->len; if (skb_shinfo(skb)->nr_frags) { int i; if (skb_orphan_frags(skb, gfp_mask) || skb_zerocopy_clone(n, skb, gfp_mask)) { kfree_skb(n); n = NULL; goto out; } for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; skb_frag_ref(skb, i); } skb_shinfo(n)->nr_frags = i; } if (skb_has_frag_list(skb)) { skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; skb_clone_fraglist(n); } skb_copy_header(n, skb); out: return n; } EXPORT_SYMBOL(__pskb_copy_fclone); /** * pskb_expand_head - reallocate header of &sk_buff * @skb: buffer to reallocate * @nhead: room to add at head * @ntail: room to add at tail * @gfp_mask: allocation priority * * Expands (or creates identical copy, if @nhead and @ntail are zero) * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have * reference count of 1. Returns zero in the case of success or error, * if expansion failed. In the last case, &sk_buff is not changed. * * All the pointers pointing into skb header may change and must be * reloaded after call to this function. */ int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask) { unsigned int osize = skb_end_offset(skb); unsigned int size = osize + nhead + ntail; long off; u8 *data; int i; BUG_ON(nhead < 0); BUG_ON(skb_shared(skb)); skb_zcopy_downgrade_managed(skb); if (skb_pfmemalloc(skb)) gfp_mask |= __GFP_MEMALLOC; data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); if (!data) goto nodata; size = SKB_WITH_OVERHEAD(size); /* Copy only real data... and, alas, header. This should be * optimized for the cases when header is void. */ memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); memcpy((struct skb_shared_info *)(data + size), skb_shinfo(skb), offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); /* * if shinfo is shared we must drop the old head gracefully, but if it * is not we can just drop the old head and let the existing refcount * be since all we did is relocate the values */ if (skb_cloned(skb)) { if (skb_orphan_frags(skb, gfp_mask)) goto nofrags; if (skb_zcopy(skb)) refcount_inc(&skb_uarg(skb)->refcnt); for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) skb_frag_ref(skb, i); if (skb_has_frag_list(skb)) skb_clone_fraglist(skb); skb_release_data(skb, SKB_CONSUMED, false); } else { skb_free_head(skb, false); } off = (data + nhead) - skb->head; skb->head = data; skb->head_frag = 0; skb->data += off; skb_set_end_offset(skb, size); #ifdef NET_SKBUFF_DATA_USES_OFFSET off = nhead; #endif skb->tail += off; skb_headers_offset_update(skb, nhead); skb->cloned = 0; skb->hdr_len = 0; skb->nohdr = 0; atomic_set(&skb_shinfo(skb)->dataref, 1); skb_metadata_clear(skb); /* It is not generally safe to change skb->truesize. * For the moment, we really care of rx path, or * when skb is orphaned (not attached to a socket). */ if (!skb->sk || skb->destructor == sock_edemux) skb->truesize += size - osize; return 0; nofrags: skb_kfree_head(data, size); nodata: return -ENOMEM; } EXPORT_SYMBOL(pskb_expand_head); /* Make private copy of skb with writable head and some headroom */ struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) { struct sk_buff *skb2; int delta = headroom - skb_headroom(skb); if (delta <= 0) skb2 = pskb_copy(skb, GFP_ATOMIC); else { skb2 = skb_clone(skb, GFP_ATOMIC); if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, GFP_ATOMIC)) { kfree_skb(skb2); skb2 = NULL; } } return skb2; } EXPORT_SYMBOL(skb_realloc_headroom); /* Note: We plan to rework this in linux-6.4 */ int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) { unsigned int saved_end_offset, saved_truesize; struct skb_shared_info *shinfo; int res; saved_end_offset = skb_end_offset(skb); saved_truesize = skb->truesize; res = pskb_expand_head(skb, 0, 0, pri); if (res) return res; skb->truesize = saved_truesize; if (likely(skb_end_offset(skb) == saved_end_offset)) return 0; /* We can not change skb->end if the original or new value * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head(). */ if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM || skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) { /* We think this path should not be taken. * Add a temporary trace to warn us just in case. */ pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n", saved_end_offset, skb_end_offset(skb)); WARN_ON_ONCE(1); return 0; } shinfo = skb_shinfo(skb); /* We are about to change back skb->end, * we need to move skb_shinfo() to its new location. */ memmove(skb->head + saved_end_offset, shinfo, offsetof(struct skb_shared_info, frags[shinfo->nr_frags])); skb_set_end_offset(skb, saved_end_offset); return 0; } /** * skb_expand_head - reallocate header of &sk_buff * @skb: buffer to reallocate * @headroom: needed headroom * * Unlike skb_realloc_headroom, this one does not allocate a new skb * if possible; copies skb->sk to new skb as needed * and frees original skb in case of failures. * * It expect increased headroom and generates warning otherwise. */ struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom) { int delta = headroom - skb_headroom(skb); int osize = skb_end_offset(skb); struct sock *sk = skb->sk; if (WARN_ONCE(delta <= 0, "%s is expecting an increase in the headroom", __func__)) return skb; delta = SKB_DATA_ALIGN(delta); /* pskb_expand_head() might crash, if skb is shared. */ if (skb_shared(skb) || !is_skb_wmem(skb)) { struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); if (unlikely(!nskb)) goto fail; if (sk) skb_set_owner_w(nskb, sk); consume_skb(skb); skb = nskb; } if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC)) goto fail; if (sk && is_skb_wmem(skb)) { delta = skb_end_offset(skb) - osize; refcount_add(delta, &sk->sk_wmem_alloc); skb->truesize += delta; } return skb; fail: kfree_skb(skb); return NULL; } EXPORT_SYMBOL(skb_expand_head); /** * skb_copy_expand - copy and expand sk_buff * @skb: buffer to copy * @newheadroom: new free bytes at head * @newtailroom: new free bytes at tail * @gfp_mask: allocation priority * * Make a copy of both an &sk_buff and its data and while doing so * allocate additional space. * * This is used when the caller wishes to modify the data and needs a * private copy of the data to alter as well as more space for new fields. * Returns %NULL on failure or the pointer to the buffer * on success. The returned buffer has a reference count of 1. * * You must pass %GFP_ATOMIC as the allocation priority if this function * is called from an interrupt. */ struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, int newtailroom, gfp_t gfp_mask) { /* * Allocate the copy buffer */ struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, gfp_mask, skb_alloc_rx_flag(skb), NUMA_NO_NODE); int oldheadroom = skb_headroom(skb); int head_copy_len, head_copy_off; if (!n) return NULL; skb_reserve(n, newheadroom); /* Set the tail pointer and length */ skb_put(n, skb->len); head_copy_len = oldheadroom; head_copy_off = 0; if (newheadroom <= head_copy_len) head_copy_len = newheadroom; else head_copy_off = newheadroom - head_copy_len; /* Copy the linear header and data. */ BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, skb->len + head_copy_len)); skb_copy_header(n, skb); skb_headers_offset_update(n, newheadroom - oldheadroom); return n; } EXPORT_SYMBOL(skb_copy_expand); /** * __skb_pad - zero pad the tail of an skb * @skb: buffer to pad * @pad: space to pad * @free_on_error: free buffer on error * * Ensure that a buffer is followed by a padding area that is zero * filled. Used by network drivers which may DMA or transfer data * beyond the buffer end onto the wire. * * May return error in out of memory cases. The skb is freed on error * if @free_on_error is true. */ int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) { int err; int ntail; /* If the skbuff is non linear tailroom is always zero.. */ if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { memset(skb->data+skb->len, 0, pad); return 0; } ntail = skb->data_len + pad - (skb->end - skb->tail); if (likely(skb_cloned(skb) || ntail > 0)) { err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); if (unlikely(err)) goto free_skb; } /* FIXME: The use of this function with non-linear skb's really needs * to be audited. */ err = skb_linearize(skb); if (unlikely(err)) goto free_skb; memset(skb->data + skb->len, 0, pad); return 0; free_skb: if (free_on_error) kfree_skb(skb); return err; } EXPORT_SYMBOL(__skb_pad); /** * pskb_put - add data to the tail of a potentially fragmented buffer * @skb: start of the buffer to use * @tail: tail fragment of the buffer to use * @len: amount of data to add * * This function extends the used data area of the potentially * fragmented buffer. @tail must be the last fragment of @skb -- or * @skb itself. If this would exceed the total buffer size the kernel * will panic. A pointer to the first byte of the extra data is * returned. */ void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) { if (tail != skb) { skb->data_len += len; skb->len += len; } return skb_put(tail, len); } EXPORT_SYMBOL_GPL(pskb_put); /** * skb_put - add data to a buffer * @skb: buffer to use * @len: amount of data to add * * This function extends the used data area of the buffer. If this would * exceed the total buffer size the kernel will panic. A pointer to the * first byte of the extra data is returned. */ void *skb_put(struct sk_buff *skb, unsigned int len) { void *tmp = skb_tail_pointer(skb); SKB_LINEAR_ASSERT(skb); skb->tail += len; skb->len += len; if (unlikely(skb->tail > skb->end)) skb_over_panic(skb, len, __builtin_return_address(0)); return tmp; } EXPORT_SYMBOL(skb_put); /** * skb_push - add data to the start of a buffer * @skb: buffer to use * @len: amount of data to add * * This function extends the used data area of the buffer at the buffer * start. If this would exceed the total buffer headroom the kernel will * panic. A pointer to the first byte of the extra data is returned. */ void *skb_push(struct sk_buff *skb, unsigned int len) { skb->data -= len; skb->len += len; if (unlikely(skb->data < skb->head)) skb_under_panic(skb, len, __builtin_return_address(0)); return skb->data; } EXPORT_SYMBOL(skb_push); /** * skb_pull - remove data from the start of a buffer * @skb: buffer to use * @len: amount of data to remove * * This function removes data from the start of a buffer, returning * the memory to the headroom. A pointer to the next data in the buffer * is returned. Once the data has been pulled future pushes will overwrite * the old data. */ void *skb_pull(struct sk_buff *skb, unsigned int len) { return skb_pull_inline(skb, len); } EXPORT_SYMBOL(skb_pull); /** * skb_pull_data - remove data from the start of a buffer returning its * original position. * @skb: buffer to use * @len: amount of data to remove * * This function removes data from the start of a buffer, returning * the memory to the headroom. A pointer to the original data in the buffer * is returned after checking if there is enough data to pull. Once the * data has been pulled future pushes will overwrite the old data. */ void *skb_pull_data(struct sk_buff *skb, size_t len) { void *data = skb->data; if (skb->len < len) return NULL; skb_pull(skb, len); return data; } EXPORT_SYMBOL(skb_pull_data); /** * skb_trim - remove end from a buffer * @skb: buffer to alter * @len: new length * * Cut the length of a buffer down by removing data from the tail. If * the buffer is already under the length specified it is not modified. * The skb must be linear. */ void skb_trim(struct sk_buff *skb, unsigned int len) { if (skb->len > len) __skb_trim(skb, len); } EXPORT_SYMBOL(skb_trim); /* Trims skb to length len. It can change skb pointers. */ int ___pskb_trim(struct sk_buff *skb, unsigned int len) { struct sk_buff **fragp; struct sk_buff *frag; int offset = skb_headlen(skb); int nfrags = skb_shinfo(skb)->nr_frags; int i; int err; if (skb_cloned(skb) && unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) return err; i = 0; if (offset >= len) goto drop_pages; for (; i < nfrags; i++) { int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); if (end < len) { offset = end; continue; } skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); drop_pages: skb_shinfo(skb)->nr_frags = i; for (; i < nfrags; i++) skb_frag_unref(skb, i); if (skb_has_frag_list(skb)) skb_drop_fraglist(skb); goto done; } for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); fragp = &frag->next) { int end = offset + frag->len; if (skb_shared(frag)) { struct sk_buff *nfrag; nfrag = skb_clone(frag, GFP_ATOMIC); if (unlikely(!nfrag)) return -ENOMEM; nfrag->next = frag->next; consume_skb(frag); frag = nfrag; *fragp = frag; } if (end < len) { offset = end; continue; } if (end > len && unlikely((err = pskb_trim(frag, len - offset)))) return err; if (frag->next) skb_drop_list(&frag->next); break; } done: if (len > skb_headlen(skb)) { skb->data_len -= skb->len - len; skb->len = len; } else { skb->len = len; skb->data_len = 0; skb_set_tail_pointer(skb, len); } if (!skb->sk || skb->destructor == sock_edemux) skb_condense(skb); return 0; } EXPORT_SYMBOL(___pskb_trim); /* Note : use pskb_trim_rcsum() instead of calling this directly */ int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) { if (skb->ip_summed == CHECKSUM_COMPLETE) { int delta = skb->len - len; skb->csum = csum_block_sub(skb->csum, skb_checksum(skb, len, delta, 0), len); } else if (skb->ip_summed == CHECKSUM_PARTIAL) { int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len; int offset = skb_checksum_start_offset(skb) + skb->csum_offset; if (offset + sizeof(__sum16) > hdlen) return -EINVAL; } return __pskb_trim(skb, len); } EXPORT_SYMBOL(pskb_trim_rcsum_slow); /** * __pskb_pull_tail - advance tail of skb header * @skb: buffer to reallocate * @delta: number of bytes to advance tail * * The function makes a sense only on a fragmented &sk_buff, * it expands header moving its tail forward and copying necessary * data from fragmented part. * * &sk_buff MUST have reference count of 1. * * Returns %NULL (and &sk_buff does not change) if pull failed * or value of new tail of skb in the case of success. * * All the pointers pointing into skb header may change and must be * reloaded after call to this function. */ /* Moves tail of skb head forward, copying data from fragmented part, * when it is necessary. * 1. It may fail due to malloc failure. * 2. It may change skb pointers. * * It is pretty complicated. Luckily, it is called only in exceptional cases. */ void *__pskb_pull_tail(struct sk_buff *skb, int delta) { /* If skb has not enough free space at tail, get new one * plus 128 bytes for future expansions. If we have enough * room at tail, reallocate without expansion only if skb is cloned. */ int i, k, eat = (skb->tail + delta) - skb->end; if (eat > 0 || skb_cloned(skb)) { if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, GFP_ATOMIC)) return NULL; } BUG_ON(skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta)); /* Optimization: no fragments, no reasons to preestimate * size of pulled pages. Superb. */ if (!skb_has_frag_list(skb)) goto pull_pages; /* Estimate size of pulled pages. */ eat = delta; for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); if (size >= eat) goto pull_pages; eat -= size; } /* If we need update frag list, we are in troubles. * Certainly, it is possible to add an offset to skb data, * but taking into account that pulling is expected to * be very rare operation, it is worth to fight against * further bloating skb head and crucify ourselves here instead. * Pure masohism, indeed. 