// SPDX-License-Identifier: GPL-2.0-or-later /* * DSA topology and switch handling * * Copyright (c) 2008-2009 Marvell Semiconductor * Copyright (c) 2013 Florian Fainelli * Copyright (c) 2016 Andrew Lunn */ #include #include #include #include #include #include #include #include #include #include #include #include #include "conduit.h" #include "devlink.h" #include "dsa.h" #include "netlink.h" #include "port.h" #include "switch.h" #include "tag.h" #include "user.h" #define DSA_MAX_NUM_OFFLOADING_BRIDGES BITS_PER_LONG static DEFINE_MUTEX(dsa2_mutex); LIST_HEAD(dsa_tree_list); static struct workqueue_struct *dsa_owq; /* Track the bridges with forwarding offload enabled */ static unsigned long dsa_fwd_offloading_bridges; bool dsa_schedule_work(struct work_struct *work) { return queue_work(dsa_owq, work); } void dsa_flush_workqueue(void) { flush_workqueue(dsa_owq); } EXPORT_SYMBOL_GPL(dsa_flush_workqueue); /** * dsa_lag_map() - Map LAG structure to a linear LAG array * @dst: Tree in which to record the mapping. * @lag: LAG structure that is to be mapped to the tree's array. * * dsa_lag_id/dsa_lag_by_id can then be used to translate between the * two spaces. The size of the mapping space is determined by the * driver by setting ds->num_lag_ids. It is perfectly legal to leave * it unset if it is not needed, in which case these functions become * no-ops. */ void dsa_lag_map(struct dsa_switch_tree *dst, struct dsa_lag *lag) { unsigned int id; for (id = 1; id <= dst->lags_len; id++) { if (!dsa_lag_by_id(dst, id)) { dst->lags[id - 1] = lag; lag->id = id; return; } } /* No IDs left, which is OK. Some drivers do not need it. The * ones that do, e.g. mv88e6xxx, will discover that dsa_lag_id * returns an error for this device when joining the LAG. The * driver can then return -EOPNOTSUPP back to DSA, which will * fall back to a software LAG. */ } /** * dsa_lag_unmap() - Remove a LAG ID mapping * @dst: Tree in which the mapping is recorded. * @lag: LAG structure that was mapped. * * As there may be multiple users of the mapping, it is only removed * if there are no other references to it. */ void dsa_lag_unmap(struct dsa_switch_tree *dst, struct dsa_lag *lag) { unsigned int id; dsa_lags_foreach_id(id, dst) { if (dsa_lag_by_id(dst, id) == lag) { dst->lags[id - 1] = NULL; lag->id = 0; break; } } } struct dsa_lag *dsa_tree_lag_find(struct dsa_switch_tree *dst, const struct net_device *lag_dev) { struct dsa_port *dp; list_for_each_entry(dp, &dst->ports, list) if (dsa_port_lag_dev_get(dp) == lag_dev) return dp->lag; return NULL; } struct dsa_bridge *dsa_tree_bridge_find(struct dsa_switch_tree *dst, const struct net_device *br) { struct dsa_port *dp; list_for_each_entry(dp, &dst->ports, list) if (dsa_port_bridge_dev_get(dp) == br) return dp->bridge; return NULL; } static int dsa_bridge_num_find(const struct net_device *bridge_dev) { struct dsa_switch_tree *dst; list_for_each_entry(dst, &dsa_tree_list, list) { struct dsa_bridge *bridge; bridge = dsa_tree_bridge_find(dst, bridge_dev); if (bridge) return bridge->num; } return 0; } unsigned int dsa_bridge_num_get(const struct net_device *bridge_dev, int max) { unsigned int bridge_num = dsa_bridge_num_find(bridge_dev); /* Switches without FDB isolation support don't get unique * bridge numbering */ if (!max) return 0; if (!bridge_num) { /* First port that requests FDB isolation or TX forwarding * offload for this bridge */ bridge_num = find_next_zero_bit(&dsa_fwd_offloading_bridges, DSA_MAX_NUM_OFFLOADING_BRIDGES, 1); if (bridge_num >= max) return 0; set_bit(bridge_num, &dsa_fwd_offloading_bridges); } return bridge_num; } void dsa_bridge_num_put(const struct net_device *bridge_dev, unsigned int bridge_num) { /* Since we refcount bridges, we know that when we call this function * it is no longer in use, so we can just go ahead and remove it from * the bit mask. */ clear_bit(bridge_num, &dsa_fwd_offloading_bridges); } struct dsa_switch *dsa_switch_find(int tree_index, int sw_index) { struct dsa_switch_tree *dst; struct dsa_port *dp; list_for_each_entry(dst, &dsa_tree_list, list) { if (dst->index != tree_index) continue; list_for_each_entry(dp, &dst->ports, list) { if (dp->ds->index != sw_index) continue; return dp->ds; } } return NULL; } EXPORT_SYMBOL_GPL(dsa_switch_find); static struct dsa_switch_tree *dsa_tree_find(int index) { struct dsa_switch_tree *dst; list_for_each_entry(dst, &dsa_tree_list, list) if (dst->index == index) return dst; return NULL; } static struct dsa_switch_tree *dsa_tree_alloc(int index) { struct dsa_switch_tree *dst; dst = kzalloc(sizeof(*dst), GFP_KERNEL); if (!dst) return NULL; dst->index = index; INIT_LIST_HEAD(&dst->rtable); INIT_LIST_HEAD(&dst->ports); INIT_LIST_HEAD(&dst->list); list_add_tail(&dst->list, &dsa_tree_list); kref_init(&dst->refcount); return dst; } static void dsa_tree_free(struct dsa_switch_tree *dst) { if (dst->tag_ops) dsa_tag_driver_put(dst->tag_ops); list_del(&dst->list); kfree(dst); } static struct dsa_switch_tree *dsa_tree_get(struct dsa_switch_tree *dst) { if (dst) kref_get(&dst->refcount); return dst; } static struct dsa_switch_tree *dsa_tree_touch(int index) { struct dsa_switch_tree *dst; dst = dsa_tree_find(index); if (dst) return dsa_tree_get(dst); else return dsa_tree_alloc(index); } static void dsa_tree_release(struct kref *ref) { struct dsa_switch_tree *dst; dst = container_of(ref, struct dsa_switch_tree, refcount); dsa_tree_free(dst); } static void dsa_tree_put(struct dsa_switch_tree *dst) { if (dst) kref_put(&dst->refcount, dsa_tree_release); } static struct dsa_port *dsa_tree_find_port_by_node(struct dsa_switch_tree *dst, struct device_node *dn) { struct dsa_port *dp; list_for_each_entry(dp, &dst->ports, list) if (dp->dn == dn) return dp; return NULL; } static struct dsa_link *dsa_link_touch(struct dsa_port *dp, struct dsa_port *link_dp) { struct dsa_switch *ds = dp->ds; struct dsa_switch_tree *dst; struct dsa_link *dl; dst = ds->dst; list_for_each_entry(dl, &dst->rtable, list) if (dl->dp == dp && dl->link_dp == link_dp) return dl; dl = kzalloc(sizeof(*dl), GFP_KERNEL); if (!dl) return NULL; dl->dp = dp; dl->link_dp = link_dp; INIT_LIST_HEAD(&dl->list); list_add_tail(&dl->list, &dst->rtable); return dl; } static bool dsa_port_setup_routing_table(struct dsa_port *dp) { struct dsa_switch *ds = dp->ds; struct dsa_switch_tree *dst = ds->dst; struct device_node *dn = dp->dn; struct of_phandle_iterator it; struct dsa_port *link_dp; struct dsa_link *dl; int err; of_for_each_phandle(&it, err, dn, "link", NULL, 0) { link_dp = dsa_tree_find_port_by_node(dst, it.node); if (!link_dp) { of_node_put(it.node); return false; } dl = dsa_link_touch(dp, link_dp); if (!dl) { of_node_put(it.node); return false; } } return true; } static bool dsa_tree_setup_routing_table(struct dsa_switch_tree *dst) { bool complete = true; struct dsa_port *dp; list_for_each_entry(dp, &dst->ports, list) { if (dsa_port_is_dsa(dp)) { complete = dsa_port_setup_routing_table(dp); if (!complete) break; } } return complete; } static struct dsa_port *dsa_tree_find_first_cpu(struct dsa_switch_tree *dst) { struct dsa_port *dp; list_for_each_entry(dp, &dst->ports, list) if (dsa_port_is_cpu(dp)) return dp; return NULL; } struct net_device *dsa_tree_find_first_conduit(struct dsa_switch_tree *dst) { struct device_node *ethernet; struct net_device *conduit; struct dsa_port *cpu_dp; cpu_dp = dsa_tree_find_first_cpu(dst); ethernet = of_parse_phandle(cpu_dp->dn, "ethernet", 0); conduit = of_find_net_device_by_node(ethernet); of_node_put(ethernet); return conduit; } /* Assign the default CPU port (the first one in the tree) to all ports of the * fabric which don't already have one as part of their own switch. */ static int dsa_tree_setup_default_cpu(struct dsa_switch_tree *dst) { struct dsa_port *cpu_dp, *dp; cpu_dp = dsa_tree_find_first_cpu(dst); if (!cpu_dp) { pr_err("DSA: tree %d has no CPU port\n", dst->index); return -EINVAL; } list_for_each_entry(dp, &dst->ports, list) { if (dp->cpu_dp) continue; if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp)) dp->cpu_dp = cpu_dp; } return 0; } static struct dsa_port * dsa_switch_preferred_default_local_cpu_port(struct dsa_switch *ds) { struct dsa_port *cpu_dp; if (!ds->ops->preferred_default_local_cpu_port) return NULL; cpu_dp = ds->ops->preferred_default_local_cpu_port(ds); if (!cpu_dp) return NULL; if (WARN_ON(!dsa_port_is_cpu(cpu_dp) || cpu_dp->ds != ds)) return NULL; return cpu_dp; } /* Perform initial assignment of CPU ports to user ports and DSA links in the * fabric, giving preference to CPU ports local to each switch. Default to * using the first CPU port in the switch tree if the port does not have a CPU * port local to this switch. */ static int dsa_tree_setup_cpu_ports(struct dsa_switch_tree *dst) { struct dsa_port *preferred_cpu_dp, *cpu_dp, *dp; list_for_each_entry(cpu_dp, &dst->ports, list) { if (!dsa_port_is_cpu(cpu_dp)) continue; preferred_cpu_dp = dsa_switch_preferred_default_local_cpu_port(cpu_dp->ds); if (preferred_cpu_dp && preferred_cpu_dp != cpu_dp) continue; /* Prefer a local CPU port */ dsa_switch_for_each_port(dp, cpu_dp->ds) { /* Prefer the first local CPU port found */ if (dp->cpu_dp) continue; if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp)) dp->cpu_dp = cpu_dp; } } return dsa_tree_setup_default_cpu(dst); } static void dsa_tree_teardown_cpu_ports(struct dsa_switch_tree *dst) { struct dsa_port *dp; list_for_each_entry(dp, &dst->ports, list) if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp)) dp->cpu_dp = NULL; } static int dsa_port_setup(struct dsa_port *dp) { bool dsa_port_link_registered = false; struct dsa_switch *ds = dp->ds; bool dsa_port_enabled = false; int err = 0; if (dp->setup) return 0; err = dsa_port_devlink_setup(dp); if (err) return err; switch (dp->type) { case DSA_PORT_TYPE_UNUSED: dsa_port_disable(dp); break; case DSA_PORT_TYPE_CPU: if (dp->dn) { err = dsa_shared_port_link_register_of(dp); if (err) break; dsa_port_link_registered = true; } else { dev_warn(ds->dev, "skipping link registration for CPU port %d\n", dp->index); } err = dsa_port_enable(dp, NULL); if (err) break; dsa_port_enabled = true; break; case DSA_PORT_TYPE_DSA: if (dp->dn) { err = dsa_shared_port_link_register_of(dp); if (err) break; dsa_port_link_registered = true; } else { dev_warn(ds->dev, "skipping link registration for DSA port %d\n", dp->index); } err = dsa_port_enable(dp, NULL); if (err) break; dsa_port_enabled = true; break; case DSA_PORT_TYPE_USER: of_get_mac_address(dp->dn, dp->mac); err = dsa_user_create(dp); break; } if (err && dsa_port_enabled) dsa_port_disable(dp); if (err && dsa_port_link_registered) dsa_shared_port_link_unregister_of(dp); if (err) { dsa_port_devlink_teardown(dp); return err; } dp->setup = true; return 0; } static void dsa_port_teardown(struct dsa_port *dp) { if (!dp->setup) return; switch (dp->type) { case DSA_PORT_TYPE_UNUSED: break; case DSA_PORT_TYPE_CPU: dsa_port_disable(dp); if (dp->dn) dsa_shared_port_link_unregister_of(dp); break; case DSA_PORT_TYPE_DSA: dsa_port_disable(dp); if (dp->dn) dsa_shared_port_link_unregister_of(dp); break; case DSA_PORT_TYPE_USER: if (dp->user) { dsa_user_destroy(dp->user); dp->user = NULL; } break; } dsa_port_devlink_teardown(dp); dp->setup = false; } static int dsa_port_setup_as_unused(struct dsa_port *dp) { dp->type = DSA_PORT_TYPE_UNUSED; return dsa_port_setup(dp); } static int dsa_switch_setup_tag_protocol(struct dsa_switch *ds) { const struct dsa_device_ops *tag_ops = ds->dst->tag_ops; struct dsa_switch_tree *dst = ds->dst; int err; if (tag_ops->proto == dst->default_proto) goto connect; rtnl_lock(); err = ds->ops->change_tag_protocol(ds, tag_ops->proto); rtnl_unlock(); if (err) { dev_err(ds->dev, "Unable to use tag protocol \"%s\": %pe\n", tag_ops->name, ERR_PTR(err)); return err; } connect: if (tag_ops->connect) { err = tag_ops->connect(ds); if (err) return err; } if (ds->ops->connect_tag_protocol) { err = ds->ops->connect_tag_protocol(ds, tag_ops->proto); if (err) { dev_err(ds->dev, "Unable to connect to tag protocol \"%s\": %pe\n", tag_ops->name, ERR_PTR(err)); goto disconnect; } } return 0; disconnect: if (tag_ops->disconnect) tag_ops->disconnect(ds); return err; } static void dsa_switch_teardown_tag_protocol(struct dsa_switch *ds) { const struct dsa_device_ops *tag_ops = ds->dst->tag_ops; if (tag_ops->disconnect) tag_ops->disconnect(ds); } static int dsa_switch_setup(struct dsa_switch *ds) { struct device_node *dn; int err; if (ds->setup) return 0; /* Initialize ds->phys_mii_mask before registering the user MDIO bus * driver and before ops->setup() has run, since the switch drivers and * the user MDIO bus driver rely on these values for probing PHY * devices or not */ ds->phys_mii_mask |= dsa_user_ports(ds); err = dsa_switch_devlink_alloc(ds); if (err) return err; err = dsa_switch_register_notifier(ds); if (err) goto devlink_free; ds->configure_vlan_while_not_filtering = true; err = ds->ops->setup(ds); if (err < 0) goto unregister_notifier; err = dsa_switch_setup_tag_protocol(ds); if (err) goto teardown; if (!ds->user_mii_bus && ds->ops->phy_read) { ds->user_mii_bus = mdiobus_alloc(); if (!ds->user_mii_bus) { err = -ENOMEM; goto teardown; } dsa_user_mii_bus_init(ds); dn = of_get_child_by_name(ds->dev->of_node, "mdio"); err = of_mdiobus_register(ds->user_mii_bus, dn); of_node_put(dn); if (err < 0) goto free_user_mii_bus; } dsa_switch_devlink_register(ds); ds->setup = true; return 0; free_user_mii_bus: if (ds->user_mii_bus && ds->ops->phy_read) mdiobus_free(ds->user_mii_bus); teardown: if (ds->ops->teardown) ds->ops->teardown(ds); unregister_notifier: dsa_switch_unregister_notifier(ds); devlink_free: dsa_switch_devlink_free(ds); return err; } static void dsa_switch_teardown(struct dsa_switch *ds) { if (!ds->setup) return; dsa_switch_devlink_unregister(ds); if (ds->user_mii_bus && ds->ops->phy_read) { mdiobus_unregister(ds->user_mii_bus); mdiobus_free(ds->user_mii_bus); ds->user_mii_bus = NULL; } dsa_switch_teardown_tag_protocol(ds); if (ds->ops->teardown) ds->ops->teardown(ds); dsa_switch_unregister_notifier(ds); dsa_switch_devlink_free(ds); ds->setup = false; } /* First tear down the non-shared, then the shared ports. This ensures that * all work items scheduled by our switchdev handlers for user ports have * completed before we destroy the refcounting kept on the shared ports. */ static void dsa_tree_teardown_ports(struct dsa_switch_tree *dst) { struct dsa_port *dp; list_for_each_entry(dp, &dst->ports, list) if (dsa_port_is_user(dp) || dsa_port_is_unused(dp)) dsa_port_teardown(dp); dsa_flush_workqueue(); list_for_each_entry(dp, &dst->ports, list) if (dsa_port_is_dsa(dp) || dsa_port_is_cpu(dp)) dsa_port_teardown(dp); } static void dsa_tree_teardown_switches(struct dsa_switch_tree *dst) { struct dsa_port *dp; list_for_each_entry(dp, &dst->ports, list) dsa_switch_teardown(dp->ds); } /* Bring shared ports up first, then non-shared ports */ static int dsa_tree_setup_ports(struct dsa_switch_tree *dst) { struct dsa_port *dp; int err = 0; list_for_each_entry(dp, &dst->ports, list) { if (dsa_port_is_dsa(dp) || dsa_port_is_cpu(dp)) { err = dsa_port_setup(dp); if (err) goto teardown; } } list_for_each_entry(dp, &dst->ports, list) { if (dsa_port_is_user(dp) || dsa_port_is_unused(dp)) { err = dsa_port_setup(dp); if (err) { err = dsa_port_setup_as_unused(dp); if (err) goto teardown; } } } return 0; teardown: dsa_tree_teardown_ports(dst); return err; } static int dsa_tree_setup_switches(struct dsa_switch_tree *dst) { struct dsa_port *dp; int err = 0; list_for_each_entry(dp, &dst->ports, list) { err = dsa_switch_setup(dp->ds); if (err) { dsa_tree_teardown_switches(dst); break; } } return err; } static int dsa_tree_setup_conduit(struct dsa_switch_tree *dst) { struct dsa_port *cpu_dp; int err = 0; rtnl_lock(); dsa_tree_for_each_cpu_port(cpu_dp, dst) { struct net_device *conduit = cpu_dp->conduit; bool admin_up = (conduit->flags & IFF_UP) && !qdisc_tx_is_noop(conduit); err = dsa_conduit_setup(conduit, cpu_dp); if (err) break; /* Replay conduit state event */ dsa_tree_conduit_admin_state_change(dst, conduit, admin_up); dsa_tree_conduit_oper_state_change(dst, conduit, netif_oper_up(conduit)); } rtnl_unlock(); return err; } static void dsa_tree_teardown_conduit(struct dsa_switch_tree *dst) { struct dsa_port *cpu_dp; rtnl_lock(); dsa_tree_for_each_cpu_port(cpu_dp, dst) { struct net_device *conduit = cpu_dp->conduit; /* Synthesizing an "admin down" state is sufficient for * the switches to get a notification if the conduit is * currently up and running. */ dsa_tree_conduit_admin_state_change(dst, conduit, false); dsa_conduit_teardown(conduit); } rtnl_unlock(); } static int dsa_tree_setup_lags(struct dsa_switch_tree *dst) { unsigned int len = 0; struct dsa_port *dp; list_for_each_entry(dp, &dst->ports, list) { if (dp->ds->num_lag_ids > len) len = dp->ds->num_lag_ids; } if (!len) return 0; dst->lags = kcalloc(len, sizeof(*dst->lags), GFP_KERNEL); if (!dst->lags) return -ENOMEM; dst->lags_len = len; return 0; } static void dsa_tree_teardown_lags(struct dsa_switch_tree *dst) { kfree(dst->lags); } static int dsa_tree_setup(struct dsa_switch_tree *dst) { bool complete; int err; if (dst->setup) { pr_err("DSA: tree %d already setup! Disjoint trees?\n", dst->index); return -EEXIST; } complete = dsa_tree_setup_routing_table(dst); if (!complete) return 0; err = dsa_tree_setup_cpu_ports(dst); if (err) return err; err = dsa_tree_setup_switches(dst); if (err) goto teardown_cpu_ports; err = dsa_tree_setup_ports(dst); if (err) goto teardown_switches; err = dsa_tree_setup_conduit(dst); if (err) goto teardown_ports; err = dsa_tree_setup_lags(dst); if (err) goto teardown_conduit; dst->setup = true; pr_info("DSA: tree %d setup\n", dst->index); return 0; teardown_conduit: dsa_tree_teardown_conduit(dst); teardown_ports: dsa_tree_teardown_ports(dst); teardown_switches: dsa_tree_teardown_switches(dst); teardown_cpu_ports: dsa_tree_teardown_cpu_ports(dst); return err; } static void dsa_tree_teardown(struct dsa_switch_tree *dst) { struct dsa_link *dl, *next; if (!dst->setup) return; dsa_tree_teardown_lags(dst); dsa_tree_teardown_conduit(dst); dsa_tree_teardown_ports(dst); dsa_tree_teardown_switches(dst); dsa_tree_teardown_cpu_ports(dst); list_for_each_entry_safe(dl, next, &dst->rtable, list) { list_del(&dl->list); kfree(dl); } pr_info("DSA: tree %d torn down\n", dst->index); dst->setup = false; } static int dsa_tree_bind_tag_proto(struct dsa_switch_tree *dst, const struct dsa_device_ops *tag_ops) { const struct dsa_device_ops *old_tag_ops = dst->tag_ops; struct dsa_notifier_tag_proto_info info; int err; dst->tag_ops = tag_ops; /* Notify the switches from this tree about the connection * to the new tagger */ info.tag_ops = tag_ops; err = dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_CONNECT, &info); if (err && err != -EOPNOTSUPP) goto out_disconnect; /* Notify the old tagger about the disconnection from this tree */ info.tag_ops = old_tag_ops; dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_DISCONNECT, &info); return 0; out_disconnect: info.tag_ops = tag_ops; dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_DISCONNECT, &info); dst->tag_ops = old_tag_ops; return err; } /* Since the dsa/tagging sysfs device attribute is per conduit, the assumption * is that all DSA switches within a tree share the same tagger, otherwise * they would have formed disjoint trees (different "dsa,member" values). */ int dsa_tree_change_tag_proto(struct dsa_switch_tree *dst, const struct dsa_device_ops *tag_ops, const struct dsa_device_ops *old_tag_ops) { struct dsa_notifier_tag_proto_info info; struct dsa_port *dp; int err = -EBUSY; if (!rtnl_trylock()) return restart_syscall(); /* At the moment we don't allow changing the tag protocol under * traffic. The rtnl_mutex also happens to serialize concurrent * attempts to change the tagging protocol. If we ever lift the IFF_UP * restriction, there needs to be another mutex which serializes this. */ dsa_tree_for_each_user_port(dp, dst) { if (dsa_port_to_conduit(dp)->flags & IFF_UP) goto out_unlock; if (dp->user->flags & IFF_UP) goto out_unlock; } /* Notify the tag protocol change */ info.tag_ops = tag_ops; err = dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO, &info); if (err) goto out_unwind_tagger; err = dsa_tree_bind_tag_proto(dst, tag_ops); if (err) goto out_unwind_tagger; rtnl_unlock(); return 0; out_unwind_tagger: info.tag_ops = old_tag_ops; dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO, &info); out_unlock: rtnl_unlock(); return err; } static void dsa_tree_conduit_state_change(struct dsa_switch_tree *dst, struct net_device *conduit) { struct dsa_notifier_conduit_state_info info; struct dsa_port *cpu_dp = conduit->dsa_ptr; info.conduit = conduit; info.operational = dsa_port_conduit_is_operational(cpu_dp); dsa_tree_notify(dst, DSA_NOTIFIER_CONDUIT_STATE_CHANGE, &info); } void dsa_tree_conduit_admin_state_change(struct dsa_switch_tree *dst, struct net_device *conduit, bool up) { struct dsa_port *cpu_dp = conduit->dsa_ptr; bool notify = false; /* Don't keep track of admin state on LAG DSA conduits, * but rather just of physical DSA conduits */ if (netif_is_lag_master(conduit)) return; if ((dsa_port_conduit_is_operational(cpu_dp)) != (up && cpu_dp->conduit_oper_up)) notify = true; cpu_dp->conduit_admin_up = up; if (notify) dsa_tree_conduit_state_change(dst, conduit); } void dsa_tree_conduit_oper_state_change(struct dsa_switch_tree *dst, struct net_device *conduit, bool up) { struct dsa_port *cpu_dp = conduit->dsa_ptr; bool notify = false; /* Don't keep track of oper state on LAG DSA conduits, * but rather just of physical DSA conduits */ if (netif_is_lag_master(conduit)) return; if ((dsa_port_conduit_is_operational(cpu_dp)) != (cpu_dp->conduit_admin_up && up)) notify = true; cpu_dp->conduit_oper_up = up; if (notify) dsa_tree_conduit_state_change(dst, conduit); } static struct dsa_port *dsa_port_touch(struct dsa_switch *ds, int index) { struct dsa_switch_tree *dst = ds->dst; struct dsa_port *dp; dsa_switch_for_each_port(dp, ds) if (dp->index == index) return dp; dp = kzalloc(sizeof(*dp), GFP_KERNEL); if (!dp) return NULL; dp->ds = ds; dp->index = index; mutex_init(&dp->addr_lists_lock); mutex_init(&dp->vlans_lock); INIT_LIST_HEAD(&dp->fdbs); INIT_LIST_HEAD(&dp->mdbs); INIT_LIST_HEAD(&dp->vlans); /* also initializes &dp->user_vlans */ INIT_LIST_HEAD(&dp->list); list_add_tail(&dp->list, &dst->ports); return dp; } static int dsa_port_parse_user(struct dsa_port *dp, const char *name) { dp->type = DSA_PORT_TYPE_USER; dp->name = name; return 0; } static int dsa_port_parse_dsa(struct dsa_port *dp) { dp->type = DSA_PORT_TYPE_DSA; return 0; } static enum dsa_tag_protocol dsa_get_tag_protocol(struct