/* * Copyright (c) 2014 Open Grid Computing, Inc. All rights reserved. * Copyright (c) 2005-2007 Network Appliance, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the BSD-type * license below: * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of the Network Appliance, Inc. nor the names of * its contributors may be used to endorse or promote products * derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Author: Tom Tucker */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "xprt_rdma.h" #define RPCDBG_FACILITY RPCDBG_SVCXPRT static struct svcxprt_rdma *rdma_create_xprt(struct svc_serv *, int); static struct svc_xprt *svc_rdma_create(struct svc_serv *serv, struct net *net, struct sockaddr *sa, int salen, int flags); static struct svc_xprt *svc_rdma_accept(struct svc_xprt *xprt); static void svc_rdma_release_rqst(struct svc_rqst *); static void svc_rdma_detach(struct svc_xprt *xprt); static void svc_rdma_free(struct svc_xprt *xprt); static int svc_rdma_has_wspace(struct svc_xprt *xprt); static int svc_rdma_secure_port(struct svc_rqst *); static void svc_rdma_kill_temp_xprt(struct svc_xprt *); static struct svc_xprt_ops svc_rdma_ops = { .xpo_create = svc_rdma_create, .xpo_recvfrom = svc_rdma_recvfrom, .xpo_sendto = svc_rdma_sendto, .xpo_release_rqst = svc_rdma_release_rqst, .xpo_detach = svc_rdma_detach, .xpo_free = svc_rdma_free, .xpo_prep_reply_hdr = svc_rdma_prep_reply_hdr, .xpo_has_wspace = svc_rdma_has_wspace, .xpo_accept = svc_rdma_accept, .xpo_secure_port = svc_rdma_secure_port, .xpo_kill_temp_xprt = svc_rdma_kill_temp_xprt, }; struct svc_xprt_class svc_rdma_class = { .xcl_name = "rdma", .xcl_owner = THIS_MODULE, .xcl_ops = &svc_rdma_ops, .xcl_max_payload = RPCSVC_MAXPAYLOAD_RDMA, .xcl_ident = XPRT_TRANSPORT_RDMA, }; #if defined(CONFIG_SUNRPC_BACKCHANNEL) static struct svc_xprt *svc_rdma_bc_create(struct svc_serv *, struct net *, struct sockaddr *, int, int); static void svc_rdma_bc_detach(struct svc_xprt *); static void svc_rdma_bc_free(struct svc_xprt *); static struct svc_xprt_ops svc_rdma_bc_ops = { .xpo_create = svc_rdma_bc_create, .xpo_detach = svc_rdma_bc_detach, .xpo_free = svc_rdma_bc_free, .xpo_prep_reply_hdr = svc_rdma_prep_reply_hdr, .xpo_secure_port = svc_rdma_secure_port, }; struct svc_xprt_class svc_rdma_bc_class = { .xcl_name = "rdma-bc", .xcl_owner = THIS_MODULE, .xcl_ops = &svc_rdma_bc_ops, .xcl_max_payload = (1024 - RPCRDMA_HDRLEN_MIN) }; static struct svc_xprt *svc_rdma_bc_create(struct svc_serv *serv, struct net *net, struct sockaddr *sa, int salen, int flags) { struct svcxprt_rdma *cma_xprt; struct svc_xprt *xprt; cma_xprt = rdma_create_xprt(serv, 0); if (!cma_xprt) return ERR_PTR(-ENOMEM); xprt = &cma_xprt->sc_xprt; svc_xprt_init(net, &svc_rdma_bc_class, xprt, serv); set_bit(XPT_CONG_CTRL, &xprt->xpt_flags); serv->sv_bc_xprt = xprt; dprintk("svcrdma: %s(%p)\n", __func__, xprt); return xprt; } static void svc_rdma_bc_detach(struct svc_xprt *xprt) { dprintk("svcrdma: %s(%p)\n", __func__, xprt); } static void svc_rdma_bc_free(struct svc_xprt *xprt) { struct svcxprt_rdma *rdma = container_of(xprt, struct svcxprt_rdma, sc_xprt); dprintk("svcrdma: %s(%p)\n", __func__, xprt); if (xprt) kfree(rdma); } #endif /* CONFIG_SUNRPC_BACKCHANNEL */ static struct svc_rdma_op_ctxt *alloc_ctxt(struct svcxprt_rdma *xprt, gfp_t flags) { struct