8)8) */ if (eat) { struct sk_buff *list = skb_shinfo(skb)->frag_list; struct sk_buff *clone = NULL; struct sk_buff *insp = NULL; do { if (list->len <= eat) { /* Eaten as whole. */ eat -= list->len; list = list->next; insp = list; } else { /* Eaten partially. */ if (skb_is_gso(skb) && !list->head_frag && skb_headlen(list)) skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY; if (skb_shared(list)) { /* Sucks! We need to fork list. :-( */ clone = skb_clone(list, GFP_ATOMIC); if (!clone) return NULL; insp = list->next; list = clone; } else { /* This may be pulled without * problems. */ insp = list; } if (!pskb_pull(list, eat)) { kfree_skb(clone); return NULL; } break; } } while (eat); /* Free pulled out fragments. */ while ((list = skb_shinfo(skb)->frag_list) != insp) { skb_shinfo(skb)->frag_list = list->next; consume_skb(list); } /* And insert new clone at head. */ if (clone) { clone->next = list; skb_shinfo(skb)->frag_list = clone; } } /* Success! Now we may commit changes to skb data. */ pull_pages: eat = delta; k = 0; for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); if (size <= eat) { skb_frag_unref(skb, i); eat -= size; } else { skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; *frag = skb_shinfo(skb)->frags[i]; if (eat) { skb_frag_off_add(frag, eat); skb_frag_size_sub(frag, eat); if (!i) goto end; eat = 0; } k++; } } skb_shinfo(skb)->nr_frags = k; end: skb->tail += delta; skb->data_len -= delta; if (!skb->data_len) skb_zcopy_clear(skb, false); return skb_tail_pointer(skb); } EXPORT_SYMBOL(__pskb_pull_tail); /** * skb_copy_bits - copy bits from skb to kernel buffer * @skb: source skb * @offset: offset in source * @to: destination buffer * @len: number of bytes to copy * * Copy the specified number of bytes from the source skb to the * destination buffer. * * CAUTION ! : * If its prototype is ever changed, * check arch/{*}/net/{*}.S files, * since it is called from BPF assembly code. */ int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) { int start = skb_headlen(skb); struct sk_buff *frag_iter; int i, copy; if (offset > (int)skb->len - len) goto fault; /* Copy header. */ if ((copy = start - offset) > 0) { if (copy > len) copy = len; skb_copy_from_linear_data_offset(skb, offset, to, copy); if ((len -= copy) == 0) return 0; offset += copy; to += copy; } for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { int end; skb_frag_t *f = &skb_shinfo(skb)->frags[i]; WARN_ON(start > offset + len); end = start + skb_frag_size(f); if ((copy = end - offset) > 0) { u32 p_off, p_len, copied; struct page *p; u8 *vaddr; if (copy > len) copy = len; skb_frag_foreach_page(f, skb_frag_off(f) + offset - start, copy, p, p_off, p_len, copied) { vaddr = kmap_atomic(p); memcpy(to + copied, vaddr + p_off, p_len); kunmap_atomic(vaddr); } if ((len -= copy) == 0) return 0; offset += copy; to += copy; } start = end; } skb_walk_frags(skb, frag_iter) { int end; WARN_ON(start > offset + len); end = start + frag_iter->len; if ((copy = end - offset) > 0) { if (copy > len) copy = len; if (skb_copy_bits(frag_iter, offset - start, to, copy)) goto fault; if ((len -= copy) == 0) return 0; offset += copy; to += copy; } start = end; } if (!len) return 0; fault: return -EFAULT; } EXPORT_SYMBOL(skb_copy_bits); /* * Callback from splice_to_pipe(), if we need to release some pages * at the end of the spd in case we error'ed out in filling the pipe. */ static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) { put_page(spd->pages[i]); } static struct page *linear_to_page(struct page *page, unsigned int *len, unsigned int *offset, struct sock *sk) { struct page_frag *pfrag = sk_page_frag(sk); if (!sk_page_frag_refill(sk, pfrag)) return NULL; *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); memcpy(page_address(pfrag->page) + pfrag->offset, page_address(page) + *offset, *len); *offset = pfrag->offset; pfrag->offset += *len; return pfrag->page; } static bool spd_can_coalesce(const struct splice_pipe_desc *spd, struct page *page, unsigned int offset) { return spd->nr_pages && spd->pages[spd->nr_pages - 1] == page && (spd->partial[spd->nr_pages - 1].offset + spd->partial[spd->nr_pages - 1].len == offset); } /* * Fill page/offset/length into spd, if it can hold more pages. */ static bool spd_fill_page(struct splice_pipe_desc *spd, struct pipe_inode_info *pipe, struct page *page, unsigned int *len, unsigned int offset, bool linear, struct sock *sk) { if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) return true; if (linear) { page = linear_to_page(page, len, &offset, sk); if (!page) return true; } if (spd_can_coalesce(spd, page, offset)) { spd->partial[spd->nr_pages - 1].len += *len; return false; } get_page(page); spd->pages[spd->nr_pages] = page; spd->partial[spd->nr_pages].len = *len; spd->partial[spd->nr_pages].offset = offset; spd->nr_pages++; return false; } static bool __splice_segment(struct page *page, unsigned int poff, unsigned int plen, unsigned int *off, unsigned int *len, struct splice_pipe_desc *spd, bool linear, struct sock *sk, struct pipe_inode_info *pipe) { if (!*len) return true; /* skip this segment if already processed */ if (*off >= plen) { *off -= plen; return false; } /* ignore any bits we already processed */ poff += *off; plen -= *off; *off = 0; do { unsigned int flen = min(*len, plen); if (spd_fill_page(spd, pipe, page, &flen, poff, linear, sk)) return true; poff += flen; plen -= flen; *len -= flen; } while (*len && plen); return false; } /* * Map linear and fragment data from the skb to spd. It reports true if the * pipe is full or if we already spliced the requested length. */ static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, unsigned int *offset, unsigned int *len, struct splice_pipe_desc *spd, struct sock *sk) { int seg; struct sk_buff *iter; /* map the linear part : * If skb->head_frag is set, this 'linear' part is backed by a * fragment, and if the head is not shared with any clones then * we can avoid a copy since we own the head portion of this page. */ if (__splice_segment(virt_to_page(skb->data), (unsigned long) skb->data & (PAGE_SIZE - 1), skb_headlen(skb), offset, len, spd, skb_head_is_locked(skb), sk, pipe)) return true; /* * then map the fragments */ for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; if (__splice_segment(skb_frag_page(f), skb_frag_off(f), skb_frag_size(f), offset, len, spd, false, sk, pipe)) return true; } skb_walk_frags(skb, iter) { if (*offset >= iter->len) { *offset -= iter->len; continue; } /* __skb_splice_bits() only fails if the output has no room * left, so no point in going over the frag_list for the error * case. */ if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) return true; } return false; } /* * Map data from the skb to a pipe. Should handle both the linear part, * the fragments, and the frag list. */ int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, struct pipe_inode_info *pipe, unsigned int tlen, unsigned int flags) { struct partial_page partial[MAX_SKB_FRAGS]; struct page *pages[MAX_SKB_FRAGS]; struct splice_pipe_desc spd = { .pages = pages, .partial = partial, .nr_pages_max = MAX_SKB_FRAGS, .ops = &nosteal_pipe_buf_ops, .spd_release = sock_spd_release, }; int ret = 0; __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); if (spd.nr_pages) ret = splice_to_pipe(pipe, &spd); return ret; } EXPORT_SYMBOL_GPL(skb_splice_bits); static int sendmsg_locked(struct sock *sk, struct msghdr *msg) { struct socket *sock = sk->sk_socket; size_t size = msg_data_left(msg); if (!sock) return -EINVAL; if (!sock->ops->sendmsg_locked) return sock_no_sendmsg_locked(sk, msg, size); return sock->ops->sendmsg_locked(sk, msg, size); } static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg) { struct socket *sock = sk->sk_socket; if (!sock) return -EINVAL; return sock_sendmsg(sock, msg); } typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg); static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len, sendmsg_func sendmsg) { unsigned int orig_len = len; struct sk_buff *head = skb; unsigned short fragidx; int slen, ret; do_frag_list: /* Deal with head data */ while (offset < skb_headlen(skb) && len) { struct kvec kv; struct msghdr msg; slen = min_t(int, len, skb_headlen(skb) - offset); kv.iov_base = skb->data + offset; kv.iov_len = slen; memset(&msg, 0, sizeof(msg)); msg.msg_flags = MSG_DONTWAIT; iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen); ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked, sendmsg_unlocked, sk, &msg); if (ret <= 0) goto error; offset += ret; len -= ret; } /* All the data was skb head? */ if (!len) goto out; /* Make offset relative to start of frags */ offset -= skb_headlen(skb); /* Find where we are in frag list */ for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; if (offset < skb_frag_size(frag)) break; offset -= skb_frag_size(frag); } for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; slen = min_t(size_t, len, skb_frag_size(frag) - offset); while (slen) { struct bio_vec bvec; struct msghdr msg = { .msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT, }; bvec_set_page(&bvec, skb_frag_page(frag), slen, skb_frag_off(frag) + offset); iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, slen); ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked, sendmsg_unlocked, sk, &msg); if (ret <= 0) goto error; len -= ret; offset += ret; slen -= ret; } offset = 0; } if (len) { /* Process any frag lists */ if (skb == head) { if (skb_has_frag_list(skb)) { skb = skb_shinfo(skb)->frag_list; goto do_frag_list; } } else if (skb->next) { skb = skb->next; goto do_frag_list; } } out: return orig_len - len; error: return orig_len == len ? ret : orig_len - len; } /* Send skb data on a socket. Socket must be locked. */ int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, int len) { return __skb_send_sock(sk, skb, offset, len, sendmsg_locked); } EXPORT_SYMBOL_GPL(skb_send_sock_locked); /* Send skb data on a socket. Socket must be unlocked. */ int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) { return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked); } /** * skb_store_bits - store bits from kernel buffer to skb * @skb: destination buffer * @offset: offset in destination * @from: source buffer * @len: number of bytes to copy * * Copy the specified number of bytes from the source buffer to the * destination skb. This function handles all the messy bits of * traversing fragment lists and such. */ int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) { int start = skb_headlen(skb); struct sk_buff *frag_iter; int i, copy; if (offset > (int)skb->len - len) goto fault; if ((copy = start - offset) > 0) { if (copy > len) copy = len; skb_copy_to_linear_data_offset(skb, offset, from, copy); if ((len -= copy) == 0) return 0; offset += copy; from += copy; } for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; int end; WARN_ON(start > offset + len); end = start + skb_frag_size(frag); if ((copy = end - offset) > 0) { u32 p_off, p_len, copied; struct page *p; u8 *vaddr; if (copy > len) copy = len; skb_frag_foreach_page(frag, skb_frag_off(frag) + offset - start, copy, p, p_off, p_len, copied) { vaddr = kmap_atomic(p); memcpy(vaddr + p_off, from + copied, p_len); kunmap_atomic(vaddr); } if ((len -= copy) == 0) return 0; offset += copy; from += copy; } start = end; } skb_walk_frags(skb, frag_iter) { int end; WARN_ON(start > offset + len); end = start + frag_iter->len; if ((copy = end - offset) > 0) { if (copy > len) copy = len; if (skb_store_bits(frag_iter, offset - start, from, copy)) goto fault; if ((len -= copy) == 0) return 0; offset += copy; from += copy; } start = end; } if (!len) return 0; fault: return -EFAULT; } EXPORT_SYMBOL(skb_store_bits); /* Checksum skb data. */ __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, __wsum csum, const struct skb_checksum_ops *ops) { int start = skb_headlen(skb); int i, copy = start - offset; struct sk_buff *frag_iter; int pos = 0; /* Checksum header. */ if (copy > 0) { if (copy > len) copy = len; csum = INDIRECT_CALL_1(ops->update, csum_partial_ext, skb->data + offset, copy, csum); if ((len -= copy) == 0) return csum; offset += copy; pos = copy; } for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { int end; skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; WARN_ON(start > offset + len); end = start + skb_frag_size(frag); if ((copy = end - offset) > 0) { u32 p_off, p_len, copied; struct page *p; __wsum csum2; u8 *vaddr; if (copy > len) copy = len; skb_frag_foreach_page(frag, skb_frag_off(frag) + offset - start, copy, p, p_off, p_len, copied) { vaddr = kmap_atomic(p); csum2 = INDIRECT_CALL_1(ops->update, csum_partial_ext, vaddr + p_off, p_len, 0); kunmap_atomic(vaddr); csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext, csum, csum2, pos, p_len); pos += p_len; } if (!