dsa_port *dp, struct net_device *conduit) { enum dsa_tag_protocol tag_protocol = DSA_TAG_PROTO_NONE; struct dsa_switch *mds, *ds = dp->ds; unsigned int mdp_upstream; struct dsa_port *mdp; /* It is possible to stack DSA switches onto one another when that * happens the switch driver may want to know if its tagging protocol * is going to work in such a configuration. */ if (dsa_user_dev_check(conduit)) { mdp = dsa_user_to_port(conduit); mds = mdp->ds; mdp_upstream = dsa_upstream_port(mds, mdp->index); tag_protocol = mds->ops->get_tag_protocol(mds, mdp_upstream, DSA_TAG_PROTO_NONE); } /* If the conduit device is not itself a DSA user in a disjoint DSA * tree, then return immediately. */ return ds->ops->get_tag_protocol(ds, dp->index, tag_protocol); } static int dsa_port_parse_cpu(struct dsa_port *dp, struct net_device *conduit, const char *user_protocol) { const struct dsa_device_ops *tag_ops = NULL; struct dsa_switch *ds = dp->ds; struct dsa_switch_tree *dst = ds->dst; enum dsa_tag_protocol default_proto; /* Find out which protocol the switch would prefer. */ default_proto = dsa_get_tag_protocol(dp, conduit); if (dst->default_proto) { if (dst->default_proto != default_proto) { dev_err(ds->dev, "A DSA switch tree can have only one tagging protocol\n"); return -EINVAL; } } else { dst->default_proto = default_proto; } /* See if the user wants to override that preference. */ if (user_protocol) { if (!ds->ops->change_tag_protocol) { dev_err(ds->dev, "Tag protocol cannot be modified\n"); return -EINVAL; } tag_ops = dsa_tag_driver_get_by_name(user_protocol); if (IS_ERR(tag_ops)) { dev_warn(ds->dev, "Failed to find a tagging driver for protocol %s, using default\n", user_protocol); tag_ops = NULL; } } if (!tag_ops) tag_ops = dsa_tag_driver_get_by_id(default_proto); if (IS_ERR(tag_ops)) { if (PTR_ERR(tag_ops) == -ENOPROTOOPT) return -EPROBE_DEFER; dev_warn(ds->dev, "No tagger for this switch\n"); return PTR_ERR(tag_ops); } if (dst->tag_ops) { if (dst->tag_ops != tag_ops) { dev_err(ds->dev, "A DSA switch tree can have only one tagging protocol\n"); dsa_tag_driver_put(tag_ops); return -EINVAL; } /* In the case of multiple CPU ports per switch, the tagging * protocol is still reference-counted only per switch tree. */ dsa_tag_driver_put(tag_ops); } else { dst->tag_ops = tag_ops; } dp->conduit = conduit; dp->type = DSA_PORT_TYPE_CPU; dsa_port_set_tag_protocol(dp, dst->tag_ops); dp->dst = dst; /* At this point, the tree may be configured to use a different * tagger than the one chosen by the switch driver during * .setup, in the case when a user selects a custom protocol * through the DT. * * This is resolved by syncing the driver with the tree in * dsa_switch_setup_tag_protocol once .setup has run and the * driver is ready to accept calls to .change_tag_protocol. If * the driver does not support the custom protocol at that * point, the tree is wholly rejected, thereby ensuring that the * tree and driver are always in agreement on the protocol to * use. */ return 0; } static int dsa_port_parse_of(struct dsa_port *dp, struct device_node *dn) { struct device_node *ethernet = of_parse_phandle(dn, "ethernet", 0); const char *name = of_get_property(dn, "label", NULL); bool link = of_property_read_bool(dn, "link"); dp->dn = dn; if (ethernet) { struct net_device *conduit; const char *user_protocol; conduit = of_find_net_device_by_node(ethernet); of_node_put(ethernet); if (!conduit) return -EPROBE_DEFER; user_protocol = of_get_property(dn, "dsa-tag-protocol", NULL); return dsa_port_parse_cpu(dp, conduit, user_protocol); } if (link) return dsa_port_parse_dsa(dp); return dsa_port_parse_user(dp, name); } static int dsa_switch_parse_ports_of(struct dsa_switch *ds, struct device_node *dn) { struct device_node *ports, *port; struct dsa_port *dp; int err = 0; u32 reg; ports = of_get_child_by_name(dn, "ports"); if (!ports) { /* The second possibility is "ethernet-ports" */ ports = of_get_child_by_name(dn, "ethernet-ports"); if (!ports) { dev_err(ds->dev, "no ports child node found\n"); return -EINVAL; } } for_each_available_child_of_node(ports, port) { err = of_property_read_u32(port, "reg", ®); if (err) { of_node_put(port); goto out_put_node; } if (reg >= ds->num_ports) { dev_err(ds->dev, "port %pOF index %u exceeds num_ports (%u)\n", port, reg, ds->num_ports); of_node_put(port); err = -EINVAL; goto out_put_node; } dp = dsa_to_port(ds, reg); err = dsa_port_parse_of(dp, port); if (err) { of_node_put(port); goto out_put_node; } } out_put_node: of_node_put(ports); return err; } static