svc_rdma_op_ctxt *ctxt; ctxt = kmalloc(sizeof(*ctxt), flags); if (ctxt) { ctxt->xprt = xprt; INIT_LIST_HEAD(&ctxt->list); } return ctxt; } static bool svc_rdma_prealloc_ctxts(struct svcxprt_rdma *xprt) { unsigned int i; /* Each RPC/RDMA credit can consume a number of send * and receive WQEs. One ctxt is allocated for each. */ i = xprt->sc_sq_depth + xprt->sc_rq_depth; while (i--) { struct svc_rdma_op_ctxt *ctxt; ctxt = alloc_ctxt(xprt, GFP_KERNEL); if (!ctxt) { dprintk("svcrdma: No memory for RDMA ctxt\n"); return false; } list_add(&ctxt->list, &xprt->sc_ctxts); } return true; } struct svc_rdma_op_ctxt *svc_rdma_get_context(struct svcxprt_rdma *xprt) { struct svc_rdma_op_ctxt *ctxt = NULL; spin_lock(&xprt->sc_ctxt_lock); xprt->sc_ctxt_used++; if (list_empty(&xprt->sc_ctxts)) goto out_empty; ctxt = list_first_entry(&xprt->sc_ctxts, struct svc_rdma_op_ctxt, list); list_del(&ctxt->list); spin_unlock(&xprt->sc_ctxt_lock); out: ctxt->count = 0; ctxt->mapped_sges = 0; ctxt->frmr = NULL; return ctxt; out_empty: /* Either pre-allocation missed the mark, or send * queue accounting is broken. */ spin_unlock(&xprt->sc_ctxt_lock); ctxt = alloc_ctxt(xprt, GFP_NOIO); if (ctxt) goto out; spin_lock(&xprt->sc_ctxt_lock); xprt->sc_ctxt_used--; spin_unlock(&xprt->sc_ctxt_lock); WARN_ONCE(1, "svcrdma: empty RDMA ctxt list?\n"); return NULL; } void svc_rdma_unmap_dma(struct svc_rdma_op_ctxt *ctxt) { struct svcxprt_rdma *xprt = ctxt->xprt; struct ib_device *device = xprt->sc_cm_id->device; u32 lkey = xprt->sc_pd->local_dma_lkey; unsigned int i; for (i = 0; i < ctxt->mapped_sges; i++) { /* * Unmap the DMA addr in the SGE if the lkey matches * the local_dma_lkey, otherwise, ignore it since it is * an FRMR lkey and will be unmapped later when the * last WR that uses it completes. */ if (ctxt->sge[i].lkey == lkey) ib_dma_unmap_page(device, ctxt->sge[i].addr, ctxt->sge[i].length, ctxt->direction); } ctxt->mapped_sges = 0; } void svc_rdma_put_context(struct svc_rdma_op_ctxt *ctxt, int free_pages) { struct svcxprt_rdma *xprt = ctxt->xprt; int i; if (free_pages) for (i = 0; i < ctxt->count; i++) put_page(ctxt->pages[i]); spin_lock(&xprt->sc_ctxt_lock); xprt->sc_ctxt_used--; list_add(&ctxt->list, &xprt->sc_ctxts); spin_unlock(&xprt->sc_ctxt_lock); } static void svc_rdma_destroy_ctxts(struct svcxprt_rdma *xprt) { while (!list_empty(&xprt->sc_ctxts)) { struct svc_rdma_op_ctxt *ctxt; ctxt = list_first_entry(&xprt->sc_ctxts, struct svc_rdma_op_ctxt, list); list_del(&ctxt->list); kfree(ctxt); } } static struct svc_rdma_req_map *alloc_req_map(gfp_t flags) { struct svc_rdma_req_map *map; map = kmalloc(sizeof(*map), flags); if (map) INIT_LIST_HEAD(&map->free); return map; } static bool svc_rdma_prealloc_maps(struct svcxprt_rdma *xprt) { unsigned int i; /* One for each receive buffer on this connection. */ i = xprt->sc_max_requests; while (i--) { struct svc_rdma_req_map *map; map = alloc_req_map(GFP_KERNEL); if (!map) { dprintk("svcrdma: No memory for request map\n"); return false; } list_add(&map->free, &xprt->sc_maps); } return true; } struct svc_rdma_req_map *svc_rdma_get_req_map(struct svcxprt_rdma *xprt) { struct svc_rdma_req_map *map = NULL; spin_lock(&xprt->sc_map_lock); if (list_empty(&xprt->sc_maps)) goto out_empty; map = list_first_entry(&xprt->sc_maps, struct svc_rdma_req_map, free); list_del_init(&map->free); spin_unlock(&xprt->sc_map_lock); out: map->count = 0; return map; out_empty: spin_unlock(&xprt->sc_map_lock); /* Pre-allocation amount was incorrect */ map = alloc_req_map(GFP_NOIO); if (map) goto out; WARN_ONCE(1, "svcrdma: empty request map list?