(len -= copy)) return csum; offset += copy; } start = end; } skb_walk_frags(skb, frag_iter) { int end; WARN_ON(start > offset + len); end = start + frag_iter->len; if ((copy = end - offset) > 0) { __wsum csum2; if (copy > len) copy = len; csum2 = __skb_checksum(frag_iter, offset - start, copy, 0, ops); csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext, csum, csum2, pos, copy); if ((len -= copy) == 0) return csum; offset += copy; pos += copy; } start = end; } BUG_ON(len); return csum; } EXPORT_SYMBOL(__skb_checksum); __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, __wsum csum) { const struct skb_checksum_ops ops = { .update = csum_partial_ext, .combine = csum_block_add_ext, }; return __skb_checksum(skb, offset, len, csum, &ops); } EXPORT_SYMBOL(skb_checksum); /* Both of above in one bottle. */ __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, int len) { int start = skb_headlen(skb); int i, copy = start - offset; struct sk_buff *frag_iter; int pos = 0; __wsum csum = 0; /* Copy header. */ if (copy > 0) { if (copy > len) copy = len; csum = csum_partial_copy_nocheck(skb->data + offset, to, copy); if ((len -= copy) == 0) return csum; offset += copy; to += copy; pos = copy; } for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { int end; WARN_ON(start > offset + len); end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); if ((copy = end - offset) > 0) { skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; u32 p_off, p_len, copied; struct page *p; __wsum csum2; u8 *vaddr; if (copy > len) copy = len; skb_frag_foreach_page(frag, skb_frag_off(frag) + offset - start, copy, p, p_off, p_len, copied) { vaddr = kmap_atomic(p); csum2 = csum_partial_copy_nocheck(vaddr + p_off, to + copied, p_len); kunmap_atomic(vaddr); csum = csum_block_add(csum, csum2, pos); pos += p_len; } if (!(len -= copy)) return csum; offset += copy; to += copy; } start = end; } skb_walk_frags(skb, frag_iter) { __wsum csum2; int end; WARN_ON(start > offset + len); end = start + frag_iter->len; if ((copy = end - offset) > 0) { if (copy > len) copy = len; csum2 = skb_copy_and_csum_bits(frag_iter, offset - start, to, copy); csum = csum_block_add(csum, csum2, pos); if ((len -= copy) == 0) return csum; offset += copy; to += copy; pos += copy; } start = end; } BUG_ON(len); return csum; } EXPORT_SYMBOL(skb_copy_and_csum_bits); __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) { __sum16 sum; sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); /* See comments in __skb_checksum_complete(). */ if (likely(!sum)) { if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && !skb->csum_complete_sw) netdev_rx_csum_fault(skb->dev, skb); } if (!skb_shared(skb)) skb->csum_valid = !sum; return sum; } EXPORT_SYMBOL(__skb_checksum_complete_head); /* This function assumes skb->csum already holds pseudo header's checksum, * which has been changed from the hardware checksum, for example, by * __skb_checksum_validate_complete(). And, the original skb->csum must * have been validated unsuccessfully for CHECKSUM_COMPLETE case. * * It returns non-zero if the recomputed checksum is still invalid, otherwise * zero. The new checksum is stored back into skb->csum unless the skb is * shared. */ __sum16 __skb_checksum_complete(struct sk_buff *skb) { __wsum csum; __sum16 sum; csum = skb_checksum(skb, 0, skb->len, 0); sum = csum_fold(csum_add(skb->csum, csum)); /* This check is inverted, because we already knew the hardware * checksum is invalid before calling this function. So, if the * re-computed checksum is valid instead, then we have a mismatch * between the original skb->csum and skb_checksum(). This means either * the original hardware checksum is incorrect or we screw up skb->csum * when moving skb->data around. */ if (likely(!sum)) { if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && !skb->csum_complete_sw) netdev_rx_csum_fault(skb->dev, skb); } if (!skb_shared(skb)) { /* Save full packet checksum */ skb->csum = csum; skb->ip_summed = CHECKSUM_COMPLETE; skb->csum_complete_sw = 1; skb->csum_valid = !sum; } return sum; } EXPORT_SYMBOL(__skb_checksum_complete); static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) { net_warn_ratelimited( "%s: attempt to compute crc32c without libcrc32c.ko\n", __func__); return 0; } static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, int offset, int len) { net_warn_ratelimited( "%s: attempt to compute crc32c without libcrc32c.ko\n", __func__); return 0; } static const struct skb_checksum_ops default_crc32c_ops = { .update = warn_crc32c_csum_update, .combine = warn_crc32c_csum_combine, }; const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = &default_crc32c_ops; EXPORT_SYMBOL(crc32c_csum_stub); /** * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() * @from: source buffer * * Calculates the amount of linear headroom needed in the 'to' skb passed * into skb_zerocopy(). */ unsigned int skb_zerocopy_headlen(const struct sk_buff *from) { unsigned int hlen = 0; if (!from->head_frag || skb_headlen(from) < L1_CACHE_BYTES || skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) { hlen = skb_headlen(from); if (!hlen) hlen = from->len; } if (skb_has_frag_list(from)) hlen = from->len; return hlen; } EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); /** * skb_zerocopy - Zero copy skb to skb * @to: destination buffer * @from: source buffer * @len: number of bytes to copy from source buffer * @hlen: size of linear headroom in destination buffer * * Copies up to `len` bytes from `from` to `to` by creating references * to the frags in the source buffer. * * The `hlen` as calculated by skb_zerocopy_headlen() specifies the * headroom in the `to` buffer. * * Return value: * 0: everything is OK * -ENOMEM: couldn't orphan frags of @from due to lack of memory * -EFAULT: skb_copy_bits() found some problem with skb geometry */ int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) { int i, j = 0; int plen = 0; /* length of skb->head fragment */ int ret; struct page *page; unsigned int offset; BUG_ON(!from->head_frag && !hlen); /* dont bother with small payloads */ if (len <= skb_tailroom(to)) return skb_copy_bits(from, 0, skb_put(to, len), len); if (hlen) { ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); if (unlikely(ret)) return ret; len -= hlen; } else { plen = min_t(int, skb_headlen(from), len); if (plen) { page = virt_to_head_page(from->head); offset = from->data - (unsigned char *)page_address(page); __skb_fill_page_desc(to, 0, page, offset, plen); get_page(page); j = 1; len -= plen; } } skb_len_add(to, len + plen); if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { skb_tx_error(from); return -ENOMEM; } skb_zerocopy_clone(to, from, GFP_ATOMIC); for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { int size; if (!len) break; skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), len); skb_frag_size_set(&skb_shinfo(to)->frags[j], size); len -= size; skb_frag_ref(to, j); j++; } skb_shinfo(to)->nr_frags = j; return 0; } EXPORT_SYMBOL_GPL(skb_zerocopy); void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) { __wsum csum; long csstart; if (skb->ip_summed == CHECKSUM_PARTIAL) csstart = skb_checksum_start_offset(skb); else csstart = skb_headlen(skb); BUG_ON(csstart > skb_headlen(skb)); skb_copy_from_linear_data(skb, to, csstart); csum = 0; if (csstart != skb->len) csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, skb->len - csstart); if (skb->ip_summed == CHECKSUM_PARTIAL) { long csstuff = csstart + skb->csum_offset; *((__sum16 *)(to + csstuff)) = csum_fold(csum); } } EXPORT_SYMBOL(skb_copy_and_csum_dev); /** * skb_dequeue - remove from the head of the queue * @list: list to dequeue from * * Remove the head of the list. The list lock is taken so the function * may be used safely with other locking list functions. The head item is * returned or %NULL if the list is empty. */ struct sk_buff *skb_dequeue(struct sk_buff_head *list) { unsigned long flags; struct sk_buff *result; spin_lock_irqsave(&list->lock, flags); result = __skb_dequeue(list); spin_unlock_irqrestore(&list->lock, flags); return result; } EXPORT_SYMBOL(skb_dequeue); /** * skb_dequeue_tail - remove from the tail of the queue * @list: list to dequeue from * * Remove the tail of the list. The list lock is taken so the function * may be used safely with other locking list functions. The tail item is * returned or %NULL if the list is empty. */ struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) { unsigned long flags; struct sk_buff *result; spin_lock_irqsave(&list->lock, flags); result = __skb_dequeue_tail(list); spin_unlock_irqrestore(&list->lock, flags); return result; } EXPORT_SYMBOL(skb_dequeue_tail); /** * skb_queue_purge_reason - empty a list * @list: list to empty * @reason: drop reason * * Delete all buffers on an &sk_buff list. Each buffer is removed from * the list and one reference dropped. This function takes the list * lock and is atomic with respect to other list locking functions. */ void skb_queue_purge_reason(struct sk_buff_head *list, enum skb_drop_reason reason) { struct sk_buff_head tmp; unsigned long flags; if (skb_queue_empty_lockless(list)) return; __skb_queue_head_init(&tmp); spin_lock_irqsave(&list->lock, flags); skb_queue_splice_init(list, &tmp); spin_unlock_irqrestore(&list->lock, flags); __skb_queue_purge_reason(&tmp, reason); } EXPORT_SYMBOL(skb_queue_purge_reason); /** * skb_rbtree_purge - empty a skb rbtree * @root: root of the rbtree to empty * Return value: the sum of truesizes of all purged skbs. * * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from * the list and one reference dropped. This function does not take * any lock. Synchronization should be handled by the caller (e.g., TCP * out-of-order queue is protected by the socket lock). */ unsigned int skb_rbtree_purge(struct rb_root *root) { struct rb_node *p = rb_first(root); unsigned int sum = 0; while (p) { struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); p = rb_next(p); rb_erase(&skb->rbnode, root); sum += skb->truesize; kfree_skb(skb); } return sum; } void skb_errqueue_purge(struct sk_buff_head *list) { struct sk_buff *skb, *next; struct sk_buff_head kill; unsigned long flags; __skb_queue_head_init(&kill); spin_lock_irqsave(&list->lock, flags); skb_queue_walk_safe(list, skb, next) { if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY || SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING) continue; __skb_unlink(skb, list); __skb_queue_tail(&kill, skb); } spin_unlock_irqrestore(&list->lock, flags); __skb_queue_purge(&kill); } EXPORT_SYMBOL(skb_errqueue_purge); /** * skb_queue_head - queue a buffer at the list head * @list: list to use * @newsk: buffer to queue * * Queue a buffer at the start of the list. This function takes the * list lock and can be used safely with other locking &sk_buff functions * safely. * * A buffer cannot be placed on two lists at the same time. */ void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) { unsigned long flags; spin_lock_irqsave(&list->lock, flags); __skb_queue_head(list, newsk); spin_unlock_irqrestore(&list->lock, flags); } EXPORT_SYMBOL(skb_queue_head); /** * skb_queue_tail - queue a buffer at the list tail * @list: list to use * @newsk: buffer to queue * * Queue a buffer at the tail of the list. This function takes the * list lock and can be used safely with other locking &sk_buff functions * safely. * * A buffer cannot be placed on two lists at the same time. */ void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) { unsigned long flags; spin_lock_irqsave(&list->lock, flags); __skb_queue_tail(list, newsk); spin_unlock_irqrestore(&list->lock, flags); } EXPORT_SYMBOL(skb_queue_tail); /** * skb_unlink - remove a buffer from a list * @skb: buffer to remove * @list: list to use * * Remove a packet from a list. The list locks are taken and this * function is atomic with respect to other list locked calls * * You must know what list the SKB is on. */ void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) { unsigned long flags; spin_lock_irqsave(&list->lock, flags); __skb_unlink(skb, list); spin_unlock_irqrestore(&list->lock, flags); } EXPORT_SYMBOL(skb_unlink); /** * skb_append - append a buffer * @old: buffer to insert after * @newsk: buffer to insert * @list: list to use * * Place a packet after a given packet in a list. The list locks are taken * and this function is atomic with respect to other list locked calls. * A buffer cannot be placed on two lists at the same time. */ void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) { unsigned long flags; spin_lock_irqsave(&list->lock, flags); __skb_queue_after(list, old, newsk); spin_unlock_irqrestore(&list->lock, flags); } EXPORT_SYMBOL(skb_append); static inline void skb_split_inside_header(struct sk_buff *skb, struct sk_buff* skb1, const u32 len, const int pos) { int i; skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), pos - len); /* And move data appendix as is. */ for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; skb_shinfo(skb)->nr_frags = 0; skb1->data_len = skb->data_len; skb1->len += skb1->data_len; skb->data_len = 0; skb->len = len; skb_set_tail_pointer(skb, len); } static inline void skb_split_no_header(struct sk_buff *skb, struct sk_buff* skb1, const u32 len, int pos) { int i, k = 0; const int nfrags = skb_shinfo(skb)->nr_frags; skb_shinfo(skb)->nr_frags = 0; skb1->len = skb1->data_len = skb->len - len; skb->len = len; skb->data_len = len - pos; for (i = 0; i < nfrags; i++) { int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); if (pos + size > len) { skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; if (pos < len) { /* Split frag. * We have two variants in this case: * 1. Move all the frag to the second * part, if it is possible. F.e. * this approach is mandatory for TUX, * where splitting is expensive. * 2. Split is accurately. We make this. */ skb_frag_ref(skb, i); skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); skb_shinfo(skb)->nr_frags++; } k++; } else skb_shinfo(skb)->nr_frags++; pos += size; } skb_shinfo(skb1)->nr_frags = k; } /** * skb_split - Split fragmented skb to two parts at length len. * @skb: the buffer to split * @skb1: the buffer to receive the second part * @len: new length for skb */ void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) { int pos = skb_headlen(skb); const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY; skb_zcopy_downgrade_managed(skb); skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags; skb_zerocopy_clone(skb1, skb, 0); if (len < pos) /* Split line is inside header. */ skb_split_inside_header(skb, skb1, len, pos); else /* Second chunk has no header, nothing to copy. */ skb_split_no_header(skb, skb1, len, pos); } EXPORT_SYMBOL(skb_split); /* Shifting from/to a cloned skb is a no-go. * * Caller cannot keep skb_shinfo related pointers past calling here! */ static int skb_prepare_for_shift(struct sk_buff *skb) { return skb_unclone_keeptruesize(skb, GFP_ATOMIC); } /** * skb_shift - Shifts paged data partially from skb to another * @tgt: buffer into which tail data gets added * @skb: buffer from which the paged data comes from * @shiftlen: shift up to this many bytes * * Attempts to shift up to shiftlen worth of bytes, which may be less than * the length of the skb, from skb to tgt. Returns number bytes shifted. * It's up to caller to free skb if everything was shifted. * * If @tgt runs out of frags, the whole operation is aborted. * * Skb cannot include anything else but paged data while tgt is allowed * to have non-paged data as well. * * TODO: full sized shift could be optimized but that would need * specialized skb free'er to handle frags without up-to-date nr_frags. */ int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) { int from, to, merge, todo; skb_frag_t *fragfrom, *fragto; BUG_ON(shiftlen > skb->len); if (skb_headlen(skb)) return 0; if (skb_zcopy(tgt) || skb_zcopy(skb)) return 0; todo = shiftlen; from = 0; to = skb_shinfo(tgt)->nr_frags; fragfrom = &skb_shinfo(skb)->frags[from]; /* Actual merge is delayed until the point when we know we can * commit all, so that we don't have to undo partial changes */ if (!to || !