int dsa_switch_parse_member_of(struct dsa_switch *ds, struct device_node *dn) { u32 m[2] = { 0, 0 }; int sz; /* Don't error out if this optional property isn't found */ sz = of_property_read_variable_u32_array(dn, "dsa,member", m, 2, 2); if (sz < 0 && sz != -EINVAL) return sz; ds->index = m[1]; ds->dst = dsa_tree_touch(m[0]); if (!ds->dst) return -ENOMEM; if (dsa_switch_find(ds->dst->index, ds->index)) { dev_err(ds->dev, "A DSA switch with index %d already exists in tree %d\n", ds->index, ds->dst->index); return -EEXIST; } if (ds->dst->last_switch < ds->index) ds->dst->last_switch = ds->index; return 0; } static int dsa_switch_touch_ports(struct dsa_switch *ds) { struct dsa_port *dp; int port; for (port = 0; port < ds->num_ports; port++) { dp = dsa_port_touch(ds, port); if (!dp) return -ENOMEM; } return 0; } static int dsa_switch_parse_of(struct dsa_switch *ds, struct device_node *dn) { int err; err = dsa_switch_parse_member_of(ds, dn); if (err) return err; err = dsa_switch_touch_ports(ds); if (err) return err; return dsa_switch_parse_ports_of(ds, dn); } static int dev_is_class(struct device *dev, void *class) { if (dev->class != NULL && !strcmp(dev->class->name, class)) return 1; return 0; } static struct device *dev_find_class(struct device *parent, char *class) { if (dev_is_class(parent, class)) { get_device(parent); return parent; } return device_find_child(parent, class, dev_is_class); } static struct net_device *dsa_dev_to_net_device(struct device *dev) { struct device *d; d = dev_find_class(dev, "net"); if (d != NULL) { struct net_device *nd; nd = to_net_dev(d); dev_hold(nd); put_device(d); return nd; } return NULL; } static int dsa_port_parse(struct dsa_port *dp, const char *name, struct device *dev) { if (!strcmp(name, "cpu")) { struct net_device *conduit; conduit = dsa_dev_to_net_device(dev); if (!conduit) return -EPROBE_DEFER; dev_put(conduit); return dsa_port_parse_cpu(dp, conduit, NULL); } if (!strcmp(name, "dsa")) return dsa_port_parse_dsa(dp); return dsa_port_parse_user(dp, name); } static int dsa_switch_parse_ports(struct dsa_switch *ds, struct dsa_chip_data *cd) { bool valid_name_found = false; struct dsa_port *dp; struct device *dev; const char *name; unsigned int i; int err; for (i = 0; i < DSA_MAX_PORTS; i++) { name = cd->port_names[i]; dev = cd->netdev[i]; dp = dsa_to_port(ds, i); if (!name) continue; err = dsa_port_parse(dp, name, dev); if (err) return err; valid_name_found = true; } if (!valid_name_found && i == DSA_MAX_PORTS) return -EINVAL; return 0; } static int dsa_switch_parse(struct dsa_switch *ds, struct dsa_chip_data *cd) { int err; ds->cd = cd; /* We don't support interconnected switches nor multiple trees via * platform data, so this is the unique switch of the tree. */ ds->index = 0; ds->dst = dsa_tree_touch(0); if (!ds->dst) return -ENOMEM; err = dsa_switch_touch_ports(ds); if (err) return err; return dsa_switch_parse_ports(ds, cd); } static void dsa_switch_release_ports(struct dsa_switch *ds) { struct dsa_port *dp, *next; dsa_switch_for_each_port_safe(dp, next, ds) { WARN_ON(!list_empty(&dp->fdbs)); WARN_ON(!list_empty(&dp->mdbs)); WARN_ON(!list_empty(&dp->vlans)); list_del(&dp->list); kfree(dp); } } static int dsa_switch_probe(struct dsa_switch *ds) { struct dsa_switch_tree *dst; struct dsa_chip_data *pdata; struct device_node *np; int err; if (!ds->dev) return -ENODEV; pdata = ds->dev->platform_data; np = ds->dev->of_node; if (!ds->num_ports) return -EINVAL; if (ds->phylink_mac_ops) { if (ds->ops->phylink_mac_select_pcs || ds->ops->phylink_mac_prepare || ds->ops->phylink_mac_config || ds->ops->phylink_mac_finish || ds->ops->phylink_mac_link_down || ds->ops->phylink_mac_link_up || ds->ops->adjust_link) return -EINVAL; } if (np) { err = dsa_switch_parse_of(ds, np); if (err) dsa_switch_release_ports(ds); } else if (pdata) { err = dsa_switch_parse(ds, pdata); if (err) dsa_switch_release_ports(ds); } else { err = -ENODEV; } if (err) return err; dst = ds->dst; dsa_tree_get(dst); err = dsa_tree_setup(dst); if (err) { dsa_switch_release_ports(ds); dsa_tree_put(dst); } return err; } int dsa_register_switch(struct dsa_switch *ds) { int err; mutex_lock(&dsa2_mutex); err = dsa_switch_probe(ds); dsa_tree_put(ds->dst); mutex_unlock(&dsa2_mutex); return err; } EXPORT_SYMBOL_GPL(dsa_register_switch); static void dsa_switch_remove(struct dsa_switch *ds) { struct dsa_switch_tree *dst = ds->dst; dsa_tree_teardown(dst); dsa_switch_release_ports(ds); dsa_tree_put(dst); } void dsa_unregister_switch(struct dsa_switch *ds) { mutex_lock(&dsa2_mutex); dsa_switch_remove(ds); mutex_unlock(&dsa2_mutex); } EXPORT_SYMBOL_GPL(dsa_unregister_switch); /* If the DSA conduit chooses to unregister its net_device on .shutdown, DSA is * blocking that operation from completion, due to the dev_hold taken inside * netdev_upper_dev_link. Unlink the DSA user interfaces from being uppers of * the DSA conduit, so that the system can reboot successfully. */ void dsa_switch_shutdown(struct dsa_switch *ds) { struct net_device *conduit, *user_dev; struct dsa_port *dp; mutex_lock(&dsa2_mutex); if (!ds->setup) goto out; rtnl_lock(); dsa_switch_for_each_user_port(dp, ds) { conduit = dsa_port_to_conduit(dp); user_dev = dp->user; netdev_upper_dev_unlink(conduit, user_dev); } /* Disconnect from further netdevice notifiers on the conduit, * since netdev_uses_dsa() will now return false. */ dsa_switch_for_each_cpu_port(dp, ds) dp->conduit->dsa_ptr = NULL; rtnl_unlock(); out: mutex_unlock(&dsa2_mutex); } EXPORT_SYMBOL_GPL(dsa_switch_shutdown); #ifdef CONFIG_PM_SLEEP static bool dsa_port_is_initialized(const struct dsa_port *dp) { return dp->type == DSA_PORT_TYPE_USER && dp->user; } int dsa_switch_suspend(struct dsa_switch *ds) { struct dsa_port *dp; int ret = 0; /* Suspend user network devices */ dsa_switch_for_each_port(dp, ds) { if (!dsa_port_is_initialized(dp)) continue; ret = dsa_user_suspend(dp->user); if (ret) return ret; } if (ds->ops->suspend) ret = ds->ops->suspend(ds); return ret; } EXPORT_SYMBOL_GPL(dsa_switch_suspend); int dsa_switch_resume(struct dsa_switch *ds) { struct dsa_port *dp; int ret = 0; if (ds->ops->resume) ret = ds->ops->resume(ds); if (ret) return ret; /* Resume user network devices */ dsa_switch_for_each_port(dp, ds) { if (!dsa_port_is_initialized(dp)) continue; ret = dsa_user_resume(dp->user); if (ret) return ret; } return 0; } EXPORT_SYMBOL_GPL(dsa_switch_resume); #endif struct dsa_port *dsa_port_from_netdev(struct net_device *netdev) { if (!netdev || !dsa_user_dev_check(netdev)) return ERR_PTR(-ENODEV); return dsa_user_to_port(netdev); } EXPORT_SYMBOL_GPL(dsa_port_from_netdev); bool dsa_db_equal(const struct dsa_db *a, const struct dsa_db *b) { if (a->type != b->type) return false; switch (a->type) { case DSA_DB_PORT: return a->dp == b->dp; case DSA_DB_LAG: return a->lag.dev == b->lag.dev; case DSA_DB_BRIDGE: return a->bridge.num == b->bridge.num; default: WARN_ON(1); return false; } } bool dsa_fdb_present_in_other_db(struct dsa_switch *ds, int port, const unsigned char *addr, u16 vid, struct dsa_db db) { struct dsa_port *dp = dsa_to_port(ds, port); struct dsa_mac_addr *a; lockdep_assert_held(&dp->addr_lists_lock); list_for_each_entry(a, &dp->fdbs, list) { if (!ether_addr_equal(a->addr, addr) || a->vid != vid) continue; if (a->db.type == db.type && !dsa_db_equal(&a->db, &db)) return true; } return false; } EXPORT_SYMBOL_GPL(dsa_fdb_present_in_other_db); bool dsa_mdb_present_in_other_db(struct dsa_switch *ds, int port, const struct switchdev_obj_port_mdb *mdb, struct dsa_db db) { struct dsa_port *dp = dsa_to_port(ds, port); struct dsa_mac_addr *a; lockdep_assert_held(&dp->addr_lists_lock); list_for_each_entry(a, &dp->mdbs, list) { if (!ether_addr_equal(a->addr, mdb->addr) || a->vid != mdb->vid) continue; if (a->db.type == db.type && !dsa_db_equal(&a->db, &db)) return true; } return false; } EXPORT_SYMBOL_GPL(dsa_mdb_present_in_other_db); static const struct dsa_stubs __dsa_stubs = { .conduit_hwtstamp_validate = __dsa_conduit_hwtstamp_validate, }; static void dsa_register_stubs(void) { dsa_stubs = &__dsa_stubs; } static void dsa_unregister_stubs(void) { dsa_stubs = NULL; } static int __init dsa_init_module(void) { int rc; dsa_owq = alloc_ordered_workqueue("dsa_ordered", WQ_MEM_RECLAIM); if (!dsa_owq) return -ENOMEM; rc = dsa_user_register_notifier(); if (rc) goto register_notifier_fail; dev_add_pack(&dsa_pack_type); rc = rtnl_link_register(&dsa_link_ops); if (rc) goto netlink_register_fail; dsa_register_stubs(); return 0; netlink_register_fail: dsa_user_unregister_notifier(); dev_remove_pack(&dsa_pack_type); register_notifier_fail: destroy_workqueue(dsa_owq); return rc; } module_init(dsa_init_module); static void __exit dsa_cleanup_module(void) { dsa_unregister_stubs(); rtnl_link_unregister(&dsa_link_ops); dsa_user_unregister_notifier(); dev_remove_pack(&dsa_pack_type); destroy_workqueue(dsa_owq); } module_exit(dsa_cleanup_module); MODULE_AUTHOR("Lennert Buytenhek "); MODULE_DESCRIPTION("Driver for Distributed Switch Architecture switch chips"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:dsa");