// SPDX-License-Identifier: GPL-2.0-only /* * linux/net/sunrpc/svcsock.c * * These are the RPC server socket internals. * * The server scheduling algorithm does not always distribute the load * evenly when servicing a single client. May need to modify the * svc_xprt_enqueue procedure... * * TCP support is largely untested and may be a little slow. The problem * is that we currently do two separate recvfrom's, one for the 4-byte * record length, and the second for the actual record. This could possibly * be improved by always reading a minimum size of around 100 bytes and * tucking any superfluous bytes away in a temporary store. Still, that * leaves write requests out in the rain. An alternative may be to peek at * the first skb in the queue, and if it matches the next TCP sequence * number, to extract the record marker. Yuck. * * Copyright (C) 1995, 1996 Olaf Kirch */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "socklib.h" #include "sunrpc.h" #define RPCDBG_FACILITY RPCDBG_SVCXPRT /* To-do: to avoid tying up an nfsd thread while waiting for a * handshake request, the request could instead be deferred. */ enum { SVC_HANDSHAKE_TO = 5U * HZ }; static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *, int flags); static int svc_udp_recvfrom(struct svc_rqst *); static int svc_udp_sendto(struct svc_rqst *); static void svc_sock_detach(struct svc_xprt *); static void svc_tcp_sock_detach(struct svc_xprt *); static void svc_sock_free(struct svc_xprt *); static struct svc_xprt *svc_create_socket(struct svc_serv *, int, struct net *, struct sockaddr *, int, int); #ifdef CONFIG_DEBUG_LOCK_ALLOC static struct lock_class_key svc_key[2]; static struct lock_class_key svc_slock_key[2]; static void svc_reclassify_socket(struct socket *sock) { struct sock *sk = sock->sk; if (WARN_ON_ONCE(!sock_allow_reclassification(sk))) return; switch (sk->sk_family) { case AF_INET: sock_lock_init_class_and_name(sk, "slock-AF_INET-NFSD", &svc_slock_key[0], "sk_xprt.xpt_lock-AF_INET-NFSD", &svc_key[0]); break; case AF_INET6: sock_lock_init_class_and_name(sk, "slock-AF_INET6-NFSD", &svc_slock_key[1], "sk_xprt.xpt_lock-AF_INET6-NFSD", &svc_key[1]); break; default: BUG(); } } #else static void svc_reclassify_socket(struct socket *sock) { } #endif /** * svc_tcp_release_ctxt - Release transport-related resources * @xprt: the transport which owned the context * @ctxt: the context from rqstp->rq_xprt_ctxt or dr->xprt_ctxt * */ static void svc_tcp_release_ctxt(struct svc_xprt *xprt, void *ctxt) { } /** * svc_udp_release_ctxt - Release transport-related resources * @xprt: the transport which owned the context * @ctxt: the context from rqstp->rq_xprt_ctxt or dr->xprt_ctxt * */ static void svc_udp_release_ctxt(struct svc_xprt *xprt, void *ctxt) { struct sk_buff *skb = ctxt; if (skb) consume_skb(skb); } union svc_pktinfo_u { struct in_pktinfo pkti; struct in6_pktinfo pkti6; }; #define SVC_PKTINFO_SPACE \ CMSG_SPACE(sizeof(union svc_pktinfo_u)) static void svc_set_cmsg_data(struct svc_rqst *rqstp, struct cmsghdr *cmh) { struct svc_sock *svsk = container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); switch (svsk->sk_sk->sk_family) { case AF_INET: { struct in_pktinfo *pki = CMSG_DATA(cmh); cmh->cmsg_level = SOL_IP; cmh->cmsg_type = IP_PKTINFO; pki->ipi_ifindex = 0; pki->ipi_spec_dst.s_addr = svc_daddr_in(rqstp)->sin_addr.s_addr; cmh->cmsg_len = CMSG_LEN(sizeof(*pki)); } break; case AF_INET6: { struct in6_pktinfo *pki = CMSG_DATA(cmh); struct sockaddr_in6 *daddr = svc_daddr_in6(rqstp); cmh->cmsg_level = SOL_IPV6; cmh->cmsg_type = IPV6_PKTINFO; pki->ipi6_ifindex = daddr->sin6_scope_id; pki->ipi6_addr = daddr->sin6_addr; cmh->cmsg_len = CMSG_LEN(sizeof(*pki)); } break; } } static int svc_sock_result_payload(struct svc_rqst *rqstp, unsigned int offset, unsigned int length) { return 0; } /* * Report socket names for nfsdfs */ static int svc_one_sock_name(struct svc_sock *svsk, char *buf, int remaining) { const struct sock *sk = svsk->sk_sk; const char *proto_name = sk->sk_protocol == IPPROTO_UDP ? "udp" : "tcp"; int len; switch (sk->sk_family) { case PF_INET: len = snprintf(buf, remaining, "ipv4 %s %pI4 %d\n", proto_name, &inet_sk(sk)->inet_rcv_saddr, inet_sk(sk)->inet_num); break; #if IS_ENABLED(CONFIG_IPV6) case PF_INET6: len = snprintf(buf, remaining, "ipv6 %s %pI6 %d\n", proto_name, &sk->sk_v6_rcv_saddr, inet_sk(sk)->inet_num); break; #endif default: len = snprintf(buf, remaining, "*unknown-%d*\n", sk->sk_family); } if (len >= remaining) { *buf = '\0'; return -ENAMETOOLONG; } return len; } static int svc_tcp_sock_process_cmsg(struct socket *sock, struct msghdr *msg, struct cmsghdr *cmsg, int ret) { u8 content_type = tls_get_record_type(sock->sk, cmsg); u8 level, description; switch (content_type) { case 0: break; case TLS_RECORD_TYPE_DATA: /* TLS sets EOR at the end of each application data * record, even though there might be more frames * waiting to be decrypted. */ msg->msg_flags &= ~MSG_EOR; break; case TLS_RECORD_TYPE_ALERT: tls_alert_recv(sock->sk, msg, &level, &description); ret = (level == TLS_ALERT_LEVEL_FATAL) ? -ENOTCONN : -EAGAIN; break; default: /* discard this record type */ ret = -EAGAIN; } return ret; } static int svc_tcp_sock_recv_cmsg(struct svc_sock *svsk, struct msghdr *msg) { union { struct cmsghdr cmsg; u8 buf[CMSG_SPACE(sizeof(u8))]; } u; struct socket *sock = svsk->sk_sock; int ret; msg->msg_control = &u; msg->msg_controllen = sizeof(u); ret = sock_recvmsg(sock, msg, MSG_DONTWAIT); if (unlikely(msg->msg_controllen != sizeof(u))) ret = svc_tcp_sock_process_cmsg(sock, msg, &u.cmsg, ret); return ret; } #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE static void svc_flush_bvec(const struct bio_vec *bvec, size_t size, size_t seek) { struct bvec_iter bi = { .bi_size = size + seek, }; struct bio_vec bv; bvec_iter_advance(bvec, &bi, seek & PAGE_MASK); for_each_bvec(bv, bvec, bi, bi) flush_dcache_page(bv.bv_page); } #else static inline void svc_flush_bvec(const struct bio_vec *bvec, size_t size, size_t seek) { } #endif /* * Read from @rqstp's transport socket. The incoming message fills whole * pages in @rqstp's rq_pages array until the last page of the message * has been received into a partial page. */ static ssize_t svc_tcp_read_msg(struct svc_rqst *rqstp, size_t buflen, size_t seek) { struct svc_sock *svsk = container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); struct bio_vec *bvec = rqstp->rq_bvec; struct msghdr msg = { NULL }; unsigned int i; ssize_t len; size_t t; clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); for (i = 0, t = 0; t < buflen; i++, t += PAGE_SIZE) bvec_set_page(&bvec[i], rqstp->rq_pages[i], PAGE_SIZE, 0); rqstp->rq_respages = &rqstp->rq_pages[i]; rqstp->rq_next_page = rqstp->rq_respages + 1; iov_iter_bvec(&msg.msg_iter, ITER_DEST, bvec, i, buflen); if (seek) { iov_iter_advance(&msg.msg_iter, seek); buflen -= seek; } len = svc_tcp_sock_recv_cmsg(svsk, &msg); if (len > 0) svc_flush_bvec(bvec, len, seek); /* If we read a full record, then assume there may be more * data to read (stream based sockets only!) */ if (len == buflen) set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); return len; } /* * Set socket snd and rcv buffer lengths */ static void svc_sock_setbufsize(struct svc_sock *svsk, unsigned int nreqs) { unsigned int max_mesg = svsk->sk_xprt.xpt_server->sv_max_mesg; struct socket *sock = svsk->sk_sock; nreqs = min(nreqs, INT_MAX / 2 / max_mesg); lock_sock(sock->sk); sock->sk->sk_sndbuf = nreqs * max_mesg * 2; sock->sk->sk_rcvbuf = nreqs * max_mesg * 2; sock->sk->sk_write_space(sock->sk); release_sock(sock->sk); } static void svc_sock_secure_port(struct svc_rqst *rqstp) { if (svc_port_is_privileged(svc_addr(rqstp))) set_bit(RQ_SECURE, &rqstp->rq_flags); else clear_bit(RQ_SECURE, &rqstp->rq_flags); } /* * INET callback when data has been received on the socket. */ static void svc_data_ready(struct sock *sk) { struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data; trace_sk_data_ready(sk); if (svsk) { /* Refer to svc_setup_socket() for details. */ rmb(); svsk->sk_odata(sk); trace_svcsock_data_ready(&svsk->sk_xprt, 0); if (test_bit(XPT_HANDSHAKE, &svsk->sk_xprt.xpt_flags)) return; if (!test_and_set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags)) svc_xprt_enqueue(&svsk->sk_xprt); } } /* * INET callback when space is newly available on the socket. */ static void svc_write_space(struct sock *sk) { struct svc_sock *svsk = (struct svc_sock *)(sk->sk_user_data); if (svsk) { /* Refer to svc_setup_socket() for details. */ rmb(); trace_svcsock_write_space(&svsk->sk_xprt, 0); svsk->sk_owspace(sk); svc_xprt_enqueue(&svsk->sk_xprt); } } static int svc_tcp_has_wspace(struct svc_xprt *xprt) { struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) return 1; return !test_bit(SOCK_NOSPACE, &svsk->sk_sock->flags); } static void svc_tcp_kill_temp_xprt(struct svc_xprt *xprt) { struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); sock_no_linger(svsk->sk_sock->sk); } /** * svc_tcp_handshake_done - Handshake completion handler * @data: address of xprt to wake * @status: status of handshake * @peerid: serial number of key containing the remote peer's identity * * If a security policy is specified as an export option, we don't * have a specific export here to check. So we set a "TLS session * is present" flag on the xprt and let an upper layer enforce local * security policy. */ static void svc_tcp_handshake_done(void *data, int status, key_serial_t peerid) { struct svc_xprt *xprt = data; struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); if (!status) { if (peerid != TLS_NO_PEERID) set_bit(XPT_PEER_AUTH, &xprt->xpt_flags); set_bit(XPT_TLS_SESSION, &xprt->xpt_flags); } clear_bit(XPT_HANDSHAKE, &xprt->xpt_flags); complete_all(&svsk->sk_handshake_done); } /** * svc_tcp_handshake - Perform a transport-layer security handshake * @xprt: connected transport endpoint * */ static void svc_tcp_handshake(struct svc_xprt *xprt) { struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); struct sock *sk = svsk->sk_sock->sk; struct