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), skb_frag_off(fragfrom))) { merge = -1; } else { merge = to - 1; todo -= skb_frag_size(fragfrom); if (todo < 0) { if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) return 0; /* All previous frag pointers might be stale! */ fragfrom = &skb_shinfo(skb)->frags[from]; fragto = &skb_shinfo(tgt)->frags[merge]; skb_frag_size_add(fragto, shiftlen); skb_frag_size_sub(fragfrom, shiftlen); skb_frag_off_add(fragfrom, shiftlen); goto onlymerged; } from++; } /* Skip full, not-fitting skb to avoid expensive operations */ if ((shiftlen == skb->len) && (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) return 0; if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) return 0; while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { if (to == MAX_SKB_FRAGS) return 0; fragfrom = &skb_shinfo(skb)->frags[from]; fragto = &skb_shinfo(tgt)->frags[to]; if (todo >= skb_frag_size(fragfrom)) { *fragto = *fragfrom; todo -= skb_frag_size(fragfrom); from++; to++; } else { __skb_frag_ref(fragfrom); skb_frag_page_copy(fragto, fragfrom); skb_frag_off_copy(fragto, fragfrom); skb_frag_size_set(fragto, todo); skb_frag_off_add(fragfrom, todo); skb_frag_size_sub(fragfrom, todo); todo = 0; to++; break; } } /* Ready to "commit" this state change to tgt */ skb_shinfo(tgt)->nr_frags = to; if (merge >= 0) { fragfrom = &skb_shinfo(skb)->frags[0]; fragto = &skb_shinfo(tgt)->frags[merge]; skb_frag_size_add(fragto, skb_frag_size(fragfrom)); __skb_frag_unref(fragfrom, skb->pp_recycle); } /* Reposition in the original skb */ to = 0; while (from < skb_shinfo(skb)->nr_frags) skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; skb_shinfo(skb)->nr_frags = to; BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); onlymerged: /* Most likely the tgt won't ever need its checksum anymore, skb on * the other hand might need it if it needs to be resent */ tgt->ip_summed = CHECKSUM_PARTIAL; skb->ip_summed = CHECKSUM_PARTIAL; skb_len_add(skb, -shiftlen); skb_len_add(tgt, shiftlen); return shiftlen; } /** * skb_prepare_seq_read - Prepare a sequential read of skb data * @skb: the buffer to read * @from: lower offset of data to be read * @to: upper offset of data to be read * @st: state variable * * Initializes the specified state variable. Must be called before * invoking skb_seq_read() for the first time. */ void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, unsigned int to, struct skb_seq_state *st) { st->lower_offset = from; st->upper_offset = to; st->root_skb = st->cur_skb = skb; st->frag_idx = st->stepped_offset = 0; st->frag_data = NULL; st->frag_off = 0; } EXPORT_SYMBOL(skb_prepare_seq_read); /** * skb_seq_read - Sequentially read skb data * @consumed: number of bytes consumed by the caller so far * @data: destination pointer for data to be returned * @st: state variable * * Reads a block of skb data at @consumed relative to the * lower offset specified to skb_prepare_seq_read(). Assigns * the head of the data block to @data and returns the length * of the block or 0 if the end of the skb data or the upper * offset has been reached. * * The caller is not required to consume all of the data * returned, i.e. @consumed is typically set to the number * of bytes already consumed and the next call to * skb_seq_read() will return the remaining part of the block. * * Note 1: The size of each block of data returned can be arbitrary, * this limitation is the cost for zerocopy sequential * reads of potentially non linear data. * * Note 2: Fragment lists within fragments are not implemented * at the moment, state->root_skb could be replaced with * a stack for this purpose. */ unsigned int skb_seq_read(unsigned int consumed, const u8 **data, struct skb_seq_state *st) { unsigned int block_limit, abs_offset = consumed + st->lower_offset; skb_frag_t *frag; if (unlikely(abs_offset >= st->upper_offset)) { if (st->frag_data) { kunmap_atomic(st->frag_data); st->frag_data = NULL; } return 0; } next_skb: block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; if (abs_offset < block_limit && !st->frag_data) { *data = st->cur_skb->data + (abs_offset - st->stepped_offset); return block_limit - abs_offset; } if (st->frag_idx == 0 && !st->frag_data) st->stepped_offset += skb_headlen(st->cur_skb); while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { unsigned int pg_idx, pg_off, pg_sz; frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; pg_idx = 0; pg_off = skb_frag_off(frag); pg_sz = skb_frag_size(frag); if (skb_frag_must_loop(skb_frag_page(frag))) { pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT; pg_off = offset_in_page(pg_off + st->frag_off); pg_sz = min_t(unsigned int, pg_sz - st->frag_off, PAGE_SIZE - pg_off); } block_limit = pg_sz + st->stepped_offset; if (abs_offset < block_limit) { if (!st->frag_data) st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx); *data = (u8 *)st->frag_data + pg_off + (abs_offset - st->stepped_offset); return block_limit - abs_offset; } if (st->frag_data) { kunmap_atomic(st->frag_data); st->frag_data = NULL; } st->stepped_offset += pg_sz; st->frag_off += pg_sz; if (st->frag_off == skb_frag_size(frag)) { st->frag_off = 0; st->frag_idx++; } } if (st->frag_data) { kunmap_atomic(st->frag_data); st->frag_data = NULL; } if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { st->cur_skb = skb_shinfo(st->root_skb)->frag_list; st->frag_idx = 0; goto next_skb; } else if (st->cur_skb->next) { st->cur_skb = st->cur_skb->next; st->frag_idx = 0; goto next_skb; } return 0; } EXPORT_SYMBOL(skb_seq_read); /** * skb_abort_seq_read - Abort a sequential read of skb data * @st: state variable * * Must be called if skb_seq_read() was not called until it * returned 0. */ void skb_abort_seq_read(struct skb_seq_state *st) { if (st->frag_data) kunmap_atomic(st->frag_data); } EXPORT_SYMBOL(skb_abort_seq_read); #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, struct ts_config *conf, struct ts_state *state) { return skb_seq_read(offset, text, TS_SKB_CB(state)); } static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) { skb_abort_seq_read(TS_SKB_CB(state)); } /** * skb_find_text - Find a text pattern in skb data * @skb: the buffer to look in * @from: search offset * @to: search limit * @config: textsearch configuration * * Finds a pattern in the skb data according to the specified * textsearch configuration. Use textsearch_next() to retrieve * subsequent occurrences of the pattern. Returns the offset * to the first occurrence or UINT_MAX if no match was found. */ unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, unsigned int to, struct ts_config *config) { unsigned int patlen = config->ops->get_pattern_len(config); struct ts_state state; unsigned int ret; BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb)); config->get_next_block = skb_ts_get_next_block; config->finish = skb_ts_finish; skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); ret = textsearch_find(config, &state); return (ret + patlen <= to - from ? ret : UINT_MAX); } EXPORT_SYMBOL(skb_find_text); int skb_append_pagefrags(struct sk_buff *skb, struct page *page, int offset, size_t size, size_t max_frags) { int i = skb_shinfo(skb)->nr_frags; if (skb_can_coalesce(skb, i, page, offset)) { skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); } else if (i < max_frags) { skb_zcopy_downgrade_managed(skb); get_page(page); skb_fill_page_desc_noacc(skb, i, page, offset, size); } else { return -EMSGSIZE; } return 0; } EXPORT_SYMBOL_GPL(skb_append_pagefrags); /** * skb_pull_rcsum - pull skb and update receive checksum * @skb: buffer to update * @len: length of data pulled * * This function performs an skb_pull on the packet and updates * the CHECKSUM_COMPLETE checksum. It should be used on * receive path processing instead of skb_pull unless you know * that the checksum difference is zero (e.g., a valid IP header) * or you are setting ip_summed to CHECKSUM_NONE. */ void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) { unsigned char *data = skb->data; BUG_ON(len > skb->len); __skb_pull(skb, len); skb_postpull_rcsum(skb, data, len); return skb->data; } EXPORT_SYMBOL_GPL(skb_pull_rcsum); static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) { skb_frag_t head_frag; struct page *page; page = virt_to_head_page(frag_skb->head); skb_frag_fill_page_desc(&head_frag, page, frag_skb->data - (unsigned char *)page_address(page), skb_headlen(frag_skb)); return head_frag; } struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features, unsigned int offset) { struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; unsigned int tnl_hlen = skb_tnl_header_len(skb); unsigned int delta_truesize = 0; unsigned int delta_len = 0; struct sk_buff *tail = NULL; struct sk_buff *nskb, *tmp; int len_diff, err; skb_push(skb, -skb_network_offset(skb) + offset); /* Ensure the head is writeable before touching the shared info */ err = skb_unclone(skb, GFP_ATOMIC); if (err) goto err_linearize; skb_shinfo(skb)->frag_list = NULL; while (list_skb) { nskb = list_skb; list_skb = list_skb->next; err = 0; delta_truesize += nskb->truesize; if (skb_shared(nskb)) { tmp = skb_clone(nskb, GFP_ATOMIC); if (tmp) { consume_skb(nskb); nskb = tmp; err = skb_unclone(nskb, GFP_ATOMIC); } else { err = -ENOMEM; } } if (!tail) skb->next = nskb; else tail->next = nskb; if (unlikely(err)) { nskb->next = list_skb; goto err_linearize; } tail = nskb; delta_len += nskb->len; skb_push(nskb, -skb_network_offset(nskb) + offset); skb_release_head_state(nskb); len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb); __copy_skb_header(nskb, skb); skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); nskb->transport_header += len_diff; skb_copy_from_linear_data_offset(skb, -tnl_hlen, nskb->data - tnl_hlen, offset + tnl_hlen); if (skb_needs_linearize(nskb, features) && __skb_linearize(nskb)) goto err_linearize; } skb->truesize = skb->truesize - delta_truesize; skb->data_len = skb->data_len - delta_len; skb->len = skb->len - delta_len; skb_gso_reset(skb); skb->prev = tail; if (skb_needs_linearize(skb, features) && __skb_linearize(skb)) goto err_linearize; skb_get(skb); return skb; err_linearize: kfree_skb_list(skb->next); skb->next = NULL; return ERR_PTR(-ENOMEM); } EXPORT_SYMBOL_GPL(skb_segment_list); /** * skb_segment - Perform protocol segmentation on skb. * @head_skb: buffer to segment * @features: features for the output path (see dev->features) * * This function performs segmentation on the given skb. It returns * a pointer to the first in a list of new skbs for the segments. * In case of error it returns ERR_PTR(err). */ struct sk_buff *skb_segment(struct sk_buff *head_skb, netdev_features_t features) { struct sk_buff *segs = NULL; struct sk_buff *tail = NULL; struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; unsigned int mss = skb_shinfo(head_skb)->gso_size; unsigned int doffset = head_skb->data - skb_mac_header(head_skb); unsigned int offset = doffset; unsigned int tnl_hlen = skb_tnl_header_len(head_skb); unsigned int partial_segs = 0; unsigned int headroom; unsigned int len = head_skb->len; struct sk_buff *frag_skb; skb_frag_t *frag; __be16 proto; bool csum, sg; int err = -ENOMEM; int i = 0; int nfrags, pos; if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) && mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) { struct sk_buff *check_skb; for (check_skb = list_skb; check_skb; check_skb = check_skb->next) { if (skb_headlen(check_skb) && !check_skb->head_frag) { /* gso_size is untrusted, and we have a frag_list with * a linear non head_frag item. * * If head_skb's headlen does not fit requested gso_size, * it means that the frag_list members do NOT terminate * on exact gso_size boundaries. Hence we cannot perform * skb_frag_t page sharing. Therefore we must fallback to * copying the frag_list skbs; we do so by disabling SG. */ features &= ~NETIF_F_SG; break; } } } __skb_push(head_skb, doffset); proto = skb_network_protocol(head_skb, NULL); if (unlikely(!proto)) return ERR_PTR(-EINVAL); sg = !!(features & NETIF_F_SG); csum = !!can_checksum_protocol(features, proto); if (sg && csum && (mss != GSO_BY_FRAGS)) { if (!(features & NETIF_F_GSO_PARTIAL)) { struct sk_buff *iter; unsigned int frag_len; if (!list_skb || !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) goto normal; /* If we get here then all the required * GSO features except frag_list are supported. * Try to split the SKB to multiple GSO SKBs * with no frag_list. * Currently we can do that only when the buffers don't * have a linear part and all the buffers except * the last are of the same length. */ frag_len = list_skb->len; skb_walk_frags(head_skb, iter) { if (frag_len != iter->len && iter->next) goto normal; if (skb_headlen(iter) && !iter->head_frag) goto normal; len -= iter->len; } if (len != frag_len) goto normal; } /* GSO partial only requires that we trim off any excess that * doesn't fit into an MSS sized block, so take care of that * now. * Cap len to not accidentally hit GSO_BY_FRAGS. */ partial_segs = min(len, GSO_BY_FRAGS - 1) / mss; if (partial_segs > 1) mss *= partial_segs; else partial_segs = 0; } normal: headroom = skb_headroom(head_skb); pos = skb_headlen(head_skb); if (skb_orphan_frags(head_skb, GFP_ATOMIC)) return ERR_PTR(-ENOMEM); nfrags = skb_shinfo(head_skb)->nr_frags; frag = skb_shinfo(head_skb)->frags; frag_skb = head_skb; do { struct sk_buff *nskb; skb_frag_t *nskb_frag; int hsize; int size; if (unlikely(mss == GSO_BY_FRAGS)) { len = list_skb->len; } else { len = head_skb->len - offset; if (len > mss) len = mss; } hsize = skb_headlen(head_skb) - offset; if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) && (skb_headlen(list_skb) == len || sg)) { BUG_ON(skb_headlen(list_skb) > len); nskb = skb_clone(list_skb, GFP_ATOMIC); if (unlikely(!nskb)) goto err; i = 0; nfrags = skb_shinfo(list_skb)->nr_frags; frag = skb_shinfo(list_skb)->frags; frag_skb = list_skb; pos += skb_headlen(list_skb); while (pos < offset + len) { BUG_ON(i >= nfrags); size = skb_frag_size(frag); if (pos + size > offset + len) break; i++; pos += size; frag++; } list_skb = list_skb->next; if (unlikely(pskb_trim(nskb, len))) { kfree_skb(nskb); goto err; } hsize = skb_end_offset(nskb); if (skb_cow_head(nskb, doffset + headroom)) { kfree_skb(nskb); goto err; } nskb->truesize += skb_end_offset(nskb) - hsize; skb_release_head_state(nskb); __skb_push(nskb, doffset); } else { if (hsize < 0) hsize = 0; if (hsize > len || !sg) hsize = len; nskb = __alloc_skb(hsize + doffset + headroom, GFP_ATOMIC, skb_alloc_rx_flag(head_skb), NUMA_NO_NODE); if (unlikely(!nskb)) goto err; skb_reserve(nskb, headroom); __skb_put(nskb, doffset); } if (segs) tail->next = nskb; else segs = nskb; tail = nskb; __copy_skb_header(nskb, head_skb); skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); skb_reset_mac_len(nskb); skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, nskb->data - tnl_hlen, doffset + tnl_hlen); if (nskb->len == len + doffset) goto perform_csum_check; if (!sg) { if (!csum) { if (!nskb->remcsum_offload) nskb->ip_summed = CHECKSUM_NONE; SKB_GSO_CB(nskb)->csum = skb_copy_and_csum_bits(head_skb, offset, skb_put(nskb, len), len); SKB_GSO_CB(nskb)->csum_start = skb_headroom(nskb) + doffset; } else { if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len)) goto err; } continue; } nskb_frag = skb_shinfo(nskb)->frags; skb_copy_from_linear_data_offset(head_skb, offset, skb_put(nskb, hsize), hsize); skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags & SKBFL_SHARED_FRAG; if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) goto err; while (pos < offset + len) { if (i >= nfrags) { if (skb_orphan_frags(list_skb, GFP_ATOMIC) || skb_zerocopy_clone(nskb, list_skb, GFP_ATOMIC)) goto err; i = 0; nfrags = skb_shinfo(list_skb)->nr_frags; frag = skb_shinfo(list_skb)->frags; frag_skb = list_skb; if (!skb_headlen(list_skb)) { BUG_ON(!nfrags); } else { BUG_ON(!list_skb->head_frag); /* to make room for head_frag. */ i--; frag--; } list_skb = list_skb->next; } if (unlikely(skb_shinfo(nskb)->nr_frags >= MAX_SKB_FRAGS)) { net_warn_ratelimited( "skb_segment: too many frags: %u %u\n", pos, mss); err = -EINVAL; goto err; } *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; __skb_frag_ref(nskb_frag); size = skb_frag_size(nskb_frag); if (pos < offset) { skb_frag_off_add(nskb_frag, offset - pos); skb_frag_size_sub(nskb_frag, offset - pos); } skb_shinfo(nskb)->nr_frags++; if (pos + size <= offset + len) { i++; frag++; pos += size; } else { skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); goto skip_fraglist; } nskb_frag++; } skip_fraglist: nskb->data_len = len - hsize; nskb->len += nskb->data_len; nskb->truesize += nskb->data_len; perform_csum_check: if (!csum) { if (skb_has_shared_frag(nskb) && __skb_linearize(nskb)) goto err; if (!nskb->remcsum_offload) nskb->ip_summed = CHECKSUM_NONE; SKB_GSO_CB(nskb)->csum = skb_checksum(nskb, doffset, nskb->len - doffset, 0); SKB_GSO_CB(nskb)->csum_start = skb_headroom(nskb) + doffset; } } while ((offset += len) < head_skb->len); /* Some callers want to get the end of the list. * Put it in segs->prev to avoid walking the list. * (see validate_xmit_skb_list() for example) */ segs->prev = tail; if (partial_segs) { struct sk_buff *iter; int type = skb_shinfo(head_skb)->gso_type; unsigned short gso_size = skb_shinfo(head_skb)->gso_size; /* Update type to add partial and then remove dodgy if set */ type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; type &= ~SKB_GSO_DODGY; /* Update GSO info and prepare to start updating headers on * our way back down the stack of protocols. */ for (iter = segs; iter; iter = iter->next) { skb_shinfo(iter)->gso_size = gso_size; skb_shinfo(iter)->gso_segs = partial_segs; skb_shinfo(iter)->gso_type = type; SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; } if (tail->len - doffset <= gso_size) skb_shinfo(tail)->gso_size = 0; else if (tail != segs) skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); } /* Following permits correct backpressure, for protocols * using skb_set_owner_w(). * Idea is to tranfert ownership from head_skb to last segment. */ if (head_skb->destructor == sock_wfree) { swap(tail->truesize, head_skb->truesize); swap(tail->destructor, head_skb->destructor); swap(tail->sk, head_skb->sk); } return segs; err: kfree_skb_list(segs); return ERR_PTR(err); } EXPORT_SYMBOL_GPL(skb_segment); #ifdef CONFIG_SKB_EXTENSIONS #define SKB_EXT_ALIGN_VALUE 8 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) static const u8 skb_ext_type_len[] = { #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), #endif #ifdef CONFIG_XFRM [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), #endif #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), #endif #if IS_ENABLED(CONFIG_MPTCP) [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), #endif #if IS_ENABLED(CONFIG_MCTP_FLOWS) [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow), #endif }; static __always_inline unsigned int skb_ext_total_length(void) { unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext); int i; for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++) l += skb_ext_type_len[i]; return l; } static void skb_extensions_init(void) { BUILD_BUG_ON(SKB_EXT_NUM >= 8); #if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL) BUILD_BUG_ON(skb_ext_total_length() > 255); #endif skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); } #else static void skb_extensions_init(void) {} #endif /* The SKB kmem_cache slab is critical for network performance. Never * merge/alias the slab with similar sized objects. This avoids fragmentation * that hurts performance of kmem_cache_{alloc,free}_bulk APIs. */ #ifndef CONFIG_SLUB_TINY #define FLAG_SKB_NO_MERGE SLAB_NO_MERGE #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */ #define FLAG_SKB_NO_MERGE 0 #endif void __init skb_init(void) { skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache", sizeof(struct sk_buff), 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC| FLAG_SKB_NO_MERGE, offsetof(struct sk_buff, cb), sizeof_field(struct sk_buff, cb), NULL); skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", sizeof(struct sk_buff_fclones), 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); /* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes. * struct skb_shared_info is located at the end of skb->head, * and should not be copied to/from user. */ skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head", SKB_SMALL_HEAD_CACHE_SIZE, 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, 0, SKB_SMALL_HEAD_HEADROOM, NULL); skb_extensions_init(); } static int __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, unsigned int recursion_level) { int start = skb_headlen(skb); int i, copy = start - offset; struct sk_buff *frag_iter; int elt = 0; if (unlikely(recursion_level >= 24)) return -EMSGSIZE; if (copy > 0) { if (copy > len) copy = len; sg_set_buf(sg, skb->data + offset, copy); elt++; if ((len -= copy) == 0) return elt; offset += copy; } for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { int end; WARN_ON(start > offset + len); end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); if ((copy = end - offset) > 0) { skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; if (unlikely(elt && sg_is_last(&sg[elt - 1]))) return -EMSGSIZE; if (copy > len) copy = len; sg_set_page(&sg[elt], skb_frag_page(frag), copy, skb_frag_off(frag) + offset - start); elt++; if (!(len -= copy)) return elt; offset += copy; } start = end; } skb_walk_frags(skb, frag_iter) { int end, ret; WARN_ON(start > offset + len); end = start + frag_iter->len; if ((copy = end - offset) > 0) { if (unlikely(elt && sg_is_last(&sg[elt - 1]))) return -EMSGSIZE; if (copy > len) copy = len; ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, copy, recursion_level + 1); if (unlikely(ret < 0)) return ret; elt += ret; if ((len -= copy) == 0) return elt; offset += copy; } start = end; } BUG_ON(len); return elt; } /** * skb_to_sgvec - Fill a scatter-gather list from a socket buffer * @skb: Socket buffer containing the buffers to be mapped * @sg: The scatter-gather list to map into * @offset: The offset into the buffer's contents to start mapping * @len: Length of buffer space to be mapped * * Fill the specified scatter-gather list with mappings/pointers into a * region of the buffer space attached to a socket buffer. Returns either * the number of scatterlist items used, or -EMSGSIZE if the contents * could not fit. */ int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) { int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); if (nsg <= 0) return nsg; sg_mark_end(&sg[nsg - 1]); return nsg; } EXPORT_SYMBOL_GPL(skb_to_sgvec); /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given * sglist without mark the sg which contain last skb data as the end. * So the caller can mannipulate sg list as will when padding new data after * the first call without calling sg_unmark_end to expend sg list. * * Scenario to use skb_to_sgvec_nomark: * 1. sg_init_table * 2. skb_to_sgvec_nomark(payload1) * 3. skb_to_sgvec_nomark(payload2) * * This is equivalent to: * 1. sg_init_table * 2. skb_to_sgvec(payload1) * 3. sg_unmark_end * 4. skb_to_sgvec(payload2) * * When mapping mutilple payload conditionally, skb_to_sgvec_nomark * is more preferable. */ int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) { return __skb_to_sgvec(skb, sg, offset, len, 0); } EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); /** * skb_cow_data - Check that a socket buffer's data buffers are writable * @skb: The socket buffer to check. * @tailbits: Amount of trailing space to be added * @trailer: Returned pointer to the skb where the @tailbits space begins * * Make sure that the data buffers attached to a socket buffer are * writable. If they are not, private copies are made of the data buffers * and the socket buffer is set to use these instead. * * If @tailbits is given, make sure that there is space to write @tailbits * bytes of data beyond current end of socket buffer. @trailer will be * set to point to the skb in which this space begins. * * The number of scatterlist elements required to completely map the * COW'd and extended socket buffer will be returned. */ int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) { int copyflag; int elt; struct sk_buff *skb1, **skb_p; /* If skb is cloned or its head is paged, reallocate * head pulling out all the pages (pages are considered not writable * at the moment even if they are anonymous). */ if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && !__pskb_pull_tail(skb, __skb_pagelen(skb))) return -ENOMEM; /* Easy case. Most of packets will go this way. */ if (!skb_has_frag_list(skb)) { /* A little of trouble, not enough of space for trailer. * This should not happen, when stack is tuned to generate * good frames. OK, on miss we reallocate and reserve even more * space, 128 bytes is fair. */ if (skb_tailroom(skb) < tailbits && pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) return -ENOMEM; /* Voila! */ *trailer = skb; return 1; } /* Misery. We are in troubles, going to mincer fragments... */ elt = 1; skb_p = &skb_shinfo(skb)->frag_list; copyflag = 0; while ((skb1 = *skb_p) != NULL) { int ntail = 0; /* The fragment is partially pulled by someone, * this can happen on input. Copy it and everything * after it. */ if (skb_shared(skb1)) copyflag = 1; /* If the skb is the last, worry about trailer. */ if (skb1->next == NULL && tailbits) { if (skb_shinfo(skb1)->nr_frags || skb_has_frag_list(skb1) || skb_tailroom(skb1) < tailbits) ntail = tailbits + 128; } if (copyflag || skb_cloned(skb1) || ntail || skb_shinfo(skb1)->nr_frags || skb_has_frag_list(skb1)) { struct sk_buff *skb2; /* Fuck, we are miserable poor guys... */ if (ntail == 0) skb2 = skb_copy(skb1, GFP_ATOMIC); else skb2 = skb_copy_expand(skb1, skb_headroom(skb1), ntail, GFP_ATOMIC); if (unlikely(skb2 == NULL)) return -ENOMEM; if (skb1->sk) skb_set_owner_w(skb2, skb1->sk); /* Looking around. Are we still alive? * OK, link new skb, drop old one */ skb2->next = skb1->next; *skb_p = skb2; kfree_skb(skb1); skb1 = skb2; } elt++; *trailer = skb1; skb_p = &skb1->next; } return elt; } EXPORT_SYMBOL_GPL(skb_cow_data); static void sock_rmem_free(struct sk_buff *skb) { struct sock *sk = skb->sk; atomic_sub(skb->truesize, &sk->sk_rmem_alloc); } static void skb_set_err_queue(struct sk_buff *skb) { /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. * So, it is safe to (mis)use it to mark skbs on the error queue. */ skb->pkt_type = PACKET_OUTGOING; BUILD_BUG_ON(PACKET_OUTGOING == 0); } /* * Note: We dont mem charge error packets (no sk_forward_alloc changes) */ int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) { if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= (unsigned int)READ_ONCE(sk->sk_rcvbuf)) return -ENOMEM; skb_orphan(skb); skb->sk = sk; skb->destructor = sock_rmem_free; atomic_add(skb->truesize, &sk->sk_rmem_alloc); skb_set_err_queue(skb); /* before exiting rcu section, make sure dst is refcounted */ skb_dst_force(skb); skb_queue_tail(&sk->sk_error_queue, skb); if (!sock_flag(sk, SOCK_DEAD)) sk_error_report(sk); return 0; } EXPORT_SYMBOL(sock_queue_err_skb); static bool is_icmp_err_skb(const struct sk_buff *skb) { return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); } struct sk_buff *sock_dequeue_err_skb(struct sock *sk) { struct sk_buff_head *q = &sk->sk_error_queue; struct sk_buff *skb, *skb_next = NULL; bool icmp_next = false; unsigned long flags; if (skb_queue_empty_lockless(q)) return NULL; spin_lock_irqsave(&q->lock, flags); skb = __skb_dequeue(q); if (skb && (skb_next = skb_peek(q))) { icmp_next = is_icmp_err_skb(skb_next); if (icmp_next) sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno; } spin_unlock_irqrestore(&q->lock, flags); if (is_icmp_err_skb(skb) && !icmp_next) sk->sk_err = 0; if (skb_next) sk_error_report(sk); return skb; } EXPORT_SYMBOL(sock_dequeue_err_skb); /** * skb_clone_sk - create clone of skb, and take reference to socket * @skb: the skb to clone * * This function creates a clone of a buffer that holds a reference on * sk_refcnt. Buffers created via this function are meant to be * returned using sock_queue_err_skb, or free via kfree_skb. * * When passing buffers allocated with this function to sock_queue_err_skb * it is necessary to wrap the call with sock_hold/sock_put in order to * prevent the socket from being released prior to being enqueued on * the sk_error_queue. */ struct sk_buff *skb_clone_sk(struct sk_buff *skb) { struct sock *sk = skb->sk; struct sk_buff *clone; if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) return NULL; clone = skb_clone(skb, GFP_ATOMIC); if (!clone) { sock_put(sk); return NULL; } clone->sk = sk; clone->destructor = sock_efree; return clone; } EXPORT_SYMBOL(skb_clone_sk); static void __skb_complete_tx_timestamp(struct sk_buff *skb, struct sock *sk, int tstype, bool opt_stats) { struct sock_exterr_skb *serr; int err; BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); serr = SKB_EXT_ERR(skb); memset(serr, 0, sizeof(*serr)); serr->ee.ee_errno = ENOMSG; serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; serr->ee.ee_info = tstype; serr->opt_stats = opt_stats; serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) { serr->ee.ee_data = skb_shinfo(skb)->tskey; if (sk_is_tcp(sk)) serr->ee.ee_data -= atomic_read(&sk->sk_tskey); } err = sock_queue_err_skb(sk, skb); if (err) kfree_skb(skb); } static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) { bool ret; if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly)) return true; read_lock_bh(&sk->sk_callback_lock); ret = sk->sk_socket && sk->sk_socket->file && file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); read_unlock_bh(&sk->sk_callback_lock); return ret; } void skb_complete_tx_timestamp(struct sk_buff *skb, struct skb_shared_hwtstamps *hwtstamps) { struct sock *sk = skb->sk; if (!skb_may_tx_timestamp(sk, false)) goto err; /* Take a reference to prevent skb_orphan() from freeing the socket, * but only if the socket refcount is not zero. */ if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { *skb_hwtstamps(skb) = *hwtstamps; __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); sock_put(sk); return; } err: kfree_skb(skb); } EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb, struct skb_shared_hwtstamps *hwtstamps, struct sock *sk, int tstype) { struct sk_buff *skb; bool tsonly, opt_stats = false; u32 tsflags; if (!sk) return; tsflags = READ_ONCE(sk->sk_tsflags); if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) return; tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY; if (!skb_may_tx_timestamp(sk, tsonly)) return; if (tsonly) { #ifdef CONFIG_INET if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) && sk_is_tcp(sk)) { skb = tcp_get_timestamping_opt_stats(sk, orig_skb, ack_skb); opt_stats = true; } else #endif skb = alloc_skb(0, GFP_ATOMIC); } else { skb = skb_clone(orig_skb, GFP_ATOMIC); if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) { kfree_skb(skb); return; } } if (!skb) return; if (tsonly) { skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & SKBTX_ANY_TSTAMP; skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; } if (hwtstamps) *skb_hwtstamps(skb) = *hwtstamps; else __net_timestamp(skb); __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); } EXPORT_SYMBOL_GPL(__skb_tstamp_tx); void skb_tstamp_tx(struct sk_buff *orig_skb, struct skb_shared_hwtstamps *hwtstamps) { return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk, SCM_TSTAMP_SND); } EXPORT_SYMBOL_GPL(skb_tstamp_tx); #ifdef CONFIG_WIRELESS void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) { struct sock *sk = skb->sk; struct sock_exterr_skb *serr; int err = 1; skb->wifi_acked_valid = 1; skb->wifi_acked = acked; serr = SKB_EXT_ERR(skb); memset(serr, 0, sizeof(*serr)); serr->ee.ee_errno = ENOMSG; serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; /* Take a reference to prevent skb_orphan() from freeing the socket, * but only if the socket refcount is not zero. */ if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { err = sock_queue_err_skb(sk, skb); sock_put(sk); } if (err) kfree_skb(skb); } EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); #endif /* CONFIG_WIRELESS */ /** * skb_partial_csum_set - set up and verify partial csum values for packet * @skb: the skb to set * @start: the number of bytes after skb->data to start checksumming. * @off: the offset from start to place the checksum. * * For untrusted partially-checksummed packets, we need to make sure the values * for skb->csum_start and skb->csum_offset are valid so we don't oops. * * This function checks and sets those values and skb->ip_summed: if this * returns false you should drop the packet. */ bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) { u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); u32 csum_start = skb_headroom(skb) + (u32)start; if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) { net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", start, off, skb_headroom(skb), skb_headlen(skb)); return false; } skb->ip_summed = CHECKSUM_PARTIAL; skb->csum_start = csum_start; skb->csum_offset = off; skb->transport_header = csum_start; return true; } EXPORT_SYMBOL_GPL(skb_partial_csum_set); static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, unsigned int max) { if (skb_headlen(skb) >= len) return 0; /* If we need to pullup then pullup to the max, so we * won't need to do it again. */ if (max > skb->len) max = skb->len; if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) return -ENOMEM; if (skb_headlen(skb) < len) return -EPROTO; return 0; } #define MAX_TCP_HDR_LEN (15 * 4) static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, typeof(IPPROTO_IP) proto, unsigned int off) { int err; switch (proto) { case IPPROTO_TCP: err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), off + MAX_TCP_HDR_LEN); if (!err && !skb_partial_csum_set(skb, off, offsetof(struct tcphdr, check))) err = -EPROTO; return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; case IPPROTO_UDP: err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), off + sizeof(struct udphdr)); if (!err && !skb_partial_csum_set(skb, off, offsetof(struct udphdr, check))) err = -EPROTO; return err ? ERR_PTR(err) : &udp_hdr(skb)->check; } return ERR_PTR(-EPROTO); } /* This value should be large enough to cover a tagged ethernet header plus * maximally sized IP and TCP or UDP headers. */ #define MAX_IP_HDR_LEN 128 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) { unsigned int off; bool fragment; __sum16 *csum; int err; fragment = false; err = skb_maybe_pull_tail(skb, sizeof(struct iphdr), MAX_IP_HDR_LEN); if (err < 0) goto out; if (ip_is_fragment(ip_hdr(skb))) fragment = true; off = ip_hdrlen(skb); err = -EPROTO; if (fragment) goto out; csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); if (IS_ERR(csum)) return PTR_ERR(csum); if (recalculate) *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, skb->len - off, ip_hdr(skb)->protocol, 0); err = 0; out: return err; } /* This value should be large enough to cover a tagged ethernet header plus * an IPv6 header, all options, and a maximal TCP or UDP header. */ #define MAX_IPV6_HDR_LEN 256 #define OPT_HDR(type, skb, off) \ (type *)(skb_network_header(skb) + (off)) static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) { int err; u8 nexthdr; unsigned int off; unsigned int len; bool fragment; bool done; __sum16 *csum; fragment = false; done = false; off = sizeof(struct ipv6hdr); err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); if (err < 0) goto out; nexthdr = ipv6_hdr(skb)->nexthdr; len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); while (off <= len && !done) { switch (nexthdr) { case IPPROTO_DSTOPTS: case IPPROTO_HOPOPTS: case IPPROTO_ROUTING: { struct ipv6_opt_hdr *hp; err = skb_maybe_pull_tail(skb, off + sizeof(struct ipv6_opt_hdr), MAX_IPV6_HDR_LEN); if (err < 0) goto out; hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); nexthdr = hp->nexthdr; off += ipv6_optlen(hp); break; } case IPPROTO_AH: { struct ip_auth_hdr *hp; err = skb_maybe_pull_tail(skb, off + sizeof(struct ip_auth_hdr), MAX_IPV6_HDR_LEN); if (err < 0) goto out; hp = OPT_HDR(struct ip_auth_hdr, skb, off); nexthdr = hp->nexthdr; off += ipv6_authlen(hp); break; } case IPPROTO_FRAGMENT: { struct frag_hdr *hp; err = skb_maybe_pull_tail(skb, off + sizeof(struct frag_hdr), MAX_IPV6_HDR_LEN); if (err < 0) goto out; hp = OPT_HDR(struct frag_hdr, skb, off); if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) fragment = true; nexthdr = hp->nexthdr; off += sizeof(struct frag_hdr); break; } default: done = true; break; } } err = -EPROTO; if (!done || fragment) goto out; csum = skb_checksum_setup_ip(skb, nexthdr, off); if (IS_ERR(csum)) return PTR_ERR(csum); if (recalculate) *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr, skb->len - off, nexthdr, 0); err = 0; out: return err; } /** * skb_checksum_setup - set up partial checksum offset * @skb: the skb to set up * @recalculate: if true the pseudo-header checksum will be recalculated */ int skb_checksum_setup(struct sk_buff *skb, bool recalculate) { int err; switch (skb->protocol) { case htons(ETH_P_IP): err = skb_checksum_setup_ipv4(skb, recalculate); break; case htons(ETH_P_IPV6): err = skb_checksum_setup_ipv6(skb, recalculate); break; default: err = -EPROTO; break; } return err; } EXPORT_SYMBOL(skb_checksum_setup); /** * skb_checksum_maybe_trim - maybe trims the given skb * @skb: the skb to check * @transport_len: the data length beyond the network header * * Checks whether the given skb has data beyond the given transport length. * If so, returns a cloned skb trimmed to this transport length. * Otherwise returns the provided skb. Returns NULL in error cases * (e.g. transport_len exceeds skb length or out-of-memory). * * Caller needs to set the skb transport header and free any returned skb if it * differs from the provided skb. */ static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, unsigned int transport_len) { struct sk_buff *skb_chk; unsigned int len = skb_transport_offset(skb) + transport_len; int ret; if (skb->len < len) return NULL; else if (skb->len == len) return skb; skb_chk = skb_clone(skb, GFP_ATOMIC); if (!skb_chk) return NULL; ret = pskb_trim_rcsum(skb_chk, len); if (ret) { kfree_skb(skb_chk); return NULL; } return skb_chk; } /** * skb_checksum_trimmed - validate checksum of an skb * @skb: the skb to check * @transport_len: the data length beyond the network header * @skb_chkf: checksum function to use * * Applies the given checksum function skb_chkf to the provided skb. * Returns a checked and maybe trimmed skb. Returns NULL on error. * * If the skb has data beyond the given transport length, then a * trimmed & cloned skb is checked and returned. * * Caller needs to set the skb transport header and free any returned skb if it * differs from the provided skb. */ struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, unsigned int transport_len, __sum16(*skb_chkf)(struct sk_buff *skb)) { struct sk_buff *skb_chk; unsigned int offset = skb_transport_offset(skb); __sum16 ret; skb_chk = skb_checksum_maybe_trim(skb, transport_len); if (!skb_chk) goto err; if (!pskb_may_pull(skb_chk, offset)) goto err; skb_pull_rcsum(skb_chk, offset); ret = skb_chkf(skb_chk); skb_push_rcsum(skb_chk, offset); if (ret) goto err; return skb_chk; err: if (skb_chk && skb_chk != skb) kfree_skb(skb_chk); return NULL; } EXPORT_SYMBOL(skb_checksum_trimmed); void __skb_warn_lro_forwarding(const struct sk_buff *skb) { net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", skb->dev->name); } EXPORT_SYMBOL(__skb_warn_lro_forwarding); void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) { if (head_stolen) { skb_release_head_state(skb); kmem_cache_free(skbuff_cache, skb); } else { __kfree_skb(skb); } } EXPORT_SYMBOL(kfree_skb_partial); /** * skb_try_coalesce - try to merge skb to prior one * @to: prior buffer * @from: buffer to add * @fragstolen: pointer to boolean * @delta_truesize: how much more was allocated than was requested */ bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, bool *fragstolen, int *delta_truesize) { struct skb_shared_info *to_shinfo, *from_shinfo; int i, delta, len = from->len; *fragstolen = false; if (skb_cloned(to)) return false; /* In general, avoid mixing page_pool and non-page_pool allocated * pages within the same SKB. In theory we could take full * references if @from is cloned and !