tls_handshake_args args = { .ta_sock = svsk->sk_sock, .ta_done = svc_tcp_handshake_done, .ta_data = xprt, }; int ret; trace_svc_tls_upcall(xprt); clear_bit(XPT_TLS_SESSION, &xprt->xpt_flags); init_completion(&svsk->sk_handshake_done); ret = tls_server_hello_x509(&args, GFP_KERNEL); if (ret) { trace_svc_tls_not_started(xprt); goto out_failed; } ret = wait_for_completion_interruptible_timeout(&svsk->sk_handshake_done, SVC_HANDSHAKE_TO); if (ret <= 0) { if (tls_handshake_cancel(sk)) { trace_svc_tls_timed_out(xprt); goto out_close; } } if (!test_bit(XPT_TLS_SESSION, &xprt->xpt_flags)) { trace_svc_tls_unavailable(xprt); goto out_close; } /* Mark the transport ready in case the remote sent RPC * traffic before the kernel received the handshake * completion downcall. */ set_bit(XPT_DATA, &xprt->xpt_flags); svc_xprt_enqueue(xprt); return; out_close: set_bit(XPT_CLOSE, &xprt->xpt_flags); out_failed: clear_bit(XPT_HANDSHAKE, &xprt->xpt_flags); set_bit(XPT_DATA, &xprt->xpt_flags); svc_xprt_enqueue(xprt); } /* * See net/ipv6/ip_sockglue.c : ip_cmsg_recv_pktinfo */ static int svc_udp_get_dest_address4(struct svc_rqst *rqstp, struct cmsghdr *cmh) { struct in_pktinfo *pki = CMSG_DATA(cmh); struct sockaddr_in *daddr = svc_daddr_in(rqstp); if (cmh->cmsg_type != IP_PKTINFO) return 0; daddr->sin_family = AF_INET; daddr->sin_addr.s_addr = pki->ipi_spec_dst.s_addr; return 1; } /* * See net/ipv6/datagram.c : ip6_datagram_recv_ctl */ static int svc_udp_get_dest_address6(struct svc_rqst *rqstp, struct cmsghdr *cmh) { struct in6_pktinfo *pki = CMSG_DATA(cmh); struct sockaddr_in6 *daddr = svc_daddr_in6(rqstp); if (cmh->cmsg_type != IPV6_PKTINFO) return 0; daddr->sin6_family = AF_INET6; daddr->sin6_addr = pki->ipi6_addr; daddr->sin6_scope_id = pki->ipi6_ifindex; return 1; } /* * Copy the UDP datagram's destination address to the rqstp structure. * The 'destination' address in this case is the address to which the * peer sent the datagram, i.e. our local address. For multihomed * hosts, this can change from msg to msg. Note that only the IP * address changes, the port number should remain the same. */ static int svc_udp_get_dest_address(struct svc_rqst *rqstp, struct cmsghdr *cmh) { switch (cmh->cmsg_level) { case SOL_IP: return svc_udp_get_dest_address4(rqstp, cmh); case SOL_IPV6: return svc_udp_get_dest_address6(rqstp, cmh); } return 0; } /** * svc_udp_recvfrom - Receive a datagram from a UDP socket. * @rqstp: request structure into which to receive an RPC Call * * Called in a loop when XPT_DATA has been set. * * Returns: * On success, the number of bytes in a received RPC Call, or * %0 if a complete RPC Call message was not ready to return */ static int svc_udp_recvfrom(struct svc_rqst *rqstp) { struct svc_sock *svsk = container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); struct svc_serv *serv = svsk->sk_xprt.xpt_server; struct sk_buff *skb; union { struct cmsghdr hdr; long all[SVC_PKTINFO_SPACE / sizeof(long)]; } buffer; struct cmsghdr *cmh = &buffer.hdr; struct msghdr msg = { .msg_name = svc_addr(rqstp), .msg_control = cmh, .msg_controllen = sizeof(buffer), .msg_flags = MSG_DONTWAIT, }; size_t len; int err; if (test_and_clear_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags)) /* udp sockets need large rcvbuf as all pending * requests are still in that buffer. sndbuf must * also be large enough that there is enough space * for one reply per thread. We count all threads * rather than threads in a particular pool, which * provides an upper bound on the number of threads * which will access the socket. */ svc_sock_setbufsize(svsk, serv->sv_nrthreads + 3); clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); err = kernel_recvmsg(svsk->sk_sock, &msg, NULL, 0, 0, MSG_PEEK | MSG_DONTWAIT); if (err < 0) goto out_recv_err; skb = skb_recv_udp(svsk->sk_sk, MSG_DONTWAIT, &err); if (!skb) goto out_recv_err; len = svc_addr_len(svc_addr(rqstp)); rqstp->rq_addrlen = len; if (skb->tstamp == 0) { skb->tstamp = ktime_get_real(); /* Don't enable netstamp, sunrpc doesn't need that much accuracy */ } sock_write_timestamp(svsk->sk_sk, skb->tstamp); set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); /* there may be more data... */ len = skb->len; rqstp->rq_arg.len = len; trace_svcsock_udp_recv(&svsk->sk_xprt, len); rqstp->rq_prot = IPPROTO_UDP; if (!svc_udp_get_dest_address(rqstp, cmh)) goto out_cmsg_err; rqstp->rq_daddrlen = svc_addr_len(svc_daddr(rqstp)); if (skb_is_nonlinear(skb)) { /* we have to copy */ local_bh_disable(); if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb)) goto out_bh_enable; local_bh_enable(); consume_skb(skb); } else { /* we can use it in-place */ rqstp->rq_arg.head[0].iov_base = skb->data; rqstp->rq_arg.head[0].iov_len = len; if (skb_checksum_complete(skb)) goto out_free; rqstp->rq_xprt_ctxt = skb; } rqstp->rq_arg.page_base = 0; if (len <= rqstp->rq_arg.head[0].iov_len) { rqstp->rq_arg.head[0].iov_len = len; rqstp->rq_arg.page_len = 0; rqstp->rq_respages = rqstp->rq_pages+1; } else { rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len; rqstp->rq_respages = rqstp->rq_pages + 1 + DIV_ROUND_UP(rqstp->rq_arg.page_len, PAGE_SIZE); } rqstp->rq_next_page = rqstp->rq_respages+1; if (serv->sv_stats) serv->sv_stats->netudpcnt++; svc_sock_secure_port(rqstp); svc_xprt_received(rqstp->rq_xprt); return len; out_recv_err: if (err != -EAGAIN) { /* possibly an icmp error */ set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); } trace_svcsock_udp_recv_err(&svsk->sk_xprt, err); goto out_clear_busy; out_cmsg_err: net_warn_ratelimited("svc: received unknown control message %d/%d; dropping RPC reply datagram\n", cmh->cmsg_level, cmh->cmsg_type); goto out_free; out_bh_enable: local_bh_enable(); out_free: kfree_skb(skb); out_clear_busy: svc_xprt_received(rqstp->rq_xprt); return 0; } /** * svc_udp_sendto - Send out a reply on a UDP socket * @rqstp: completed svc_rqst * * xpt_mutex ensures @rqstp's whole message is written to the socket * without interruption. * * Returns the number of bytes sent, or a negative errno. */ static int svc_udp_sendto(struct svc_rqst *rqstp) { struct svc_xprt *xprt = rqstp->rq_xprt; struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); struct xdr_buf *xdr = &rqstp->rq_res; union { struct cmsghdr hdr; long all[SVC_PKTINFO_SPACE / sizeof(long)]; } buffer; struct cmsghdr *cmh = &buffer.hdr; struct msghdr msg = { .msg_name = &rqstp->rq_addr, .msg_namelen = rqstp->rq_addrlen, .msg_control = cmh, .msg_flags = MSG_SPLICE_PAGES, .msg_controllen = sizeof(buffer), }; unsigned int count; int err; svc_udp_release_ctxt(xprt, rqstp->rq_xprt_ctxt); rqstp->rq_xprt_ctxt = NULL; svc_set_cmsg_data(rqstp, cmh); mutex_lock(&xprt->xpt_mutex); if (svc_xprt_is_dead(xprt)) goto out_notconn; count = xdr_buf_to_bvec(rqstp->rq_bvec, ARRAY_SIZE(rqstp->rq_bvec), xdr); iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, rqstp->rq_bvec, count, rqstp->rq_res.len); err = sock_sendmsg(svsk->sk_sock, &msg); if (err == -ECONNREFUSED) { /* ICMP error on earlier request. */ iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, rqstp->rq_bvec, count, rqstp->rq_res.len); err = sock_sendmsg(svsk->sk_sock, &msg); } trace_svcsock_udp_send(xprt, err); mutex_unlock(&xprt->xpt_mutex); return err; out_notconn: mutex_unlock(&xprt->xpt_mutex); return -ENOTCONN; } static int svc_udp_has_wspace(struct svc_xprt *xprt) { struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); struct svc_serv *serv = xprt->xpt_server; unsigned long required; /* * Set the SOCK_NOSPACE flag before checking the available * sock space. */ set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags); required = atomic_read(&svsk->sk_xprt.xpt_reserved) + serv->sv_max_mesg; if (required*2 > sock_wspace(svsk->sk_sk)) return 0; clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags); return 1; } static struct svc_xprt *svc_udp_accept(struct svc_xprt *xprt) { BUG(); return NULL; } static void svc_udp_kill_temp_xprt(struct svc_xprt *xprt) { } static struct svc_xprt *svc_udp_create(struct svc_serv *serv, struct net *net, struct sockaddr *sa, int salen, int flags) { return svc_create_socket(serv, IPPROTO_UDP, net, sa, salen, flags); } static const struct svc_xprt_ops svc_udp_ops = { .xpo_create = svc_udp_create, .xpo_recvfrom = svc_udp_recvfrom, .xpo_sendto = svc_udp_sendto, .xpo_result_payload = svc_sock_result_payload, .xpo_release_ctxt = svc_udp_release_ctxt, .xpo_detach = svc_sock_detach, .xpo_free = svc_sock_free, .xpo_has_wspace = svc_udp_has_wspace, .xpo_accept = svc_udp_accept, .xpo_kill_temp_xprt = svc_udp_kill_temp_xprt, }; static struct svc_xprt_class svc_udp_class = { .xcl_name = "udp", .xcl_owner = THIS_MODULE, .xcl_ops = &svc_udp_ops, .xcl_max_payload = RPCSVC_MAXPAYLOAD_UDP, .xcl_ident = XPRT_TRANSPORT_UDP, }; static void svc_udp_init(struct svc_sock *svsk, struct svc_serv *serv) { svc_xprt_init(sock_net(svsk->sk_sock->sk), &svc_udp_class, &svsk->sk_xprt, serv); clear_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags); svsk->sk_sk->sk_data_ready = svc_data_ready; svsk->sk_sk->sk_write_space = svc_write_space; /* initialise setting must have enough space to * receive and respond to one request. * svc_udp_recvfrom will re-adjust if necessary */ svc_sock_setbufsize(svsk, 3); /* data might have come in before data_ready set up */ set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags); /* make sure we get destination address info */ switch (svsk->sk_sk->sk_family) { case AF_INET: ip_sock_set_pktinfo(svsk->sk_sock->sk); break; case AF_INET6: ip6_sock_set_recvpktinfo(svsk->sk_sock->sk); break; default: BUG(); } } /* * A data_ready event on a listening socket means there's a connection * pending. Do not use state_change as a substitute for it. */ static void svc_tcp_listen_data_ready(struct sock *sk) { struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data; trace_sk_data_ready(sk); /* * This callback may called twice when a new connection * is established as a child socket inherits everything * from a parent LISTEN socket. * 1) data_ready method of the parent socket will be called * when