@to->pp_recycle but its * tricky (due to potential race with the clone disappearing) and * rare, so not worth dealing with. */ if (to->pp_recycle != from->pp_recycle) return false; if (len <= skb_tailroom(to)) { if (len) BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); *delta_truesize = 0; return true; } to_shinfo = skb_shinfo(to); from_shinfo = skb_shinfo(from); if (to_shinfo->frag_list || from_shinfo->frag_list) return false; if (skb_zcopy(to) || skb_zcopy(from)) return false; if (skb_headlen(from) != 0) { struct page *page; unsigned int offset; if (to_shinfo->nr_frags + from_shinfo->nr_frags >= MAX_SKB_FRAGS) return false; if (skb_head_is_locked(from)) return false; delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); page = virt_to_head_page(from->head); offset = from->data - (unsigned char *)page_address(page); skb_fill_page_desc(to, to_shinfo->nr_frags, page, offset, skb_headlen(from)); *fragstolen = true; } else { if (to_shinfo->nr_frags + from_shinfo->nr_frags > MAX_SKB_FRAGS) return false; delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); } WARN_ON_ONCE(delta < len); memcpy(to_shinfo->frags + to_shinfo->nr_frags, from_shinfo->frags, from_shinfo->nr_frags * sizeof(skb_frag_t)); to_shinfo->nr_frags += from_shinfo->nr_frags; if (!skb_cloned(from)) from_shinfo->nr_frags = 0; /* if the skb is not cloned this does nothing * since we set nr_frags to 0. */ if (skb_pp_frag_ref(from)) { for (i = 0; i < from_shinfo->nr_frags; i++) __skb_frag_ref(&from_shinfo->frags[i]); } to->truesize += delta; to->len += len; to->data_len += len; *delta_truesize = delta; return true; } EXPORT_SYMBOL(skb_try_coalesce); /** * skb_scrub_packet - scrub an skb * * @skb: buffer to clean * @xnet: packet is crossing netns * * skb_scrub_packet can be used after encapsulating or decapsulting a packet * into/from a tunnel. Some information have to be cleared during these * operations. * skb_scrub_packet can also be used to clean a skb before injecting it in * another namespace (@xnet == true). We have to clear all information in the * skb that could impact namespace isolation. */ void skb_scrub_packet(struct sk_buff *skb, bool xnet) { skb->pkt_type = PACKET_HOST; skb->skb_iif = 0; skb->ignore_df = 0; skb_dst_drop(skb); skb_ext_reset(skb); nf_reset_ct(skb); nf_reset_trace(skb); #ifdef CONFIG_NET_SWITCHDEV skb->offload_fwd_mark = 0; skb->offload_l3_fwd_mark = 0; #endif if (!xnet) return; ipvs_reset(skb); skb->mark = 0; skb_clear_tstamp(skb); } EXPORT_SYMBOL_GPL(skb_scrub_packet); static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) { int mac_len, meta_len; void *meta; if (skb_cow(skb, skb_headroom(skb)) < 0) { kfree_skb(skb); return NULL; } mac_len = skb->data - skb_mac_header(skb); if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), mac_len - VLAN_HLEN - ETH_TLEN); } meta_len = skb_metadata_len(skb); if (meta_len) { meta = skb_metadata_end(skb) - meta_len; memmove(meta + VLAN_HLEN, meta, meta_len); } skb->mac_header += VLAN_HLEN; return skb; } struct sk_buff *skb_vlan_untag(struct sk_buff *skb) { struct vlan_hdr *vhdr; u16 vlan_tci; if (unlikely(skb_vlan_tag_present(skb))) { /* vlan_tci is already set-up so leave this for another time */ return skb; } skb = skb_share_check(skb, GFP_ATOMIC); if (unlikely(!skb)) goto err_free; /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */ if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short)))) goto err_free; vhdr = (struct vlan_hdr *)skb->data; vlan_tci = ntohs(vhdr->h_vlan_TCI); __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); skb_pull_rcsum(skb, VLAN_HLEN); vlan_set_encap_proto(skb, vhdr); skb = skb_reorder_vlan_header(skb); if (unlikely(!skb)) goto err_free; skb_reset_network_header(skb); if (!skb_transport_header_was_set(skb)) skb_reset_transport_header(skb); skb_reset_mac_len(skb); return skb; err_free: kfree_skb(skb); return NULL; } EXPORT_SYMBOL(skb_vlan_untag); int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len) { if (!pskb_may_pull(skb, write_len)) return -ENOMEM; if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) return 0; return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); } EXPORT_SYMBOL(skb_ensure_writable); int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev) { int needed_headroom = dev->needed_headroom; int needed_tailroom = dev->needed_tailroom; /* For tail taggers, we need to pad short frames ourselves, to ensure * that the tail tag does not fail at its role of being at the end of * the packet, once the conduit interface pads the frame. Account for * that pad length here, and pad later. */ if (unlikely(needed_tailroom && skb->len < ETH_ZLEN)) needed_tailroom += ETH_ZLEN - skb->len; /* skb_headroom() returns unsigned int... */ needed_headroom = max_t(int, needed_headroom - skb_headroom(skb), 0); needed_tailroom = max_t(int, needed_tailroom - skb_tailroom(skb), 0); if (likely(!needed_headroom && !needed_tailroom && !skb_cloned(skb))) /* No reallocation needed, yay! */ return 0; return pskb_expand_head(skb, needed_headroom, needed_tailroom, GFP_ATOMIC); } EXPORT_SYMBOL(skb_ensure_writable_head_tail); /* remove VLAN header from packet and update csum accordingly. * expects a non skb_vlan_tag_present skb with a vlan tag payload */ int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) { int offset = skb->data - skb_mac_header(skb); int err; if (WARN_ONCE(offset, "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", offset)) { return -EINVAL; } err = skb_ensure_writable(skb, VLAN_ETH_HLEN); if (unlikely(err)) return err; skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); vlan_remove_tag(skb, vlan_tci); skb->mac_header += VLAN_HLEN; if (skb_network_offset(skb) < ETH_HLEN) skb_set_network_header(skb, ETH_HLEN); skb_reset_mac_len(skb); return err; } EXPORT_SYMBOL(__skb_vlan_pop); /* Pop a vlan tag either from hwaccel or from payload. * Expects skb->data at mac header. */ int skb_vlan_pop(struct sk_buff *skb) { u16 vlan_tci; __be16 vlan_proto; int err; if (likely(skb_vlan_tag_present(skb))) { __vlan_hwaccel_clear_tag(skb); } else { if (unlikely(!eth_type_vlan(skb->protocol))) return 0; err = __skb_vlan_pop(skb, &vlan_tci); if (err) return err; } /* move next vlan tag to hw accel tag */ if (likely(!eth_type_vlan(skb->protocol))) return 0; vlan_proto = skb->protocol; err = __skb_vlan_pop(skb, &vlan_tci); if (unlikely(err)) return err; __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); return 0; } EXPORT_SYMBOL(skb_vlan_pop); /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). * Expects skb->data at mac header. */ int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) { if (skb_vlan_tag_present(skb)) { int offset = skb->data - skb_mac_header(skb); int err; if (WARN_ONCE(offset, "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", offset)) { return -EINVAL; } err = __vlan_insert_tag(skb, skb->vlan_proto, skb_vlan_tag_get(skb)); if (err) return err; skb->protocol = skb->vlan_proto; skb->mac_len += VLAN_HLEN; skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); } __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); return 0; } EXPORT_SYMBOL(skb_vlan_push); /** * skb_eth_pop() - Drop the Ethernet header at the head of a packet * * @skb: Socket buffer to modify * * Drop the Ethernet header of @skb. * * Expects that skb->data points to the mac header and that no VLAN tags are * present. * * Returns 0 on success, -errno otherwise. */ int skb_eth_pop(struct sk_buff *skb) { if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) || skb_network_offset(skb) < ETH_HLEN) return -EPROTO; skb_pull_rcsum(skb, ETH_HLEN); skb_reset_mac_header(skb); skb_reset_mac_len(skb); return 0; } EXPORT_SYMBOL(skb_eth_pop); /** * skb_eth_push() - Add a new Ethernet header at the head of a packet * * @skb: Socket buffer to modify * @dst: Destination MAC address of the new header * @src: Source MAC address of the new header * * Prepend @skb with a new Ethernet header. * * Expects that skb->data points to the mac header, which must be empty. * * Returns 0 on success, -errno otherwise. */ int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, const unsigned char *src) { struct ethhdr *eth; int err; if (skb_network_offset(skb) || skb_vlan_tag_present(skb)) return -EPROTO; err = skb_cow_head(skb, sizeof(*eth)); if (err < 0) return err; skb_push(skb, sizeof(*eth)); skb_reset_mac_header(skb); skb_reset_mac_len(skb); eth = eth_hdr(skb); ether_addr_copy(eth->h_dest, dst); ether_addr_copy(eth->h_source, src); eth->h_proto = skb->protocol; skb_postpush_rcsum(skb, eth, sizeof(*eth)); return 0; } EXPORT_SYMBOL(skb_eth_push); /* Update the ethertype of hdr and the skb csum value if required. */ static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, __be16 ethertype) { if (skb->ip_summed == CHECKSUM_COMPLETE) { __be16 diff[] = { ~hdr->h_proto, ethertype }; skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); } hdr->h_proto = ethertype; } /** * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of * the packet * * @skb: buffer * @mpls_lse: MPLS label stack entry to push * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) * @mac_len: length of the MAC header * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is * ethernet * * Expects skb->data at mac header. * * Returns 0 on success, -errno otherwise. */ int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, int mac_len, bool ethernet) { struct mpls_shim_hdr *lse; int err; if (unlikely(!eth_p_mpls(mpls_proto))) return -EINVAL; /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ if (skb->encapsulation) return -EINVAL; err = skb_cow_head(skb, MPLS_HLEN); if (unlikely(err)) return err; if (!skb->inner_protocol) { skb_set_inner_network_header(skb, skb_network_offset(skb)); skb_set_inner_protocol(skb, skb->protocol); } skb_push(skb, MPLS_HLEN); memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), mac_len); skb_reset_mac_header(skb); skb_set_network_header(skb, mac_len); skb_reset_mac_len(skb); lse = mpls_hdr(skb); lse->label_stack_entry = mpls_lse; skb_postpush_rcsum(skb, lse, MPLS_HLEN); if (ethernet && mac_len >= ETH_HLEN) skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); skb->protocol = mpls_proto; return 0; } EXPORT_SYMBOL_GPL(skb_mpls_push); /** * skb_mpls_pop() - pop the outermost MPLS header * * @skb: buffer * @next_proto: ethertype of header after popped MPLS header * @mac_len: length of the MAC header * @ethernet: flag to indicate if the packet is ethernet * * Expects skb->data at mac header. * * Returns 0 on success, -errno otherwise. */ int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, bool ethernet) { int err; if (unlikely(!eth_p_mpls(skb->protocol))) return 0; err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); if (unlikely(err)) return err; skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), mac_len); __skb_pull(skb, MPLS_HLEN); skb_reset_mac_header(skb); skb_set_network_header(skb, mac_len); if (ethernet && mac_len >= ETH_HLEN) { struct ethhdr *hdr; /* use mpls_hdr() to get ethertype to account for VLANs. */ hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); skb_mod_eth_type(skb, hdr, next_proto); } skb->protocol = next_proto; return 0; } EXPORT_SYMBOL_GPL(skb_mpls_pop); /** * skb_mpls_update_lse() - modify outermost MPLS header and update csum * * @skb: buffer * @mpls_lse: new MPLS label stack entry to update to * * Expects skb->data at mac header. * * Returns 0 on success, -errno otherwise. */ int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) { int err; if (unlikely(!eth_p_mpls(skb->protocol))) return -EINVAL; err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); if (unlikely(err)) return err; if (skb->ip_summed == CHECKSUM_COMPLETE) { __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); } mpls_hdr(skb)->label_stack_entry = mpls_lse; return 0; } EXPORT_SYMBOL_GPL(skb_mpls_update_lse); /** * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header * * @skb: buffer * * Expects skb->data at mac header. * * Returns 0 on success, -errno otherwise. */ int skb_mpls_dec_ttl(struct sk_buff *skb) { u32 lse; u8 ttl; if (unlikely(!eth_p_mpls(skb->protocol))) return -EINVAL; if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) return -ENOMEM; lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; if (!