one of child sockets become ESTABLISHED. * 2) data_ready method of the child socket may be called * when it receives data before the socket is accepted. * In case of 2, we should ignore it silently and DO NOT * dereference svsk. */ if (sk->sk_state != TCP_LISTEN) return; if (svsk) { /* Refer to svc_setup_socket() for details. */ rmb(); svsk->sk_odata(sk); set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags); svc_xprt_enqueue(&svsk->sk_xprt); } } /* * A state change on a connected socket means it's dying or dead. */ static void svc_tcp_state_change(struct sock *sk) { struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data; if (svsk) { /* Refer to svc_setup_socket() for details. */ rmb(); svsk->sk_ostate(sk); trace_svcsock_tcp_state(&svsk->sk_xprt, svsk->sk_sock); if (sk->sk_state != TCP_ESTABLISHED) svc_xprt_deferred_close(&svsk->sk_xprt); } } /* * Accept a TCP connection */ static struct svc_xprt *svc_tcp_accept(struct svc_xprt *xprt) { struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); struct sockaddr_storage addr; struct sockaddr *sin = (struct sockaddr *) &addr; struct svc_serv *serv = svsk->sk_xprt.xpt_server; struct socket *sock = svsk->sk_sock; struct socket *newsock; struct svc_sock *newsvsk; int err, slen; if (!sock) return NULL; clear_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags); err = kernel_accept(sock, &newsock, O_NONBLOCK); if (err < 0) { if (err != -EAGAIN) trace_svcsock_accept_err(xprt, serv->sv_name, err); return NULL; } if (IS_ERR(sock_alloc_file(newsock, O_NONBLOCK, NULL))) return NULL; set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags); err = kernel_getpeername(newsock, sin); if (err < 0) { trace_svcsock_getpeername_err(xprt, serv->sv_name, err); goto failed; /* aborted connection or whatever */ } slen = err; /* Reset the inherited callbacks before calling svc_setup_socket */ newsock->sk->sk_state_change = svsk->sk_ostate; newsock->sk->sk_data_ready = svsk->sk_odata; newsock->sk->sk_write_space = svsk->sk_owspace; /* make sure that a write doesn't block forever when * low on memory */ newsock->sk->sk_sndtimeo = HZ*30; newsvsk = svc_setup_socket(serv, newsock, (SVC_SOCK_ANONYMOUS | SVC_SOCK_TEMPORARY)); if (IS_ERR(newsvsk)) goto failed; svc_xprt_set_remote(&newsvsk->sk_xprt, sin, slen); err = kernel_getsockname(newsock, sin); slen = err; if (unlikely(err < 0)) slen = offsetof(struct sockaddr, sa_data); svc_xprt_set_local(&newsvsk->sk_xprt, sin, slen); if (sock_is_loopback(newsock->sk)) set_bit(XPT_LOCAL, &newsvsk->sk_xprt.xpt_flags); else clear_bit(XPT_LOCAL, &newsvsk->sk_xprt.xpt_flags); if (serv->sv_stats) serv->sv_stats->nettcpconn++; return &newsvsk->sk_xprt; failed: sockfd_put(newsock); return NULL; } static size_t svc_tcp_restore_pages(struct svc_sock *svsk, struct svc_rqst *rqstp) { size_t len = svsk->sk_datalen; unsigned int i, npages; if (!len) return 0; npages = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; for (i = 0; i < npages; i++) { if (rqstp->rq_pages[i] != NULL) put_page(rqstp->rq_pages[i]); BUG_ON(svsk->sk_pages[i] == NULL); rqstp->rq_pages[i] = svsk->sk_pages[i]; svsk->sk_pages[i] = NULL; } rqstp->rq_arg.head[0].iov_base = page_address(rqstp->rq_pages[0]); return len; } static void svc_tcp_save_pages(struct svc_sock *svsk, struct svc_rqst *rqstp) { unsigned int i, len, npages; if (svsk->sk_datalen == 0) return; len = svsk->sk_datalen; npages = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; for (i = 0; i < npages; i++) { svsk->sk_pages[i] = rqstp->rq_pages[i]; rqstp->rq_pages[i] = NULL; } } static void svc_tcp_clear_pages(struct svc_sock *svsk) { unsigned int i, len, npages; if (svsk->sk_datalen == 0) goto out; len = svsk->sk_datalen; npages = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; for (i = 0; i < npages; i++) { if (svsk->sk_pages[i] == NULL) { WARN_ON_ONCE(1); continue; } put_page(svsk->sk_pages[i]); svsk->sk_pages[i] = NULL; } out: svsk->sk_tcplen = 0; svsk->sk_datalen = 0; } /* * Receive fragment record header into sk_marker. */ static ssize_t svc_tcp_read_marker(struct svc_sock *svsk, struct svc_rqst *rqstp) { ssize_t want, len; /* If we haven't gotten the record length yet, * get the next four bytes. */ if (svsk->sk_tcplen < sizeof(rpc_fraghdr)) { struct msghdr msg = { NULL }; struct kvec iov; want = sizeof(rpc_fraghdr) - svsk->sk_tcplen; iov.iov_base = ((char *)&svsk->sk_marker) + svsk->sk_tcplen; iov.iov_len = want; iov_iter_kvec(&msg.msg_iter, ITER_DEST, &iov, 1, want); len = svc_tcp_sock_recv_cmsg(svsk, &msg); if (len < 0) return len; svsk->sk_tcplen += len; if (len < want) { /* call again to read the remaining bytes */ goto err_short; } trace_svcsock_marker(&svsk->sk_xprt, svsk->sk_marker); if (svc_sock_reclen(svsk) + svsk->sk_datalen > svsk->sk_xprt.xpt_server->sv_max_mesg) goto err_too_large; } return svc_sock_reclen(svsk); err_too_large: net_notice_ratelimited("svc: %s %s RPC fragment too large: %d\n", __func__, svsk->sk_xprt.xpt_server->sv_name, svc_sock_reclen(svsk)); svc_xprt_deferred_close(&svsk->sk_xprt); err_short: return -EAGAIN; } static int receive_cb_reply(struct svc_sock *svsk, struct svc_rqst *rqstp) { struct rpc_xprt *bc_xprt = svsk->sk_xprt.xpt_bc_xprt; struct rpc_rqst *req = NULL; struct kvec *src, *dst; __be32 *p = (__be32 *)rqstp->rq_arg.head[0].iov_base; __be32 xid = *p; if (!bc_xprt) return -EAGAIN; spin_lock(&bc_xprt->queue_lock); req = xprt_lookup_rqst(bc_xprt, xid); if (!req) goto unlock_eagain; memcpy(&req->rq_private_buf, &req->rq_rcv_buf, sizeof(struct xdr_buf)); /* * XXX!: cheating for now! Only copying HEAD. * But we know this is good enough for now (in fact, for any * callback reply in the forseeable future). */ dst = &req->rq_private_buf.head[0]; src = &rqstp->rq_arg.head[0]; if (dst->iov_len < src->iov_len) goto unlock_eagain; /* whatever; just giving up. */ memcpy(dst->iov_base, src->iov_base, src->iov_len); xprt_complete_rqst(req->rq_task, rqstp->rq_arg.len); rqstp->rq_arg.len = 0; spin_unlock(&bc_xprt->queue_lock); return 0; unlock_eagain: spin_unlock(&bc_xprt->queue_lock); return -EAGAIN; } static void svc_tcp_fragment_received(struct svc_sock *svsk) { /* If we have more data, signal svc_xprt_enqueue() to try again */ svsk->sk_tcplen = 0; svsk->sk_marker = xdr_zero; smp_wmb(); tcp_set_rcvlowat(svsk->sk_sk, 1); } /** * svc_tcp_recvfrom - Receive data from a TCP socket * @rqstp: request structure into which to receive an RPC Call * * Called in a loop when XPT_DATA has been set. * * Read the 4-byte stream record marker, then use the record length * in that marker to set up exactly the resources needed to receive * the next RPC message into @rqstp. * * Returns: * On success, the number of bytes in a received RPC Call, or * %0 if a complete RPC Call message was not ready to return * * The zero return case handles partial receives and callback Replies. * The state of a partial receive is preserved in the svc_sock for * the next call to svc_tcp_recvfrom. */ static int svc_tcp_recvfrom(struct svc_rqst *rqstp) { struct svc_sock *svsk = container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); struct svc_serv *serv = svsk->sk_xprt.xpt_server; size_t want, base; ssize_t len; __be32 *p; __be32 calldir; clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); len = svc_tcp_read_marker(svsk, rqstp); if (len < 0) goto error; base = svc_tcp_restore_pages(svsk, rqstp); want = len - (svsk->sk_tcplen - sizeof(rpc_fraghdr)); len = svc_tcp_read_msg(rqstp, base + want, base); if (len >= 0) { trace_svcsock_tcp_recv(&svsk->sk_xprt, len); svsk->sk_tcplen += len; svsk->sk_datalen += len; } if (len != want || !svc_sock_final_rec(svsk)) goto err_incomplete; if (svsk->sk_datalen < 8) goto err_nuts; rqstp->rq_arg.len = svsk->sk_datalen; rqstp->rq_arg.page_base = 0; if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len) { rqstp->rq_arg.head[0].iov_len = rqstp->rq_arg.len; rqstp->rq_arg.page_len = 0; } else rqstp->rq_arg.page_len = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len; rqstp->rq_xprt_ctxt = NULL; rqstp->rq_prot = IPPROTO_TCP; if (test_bit(XPT_LOCAL, &svsk->sk_xprt.xpt_flags)) set_bit(RQ_LOCAL, &rqstp->rq_flags); else clear_bit(RQ_LOCAL, &rqstp->rq_flags); p = (__be32 *)rqstp->rq_arg.head[0].iov_base; calldir = p[1]; if (calldir) len = receive_cb_reply(svsk, rqstp); /* Reset TCP read info */ svsk->sk_datalen = 0; svc_tcp_fragment_received(svsk); if (len < 0) goto error; svc_xprt_copy_addrs(rqstp, &svsk->sk_xprt); if (serv->sv_stats) serv->sv_stats->nettcpcnt++; svc_sock_secure_port(rqstp); svc_xprt_received(rqstp->rq_xprt); return rqstp->rq_arg.len; err_incomplete: svc_tcp_save_pages(svsk, rqstp); if (len < 0 && len != -EAGAIN) goto err_delete; if (len == want) svc_tcp_fragment_received(svsk); else { /* Avoid more ->sk_data_ready() calls until the rest * of the message has arrived. This reduces service * thread wake-ups on large incoming messages. */ tcp_set_rcvlowat(svsk->sk_sk, svc_sock_reclen(svsk) - svsk->sk_tcplen); trace_svcsock_tcp_recv_short(&svsk->sk_xprt, svc_sock_reclen(svsk), svsk->sk_tcplen - sizeof(rpc_fraghdr)); } goto err_noclose; error: if (len != -EAGAIN) goto err_delete; trace_svcsock_tcp_recv_eagain(&svsk->sk_xprt, 0); goto err_noclose; err_nuts: svsk->sk_datalen = 0; err_delete: trace_svcsock_tcp_recv_err(&svsk->sk_xprt, len); svc_xprt_deferred_close(&svsk->sk_xprt); err_noclose: svc_xprt_received(rqstp->rq_xprt); return 0; /* record not complete */ } /* * MSG_SPLICE_PAGES is used exclusively to reduce the number of * copy operations in this path. Therefore the caller must ensure * that the pages backing @xdr are unchanging. * * Note that the send is non-blocking. The caller has incremented * the reference count on each page backing the RPC message, and * the network layer will "put" these pages when transmission is * complete. * * This is safe for our RPC services because the memory backing * the head and tail components is never kmalloc'd. These always * come from pages in the svc_rqst::rq_pages array. */ static int svc_tcp_sendmsg(struct svc_sock *svsk, struct svc_rqst *rqstp, rpc_fraghdr marker, unsigned int *sentp) { struct msghdr msg = { .msg_flags = MSG_SPLICE_PAGES, }; unsigned int count; void *buf; int ret; *sentp = 0; /* The stream record marker is copied into a temporary page * fragment buffer so that it can be included in rq_bvec. */ buf = page_frag_alloc(&svsk->sk_frag_cache, sizeof(marker), GFP_KERNEL); if (!buf) return -ENOMEM; memcpy(buf, &marker, sizeof(marker)); bvec_set_virt(rqstp->rq_bvec, buf, sizeof(marker)); count = xdr_buf_to_bvec(rqstp->rq_bvec + 1, ARRAY_SIZE(rqstp->rq_bvec) - 1, &rqstp->rq_res); iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, rqstp->rq_bvec, 1 + count, sizeof(marker) + rqstp->rq_res.len); ret = sock_sendmsg(svsk->sk_sock, &msg); if (ret < 0) return ret; *sentp += ret; return 0; } /** * svc_tcp_sendto - Send out a reply on a TCP socket * @rqstp: completed svc_rqst * * xpt_mutex ensures @rqstp's whole message is written to the socket * without interruption. * * Returns the number of bytes sent, or a negative errno. */ static int svc_tcp_sendto(struct svc_rqst *rqstp) { struct svc_xprt *xprt = rqstp->rq_xprt; struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); struct xdr_buf *xdr = &rqstp->rq_res; rpc_fraghdr marker = cpu_to_be32(RPC_LAST_STREAM_FRAGMENT | (u32)xdr->len); unsigned int sent; int err; svc_tcp_release_ctxt(xprt, rqstp->rq_xprt_ctxt); rqstp->rq_xprt_ctxt = NULL; mutex_lock(&xprt->xpt_mutex); if (svc_xprt_is_dead(xprt)) goto out_notconn; err = svc_tcp_sendmsg(svsk, rqstp, marker, &sent); trace_svcsock_tcp_send(xprt, err < 0 ? (long)err : sent); if (err < 0 || sent != (xdr->len + sizeof(marker))) goto out_close; mutex_unlock(&xprt->xpt_mutex); return sent; out_notconn: mutex_unlock(&xprt->xpt_mutex); return -ENOTCONN; out_close: pr_notice("rpc-srv/tcp: %s: %s %d when sending %d bytes - shutting down socket\n", xprt->xpt_server->sv_name, (err < 0) ? "got error" : "sent", (err < 0) ? err : sent, xdr->len); svc_xprt_deferred_close(xprt); mutex_unlock(&xprt->xpt_mutex); return -EAGAIN; } static struct svc_xprt *svc_tcp_create(struct svc_serv *serv, struct net *net, struct sockaddr *sa, int salen, int flags) { return svc_create_socket(serv, IPPROTO_TCP, net, sa, salen, flags); } static const struct svc_xprt_ops svc_tcp_ops = { .xpo_create = svc_tcp_create, .xpo_recvfrom = svc_tcp_recvfrom, .xpo_sendto = svc_tcp_sendto, .xpo_result_payload = svc_sock_result_payload, .xpo_release_ctxt = svc_tcp_release_ctxt, .xpo_detach = svc_tcp_sock_detach, .xpo_free = svc_sock_free, .xpo_has_wspace = svc_tcp_has_wspace, .xpo_accept = svc_tcp_accept, .xpo_kill_temp_xprt = svc_tcp_kill_temp_xprt, .xpo_handshake = svc_tcp_handshake, }; static struct svc_xprt_class svc_tcp_class = { .xcl_name = "tcp", .xcl_owner = THIS_MODULE, .xcl_ops = &svc_tcp_ops, .xcl_max_payload = RPCSVC_MAXPAYLOAD_TCP, .xcl_ident = XPRT_TRANSPORT_TCP, }; void svc_init_xprt_sock(void) { svc_reg_xprt_class(&svc_tcp_class); svc_reg_xprt_class(&svc_udp_class); } void svc_cleanup_xprt_sock(void) { svc_unreg_xprt_class(&svc_tcp_class); svc_unreg_xprt_class(&svc_udp_class); } static void svc_tcp_init(struct svc_sock *svsk, struct svc_serv *serv) { struct sock *sk = svsk->sk_sk; svc_xprt_init(sock_net(svsk->sk_sock->sk), &svc_tcp_class, &svsk->sk_xprt, serv); set_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags); set_bit(XPT_CONG_CTRL, &svsk->sk_xprt.xpt_flags); if (sk->sk_state == TCP_LISTEN) { strcpy(svsk->sk_xprt.xpt_remotebuf, "listener"); set_bit(XPT_LISTENER, &svsk->sk_xprt.xpt_flags); sk->sk_data_ready = svc_tcp_listen_data_ready; set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags); } else { sk->sk_state_change = svc_tcp_state_change; sk->sk_data_ready = svc_data_ready; sk->sk_write_space = svc_write_space; svsk->sk_marker = xdr_zero; svsk->sk_tcplen = 0; svsk->sk_datalen = 0; memset(&svsk->sk_pages[0], 0, sizeof(svsk->sk_pages)); tcp_sock_set_nodelay(sk); set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); switch (sk->sk_state) { case TCP_SYN_RECV: case TCP_ESTABLISHED: break; default: svc_xprt_deferred_close(&svsk->sk_xprt); } } } void svc_sock_update_bufs(struct svc_serv *serv) { /* * The number of server threads has changed. Update * rcvbuf and sndbuf accordingly on all sockets */ struct svc_sock *svsk; spin_lock_bh(&serv->sv_lock); list_for_each_entry(svsk, &serv->sv_permsocks, sk_xprt.xpt_list) set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags); spin_unlock_bh(&serv->sv_lock); } EXPORT_SYMBOL_GPL(svc_sock_update_bufs); /* * Initialize socket for RPC use and create svc_sock struct */ static struct svc_sock *svc_setup_socket(struct svc_serv *serv, struct socket *sock, int flags) { struct svc_sock *svsk; struct sock *inet; int pmap_register = !