--ttl) return -EINVAL; lse &= ~MPLS_LS_TTL_MASK; lse |= ttl << MPLS_LS_TTL_SHIFT; return skb_mpls_update_lse(skb, cpu_to_be32(lse)); } EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); /** * alloc_skb_with_frags - allocate skb with page frags * * @header_len: size of linear part * @data_len: needed length in frags * @order: max page order desired. * @errcode: pointer to error code if any * @gfp_mask: allocation mask * * This can be used to allocate a paged skb, given a maximal order for frags. */ struct sk_buff *alloc_skb_with_frags(unsigned long header_len, unsigned long data_len, int order, int *errcode, gfp_t gfp_mask) { unsigned long chunk; struct sk_buff *skb; struct page *page; int nr_frags = 0; *errcode = -EMSGSIZE; if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order))) return NULL; *errcode = -ENOBUFS; skb = alloc_skb(header_len, gfp_mask); if (!skb) return NULL; while (data_len) { if (nr_frags == MAX_SKB_FRAGS - 1) goto failure; while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order)) order--; if (order) { page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | __GFP_COMP | __GFP_NOWARN, order); if (!page) { order--; continue; } } else { page = alloc_page(gfp_mask); if (!page) goto failure; } chunk = min_t(unsigned long, data_len, PAGE_SIZE << order); skb_fill_page_desc(skb, nr_frags, page, 0, chunk); nr_frags++; skb->truesize += (PAGE_SIZE << order); data_len -= chunk; } return skb; failure: kfree_skb(skb); return NULL; } EXPORT_SYMBOL(alloc_skb_with_frags); /* carve out the first off bytes from skb when off < headlen */ static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, const int headlen, gfp_t gfp_mask) { int i; unsigned int size = skb_end_offset(skb); int new_hlen = headlen - off; u8 *data; if (skb_pfmemalloc(skb)) gfp_mask |= __GFP_MEMALLOC; data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); if (!data) return -ENOMEM; size = SKB_WITH_OVERHEAD(size); /* Copy real data, and all frags */ skb_copy_from_linear_data_offset(skb, off, data, new_hlen); skb->len -= off; memcpy((struct skb_shared_info *)(data + size), skb_shinfo(skb), offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); if (skb_cloned(skb)) { /* drop the old head gracefully */ if (skb_orphan_frags(skb, gfp_mask)) { skb_kfree_head(data, size); return -ENOMEM; } for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) skb_frag_ref(skb, i); if (skb_has_frag_list(skb)) skb_clone_fraglist(skb); skb_release_data(skb, SKB_CONSUMED, false); } else { /* we can reuse existing recount- all we did was * relocate values */ skb_free_head(skb, false); } skb->head = data; skb->data = data; skb->head_frag = 0; skb_set_end_offset(skb, size); skb_set_tail_pointer(skb, skb_headlen(skb)); skb_headers_offset_update(skb, 0); skb->cloned = 0; skb->hdr_len = 0; skb->nohdr = 0; atomic_set(&skb_shinfo(skb)->dataref, 1); return 0; } static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); /* carve out the first eat bytes from skb's frag_list. May recurse into * pskb_carve() */ static int pskb_carve_frag_list(struct sk_buff *skb, struct skb_shared_info *shinfo, int eat, gfp_t gfp_mask) { struct sk_buff *list = shinfo->frag_list; struct sk_buff *clone = NULL; struct sk_buff *insp = NULL; do { if (!list) { pr_err("Not enough bytes to eat. Want %d\n", eat); return -EFAULT; } if (list->len <= eat) { /* Eaten as whole. */ eat -= list->len; list = list->next; insp = list; } else { /* Eaten partially. */ if (skb_shared(list)) { clone = skb_clone(list, gfp_mask); if (!clone) return -ENOMEM; insp = list->next; list = clone; } else { /* This may be pulled without problems. */ insp = list; } if (pskb_carve(list, eat, gfp_mask) < 0) { kfree_skb(clone); return -ENOMEM; } break; } } while (eat); /* Free pulled out fragments. */ while ((list = shinfo->frag_list) != insp) { shinfo->frag_list = list->next; consume_skb(list); } /* And insert new clone at head. */ if (clone) { clone->next = list; shinfo->frag_list = clone; } return 0; } /* carve off first len bytes from skb. Split line (off) is in the * non-linear part of skb */ static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, int pos, gfp_t gfp_mask) { int i, k = 0; unsigned int size = skb_end_offset(skb); u8 *data; const int nfrags = skb_shinfo(skb)->nr_frags; struct skb_shared_info *shinfo; if (skb_pfmemalloc(skb)) gfp_mask |= __GFP_MEMALLOC; data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); if (!data) return -ENOMEM; size = SKB_WITH_OVERHEAD(size); memcpy((struct skb_shared_info *)(data + size), skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0])); if (skb_orphan_frags(skb, gfp_mask)) { skb_kfree_head(data, size); return -ENOMEM; } shinfo = (struct skb_shared_info *)(data + size); for (i = 0; i < nfrags; i++) { int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); if (pos + fsize > off) { shinfo->frags[k] = skb_shinfo(skb)->frags[i]; if (pos < off) { /* Split frag. * We have two variants in this case: * 1. Move all the frag to the second * part, if it is possible. F.e. * this approach is mandatory for TUX, * where splitting is expensive. * 2. Split is accurately. We make this. */ skb_frag_off_add(&shinfo->frags[0], off - pos); skb_frag_size_sub(&shinfo->frags[0], off - pos); } skb_frag_ref(skb, i); k++; } pos += fsize; } shinfo->nr_frags = k; if (skb_has_frag_list(skb)) skb_clone_fraglist(skb); /* split line is in frag list */ if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) { /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */ if (skb_has_frag_list(skb)) kfree_skb_list(skb_shinfo(skb)->frag_list); skb_kfree_head(data, size); return -ENOMEM; } skb_release_data(skb, SKB_CONSUMED, false); skb->head = data; skb->head_frag = 0; skb->data = data; skb_set_end_offset(skb, size); skb_reset_tail_pointer(skb); skb_headers_offset_update(skb, 0); skb->cloned = 0; skb->hdr_len = 0; skb->nohdr = 0; skb->len -= off; skb->data_len = skb->len; atomic_set(&skb_shinfo(skb)->dataref, 1); return 0; } /* remove len bytes from the beginning of the skb */ static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) { int headlen = skb_headlen(skb); if (len < headlen) return pskb_carve_inside_header(skb, len, headlen, gfp); else return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); } /* Extract to_copy bytes starting at off from skb, and return this in * a new skb */ struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, gfp_t gfp) { struct sk_buff *clone = skb_clone(skb, gfp); if (!clone) return NULL; if (pskb_carve(clone, off, gfp) < 0 || pskb_trim(clone, to_copy)) { kfree_skb(clone); return NULL; } return clone; } EXPORT_SYMBOL(pskb_extract); /** * skb_condense - try to get rid of fragments/frag_list if possible * @skb: buffer * * Can be used to save memory before skb is added to a busy queue. * If packet has bytes in frags and enough tail room in skb->head, * pull all of them, so that we can free the frags right now and adjust * truesize. * Notes: * We do not reallocate skb->head thus can not fail. * Caller must re-evaluate skb->truesize if needed. */ void skb_condense(struct sk_buff *skb) { if (skb->data_len) { if (skb->data_len > skb->end - skb->tail || skb_cloned(skb)) return; /* Nice, we can free page frag(s) right now */ __pskb_pull_tail(skb, skb->data_len); } /* At this point, skb->truesize might be over estimated, * because skb had a fragment, and fragments do not tell * their truesize. * When we pulled its content into skb->head, fragment * was freed, but __pskb_pull_tail() could not possibly * adjust skb->truesize, not knowing the frag truesize. */ skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); } EXPORT_SYMBOL(skb_condense); #ifdef CONFIG_SKB_EXTENSIONS static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) { return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); } /** * __skb_ext_alloc - allocate a new skb extensions storage * * @flags: See kmalloc(). * * Returns the newly allocated pointer. The pointer can later attached to a * skb via __skb_ext_set(). * Note: caller must handle the skb_ext as an opaque data. */ struct skb_ext *__skb_ext_alloc(gfp_t flags) { struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags); if (new) { memset(new->offset, 0, sizeof(new->offset)); refcount_set(&new->refcnt, 1); } return new; } static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, unsigned int old_active) { struct skb_ext *new; if (refcount_read(&old->refcnt) == 1) return old; new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); if (!new) return NULL; memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); refcount_set(&new->refcnt, 1); #ifdef CONFIG_XFRM if (old_active & (1 << SKB_EXT_SEC_PATH)) { struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); unsigned int i; for (i = 0; i < sp->len; i++) xfrm_state_hold(sp->xvec[i]); } #endif __skb_ext_put(old); return new; } /** * __skb_ext_set - attach the specified extension storage to this skb * @skb: buffer * @id: extension id * @ext: extension storage previously allocated via __skb_ext_alloc() * * Existing extensions, if any, are cleared. * * Returns the pointer to the extension. */ void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, struct skb_ext *ext) { unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); skb_ext_put(skb); newlen = newoff + skb_ext_type_len[id]; ext->chunks = newlen; ext->offset[id] = newoff; skb->extensions = ext; skb->active_extensions = 1 << id; return skb_ext_get_ptr(ext, id); } /** * skb_ext_add - allocate space for given extension, COW if needed * @skb: buffer * @id: extension to allocate space for * * Allocates enough space for the given extension. * If the extension is already present, a pointer to that extension * is returned. * * If the skb was cloned, COW applies and the returned memory can be * modified without changing the extension space of clones buffers. * * Returns pointer to the extension or NULL on allocation failure. */ void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) { struct skb_ext *new, *old = NULL; unsigned int newlen, newoff; if (skb->active_extensions) { old = skb->extensions; new = skb_ext_maybe_cow(old, skb->active_extensions); if (!new) return NULL; if (__skb_ext_exist(new, id)) goto set_active; newoff = new->chunks; } else { newoff = SKB_EXT_CHUNKSIZEOF(*new); new = __skb_ext_alloc(GFP_ATOMIC); if (!new) return NULL; } newlen = newoff + skb_ext_type_len[id]; new->chunks = newlen; new->offset[id] = newoff; set_active: skb->slow_gro = 1; skb->extensions = new; skb->active_extensions |= 1 << id; return skb_ext_get_ptr(new, id); } EXPORT_SYMBOL(skb_ext_add); #ifdef CONFIG_XFRM static void skb_ext_put_sp(struct sec_path *sp) { unsigned int i; for (i = 0; i < sp->len; i++) xfrm_state_put(sp->xvec[i]); } #endif #ifdef CONFIG_MCTP_FLOWS static void skb_ext_put_mctp(struct mctp_flow *flow) { if (flow->key) mctp_key_unref(flow->key); } #endif void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) { struct skb_ext *ext = skb->extensions; skb->active_extensions &= ~(1 << id); if (skb->active_extensions == 0) { skb->extensions = NULL; __skb_ext_put(ext); #ifdef CONFIG_XFRM } else if (id == SKB_EXT_SEC_PATH && refcount_read(&ext->refcnt) == 1) { struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); skb_ext_put_sp(sp); sp->len = 0; #endif } } EXPORT_SYMBOL(__skb_ext_del); void __skb_ext_put(struct skb_ext *ext) { /* If this is last clone, nothing can increment * it after check passes. Avoids one atomic op. */ if (refcount_read(&ext->refcnt) == 1) goto free_now; if (!refcount_dec_and_test(&ext->refcnt)) return; free_now: #ifdef CONFIG_XFRM if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); #endif #ifdef CONFIG_MCTP_FLOWS if (__skb_ext_exist(ext, SKB_EXT_MCTP)) skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP)); #endif kmem_cache_free(skbuff_ext_cache, ext); } EXPORT_SYMBOL(__skb_ext_put); #endif /* CONFIG_SKB_EXTENSIONS */ /** * skb_attempt_defer_free - queue skb for remote freeing * @skb: buffer * * Put @skb in a per-cpu list, using the cpu which * allocated the skb/pages to reduce false sharing * and memory zone spinlock contention. */ void skb_attempt_defer_free(struct sk_buff *skb) { int cpu = skb->alloc_cpu; struct softnet_data *sd; unsigned int defer_max; bool kick; if (WARN_ON_ONCE(cpu >= nr_cpu_ids) || !cpu_online(cpu) || cpu == raw_smp_processor_id()) { nodefer: __kfree_skb(skb); return; } DEBUG_NET_WARN_ON_ONCE(skb_dst(skb)); DEBUG_NET_WARN_ON_ONCE(skb->destructor); sd = &per_cpu(softnet_data, cpu); defer_max = READ_ONCE(sysctl_skb_defer_max); if (READ_ONCE(sd->defer_count) >= defer_max) goto nodefer; spin_lock_bh(&sd->defer_lock); /* Send an IPI every time queue reaches half capacity. */ kick = sd->defer_count == (defer_max >> 1); /* Paired with the READ_ONCE() few lines above */ WRITE_ONCE(sd->defer_count, sd->defer_count + 1); skb->next = sd->defer_list; /* Paired with READ_ONCE() in skb_defer_free_flush() */ WRITE_ONCE(sd->defer_list, skb); spin_unlock_bh(&sd->defer_lock); /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU * if we are unlucky enough (this seems very unlikely). */ if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) smp_call_function_single_async(cpu, &sd->defer_csd); } static void skb_splice_csum_page(struct sk_buff *skb, struct page *page, size_t offset, size_t len) { const char *kaddr; __wsum csum; kaddr = kmap_local_page(page); csum = csum_partial(kaddr + offset, len, 0); kunmap_local(kaddr); skb->csum = csum_block_add(skb->csum, csum, skb->len); } /** * skb_splice_from_iter - Splice (or copy) pages to skbuff * @skb: The buffer to add pages to * @iter: Iterator representing the pages to be added * @maxsize: Maximum amount of pages to be added * @gfp: Allocation flags * * This is a common helper function for supporting MSG_SPLICE_PAGES. It * extracts pages from an iterator and adds them to the socket buffer if * possible, copying them to fragments if not possible (such as if they're slab * pages). * * Returns the amount of data spliced/copied or -EMSGSIZE if there's * insufficient space in the buffer to transfer anything. */ ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter, ssize_t maxsize, gfp_t gfp) { size_t frag_limit = READ_ONCE(sysctl_max_skb_frags); struct page *pages[8], **ppages = pages; ssize_t spliced = 0, ret = 0; unsigned int i; while (iter->count > 0) { ssize_t space, nr, len; size_t off; ret = -EMSGSIZE; space = frag_limit - skb_shinfo(skb)->nr_frags; if (space < 0) break; /* We might be able to coalesce without increasing nr_frags */ nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages)); len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off); if (len <= 0) { ret = len ?: -EIO; break; } i = 0; do { struct page *page = pages[i++]; size_t part = min_t(size_t, PAGE_SIZE - off, len); ret = -EIO; if (WARN_ON_ONCE(!sendpage_ok(page))) goto out; ret = skb_append_pagefrags(skb, page, off, part, frag_limit); if (ret < 0) { iov_iter_revert(iter, len); goto out; } if (skb->ip_summed == CHECKSUM_NONE) skb_splice_csum_page(skb, page, off, part); off = 0; spliced += part; maxsize -= part; len -= part; } while (len > 0); if (maxsize <= 0) break; } out: skb_len_add(skb, spliced); return spliced ?: ret; } EXPORT_SYMBOL(skb_splice_from_iter); static __always_inline size_t memcpy_from_iter_csum(void *iter_from, size_t progress, size_t len, void *to, void *priv2) { __wsum *csum = priv2; __wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len); *csum = csum_block_add(*csum, next, progress); return 0; } static __always_inline size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress, size_t len, void *to, void *priv2) { __wsum next, *csum = priv2; next = csum_and_copy_from_user(iter_from, to + progress, len); *csum = csum_block_add(*csum, next, progress); return next ? 0 : len; } bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum, struct iov_iter *i) { size_t copied; if (WARN_ON_ONCE(!i->data_source)) return false; copied = iterate_and_advance2(i, bytes, addr, csum, copy_from_user_iter_csum, memcpy_from_iter_csum); if (likely(copied == bytes)) return true; iov_iter_revert(i, copied); return false; } EXPORT_SYMBOL(csum_and_copy_from_iter_full);