(flags & SVC_SOCK_ANONYMOUS); svsk = kzalloc(sizeof(*svsk), GFP_KERNEL); if (!svsk) return ERR_PTR(-ENOMEM); inet = sock->sk; if (pmap_register) { int err; err = svc_register(serv, sock_net(sock->sk), inet->sk_family, inet->sk_protocol, ntohs(inet_sk(inet)->inet_sport)); if (err < 0) { kfree(svsk); return ERR_PTR(err); } } svsk->sk_sock = sock; svsk->sk_sk = inet; svsk->sk_ostate = inet->sk_state_change; svsk->sk_odata = inet->sk_data_ready; svsk->sk_owspace = inet->sk_write_space; /* * This barrier is necessary in order to prevent race condition * with svc_data_ready(), svc_tcp_listen_data_ready(), and others * when calling callbacks above. */ wmb(); inet->sk_user_data = svsk; /* Initialize the socket */ if (sock->type == SOCK_DGRAM) svc_udp_init(svsk, serv); else svc_tcp_init(svsk, serv); trace_svcsock_new(svsk, sock); return svsk; } /** * svc_addsock - add a listener socket to an RPC service * @serv: pointer to RPC service to which to add a new listener * @net: caller's network namespace * @fd: file descriptor of the new listener * @name_return: pointer to buffer to fill in with name of listener * @len: size of the buffer * @cred: credential * * Fills in socket name and returns positive length of name if successful. * Name is terminated with '\n'. On error, returns a negative errno * value. */ int svc_addsock(struct svc_serv *serv, struct net *net, const int fd, char *name_return, const size_t len, const struct cred *cred) { int err = 0; struct socket *so = sockfd_lookup(fd, &err); struct svc_sock *svsk = NULL; struct sockaddr_storage addr; struct sockaddr *sin = (struct sockaddr *)&addr; int salen; if (!so) return err; err = -EINVAL; if (sock_net(so->sk) != net) goto out; err = -EAFNOSUPPORT; if ((so->sk->sk_family != PF_INET) && (so->sk->sk_family != PF_INET6)) goto out; err = -EPROTONOSUPPORT; if (so->sk->sk_protocol != IPPROTO_TCP && so->sk->sk_protocol != IPPROTO_UDP) goto out; err = -EISCONN; if (so->state > SS_UNCONNECTED) goto out; err = -ENOENT; if (!try_module_get(THIS_MODULE)) goto out; svsk = svc_setup_socket(serv, so, SVC_SOCK_DEFAULTS); if (IS_ERR(svsk)) { module_put(THIS_MODULE); err = PTR_ERR(svsk); goto out; } salen = kernel_getsockname(svsk->sk_sock, sin); if (salen >= 0) svc_xprt_set_local(&svsk->sk_xprt, sin, salen); svsk->sk_xprt.xpt_cred = get_cred(cred); svc_add_new_perm_xprt(serv, &svsk->sk_xprt); return svc_one_sock_name(svsk, name_return, len); out: sockfd_put(so); return err; } EXPORT_SYMBOL_GPL(svc_addsock); /* * Create socket for RPC service. */ static struct svc_xprt *svc_create_socket(struct svc_serv *serv, int protocol, struct net *net, struct sockaddr *sin, int len, int flags) { struct svc_sock *svsk; struct socket *sock; int error; int type; struct sockaddr_storage addr; struct sockaddr *newsin = (struct sockaddr *)&addr; int newlen; int family; if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) { printk(KERN_WARNING "svc: only UDP and TCP " "sockets supported\n"); return ERR_PTR(-EINVAL); } type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM; switch (sin->sa_family) { case AF_INET6: family = PF_INET6; break; case AF_INET: family = PF_INET; break; default: return ERR_PTR(-EINVAL); } error = __sock_create(net, family, type, protocol, &sock, 1); if (error < 0) return ERR_PTR(error); svc_reclassify_socket(sock); /* * If this is an PF_INET6 listener, we want to avoid * getting requests from IPv4 remotes. Those should * be shunted to a PF_INET listener via rpcbind. */ if (family == PF_INET6) ip6_sock_set_v6only(sock->sk); if (type == SOCK_STREAM) sock->sk->sk_reuse = SK_CAN_REUSE; /* allow address reuse */ error = kernel_bind(sock, sin, len); if (error < 0) goto bummer; error = kernel_getsockname(sock, newsin); if (error < 0) goto bummer; newlen = error; if (protocol == IPPROTO_TCP) { if ((error = kernel_listen(sock, 64)) < 0) goto bummer; } svsk = svc_setup_socket(serv, sock, flags); if (IS_ERR(svsk)) { error = PTR_ERR(svsk); goto bummer; } svc_xprt_set_local(&svsk->sk_xprt, newsin, newlen); return (struct svc_xprt *)svsk; bummer: sock_release(sock); return ERR_PTR(error); } /* * Detach the svc_sock from the socket so that no * more callbacks occur. */ static void svc_sock_detach(struct svc_xprt *xprt) { struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); struct sock *sk = svsk->sk_sk; /* put back the old socket callbacks */ lock_sock(sk); sk->sk_state_change = svsk->sk_ostate; sk->sk_data_ready = svsk->sk_odata; sk->sk_write_space = svsk->sk_owspace; sk->sk_user_data = NULL; release_sock(sk); } /* * Disconnect the socket, and reset the callbacks */ static void svc_tcp_sock_detach(struct svc_xprt *xprt) { struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); tls_handshake_close(svsk->sk_sock); svc_sock_detach(xprt); if (!test_bit(XPT_LISTENER, &xprt->xpt_flags)) { svc_tcp_clear_pages(svsk); kernel_sock_shutdown(svsk->sk_sock, SHUT_RDWR); } } /* * Free the svc_sock's socket resources and the svc_sock itself. */ static void svc_sock_free(struct svc_xprt *xprt) { struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); struct page_frag_cache *pfc = &svsk->sk_frag_cache; struct socket *sock = svsk->sk_sock; trace_svcsock_free(svsk, sock); tls_handshake_cancel(sock->sk); if (sock->file) sockfd_put(sock); else sock_release(sock); if (pfc->va) __page_frag_cache_drain(virt_to_head_page(pfc->va), pfc->pagecnt_bias); kfree(svsk); }