\n"); return NULL; } void svc_rdma_put_req_map(struct svcxprt_rdma *xprt, struct svc_rdma_req_map *map) { spin_lock(&xprt->sc_map_lock); list_add(&map->free, &xprt->sc_maps); spin_unlock(&xprt->sc_map_lock); } static void svc_rdma_destroy_maps(struct svcxprt_rdma *xprt) { while (!list_empty(&xprt->sc_maps)) { struct svc_rdma_req_map *map; map = list_first_entry(&xprt->sc_maps, struct svc_rdma_req_map, free); list_del(&map->free); kfree(map); } } /* QP event handler */ static void qp_event_handler(struct ib_event *event, void *context) { struct svc_xprt *xprt = context; switch (event->event) { /* These are considered benign events */ case IB_EVENT_PATH_MIG: case IB_EVENT_COMM_EST: case IB_EVENT_SQ_DRAINED: case IB_EVENT_QP_LAST_WQE_REACHED: dprintk("svcrdma: QP event %s (%d) received for QP=%p\n", ib_event_msg(event->event), event->event, event->element.qp); break; /* These are considered fatal events */ case IB_EVENT_PATH_MIG_ERR: case IB_EVENT_QP_FATAL: case IB_EVENT_QP_REQ_ERR: case IB_EVENT_QP_ACCESS_ERR: case IB_EVENT_DEVICE_FATAL: default: dprintk("svcrdma: QP ERROR event %s (%d) received for QP=%p, " "closing transport\n", ib_event_msg(event->event), event->event, event->element.qp); set_bit(XPT_CLOSE, &xprt->xpt_flags); break; } } /** * svc_rdma_wc_receive - Invoked by RDMA provider for each polled Receive WC * @cq: completion queue * @wc: completed WR * */ static void svc_rdma_wc_receive(struct ib_cq *cq, struct ib_wc *wc) { struct svcxprt_rdma *xprt = cq->cq_context; struct ib_cqe *cqe = wc->wr_cqe; struct svc_rdma_op_ctxt *ctxt; /* WARNING: Only wc->wr_cqe and wc->status are reliable */ ctxt = container_of(cqe, struct svc_rdma_op_ctxt, cqe); svc_rdma_unmap_dma(ctxt); if (wc->status != IB_WC_SUCCESS) goto flushed; /* All wc fields are now known to be valid */ ctxt->byte_len = wc->byte_len; spin_lock(&xprt->sc_rq_dto_lock); list_add_tail(&ctxt->list, &xprt->sc_rq_dto_q); spin_unlock(&xprt->sc_rq_dto_lock); set_bit(XPT_DATA, &xprt->sc_xprt.xpt_flags); if (test_bit(RDMAXPRT_CONN_PENDING, &xprt->sc_flags)) goto out; svc_xprt_enqueue(&xprt->sc_xprt); goto out; flushed: if (wc->status != IB_WC_WR_FLUSH_ERR) pr_warn("svcrdma: receive: %s (%u/0x%x)\n", ib_wc_status_msg(wc->status), wc->status, wc->vendor_err); set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags); svc_rdma_put_context(ctxt, 1); out: svc_xprt_put(&xprt->sc_xprt); } static void svc_rdma_send_wc_common(struct svcxprt_rdma *xprt, struct ib_wc *wc, const char *opname) { if (wc->status != IB_WC_SUCCESS) goto err; out: atomic_inc(&xprt->sc_sq_avail); wake_up(&xprt->sc_send_wait); return; err: set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags); if (wc->status != IB_WC_WR_FLUSH_ERR) pr_err("svcrdma: %s: %s (%u/0x%x)\n", opname, ib_wc_status_msg(wc->status), wc->status, wc->vendor_err); goto out; } static void svc_rdma_send_wc_common_put(struct ib_cq *cq, struct ib_wc *wc, const char *opname) { struct svcxprt_rdma *xprt = cq->cq_context; svc_rdma_send_wc_common(xprt, wc, opname); svc_xprt_put(&xprt->sc_xprt); } /** * svc_rdma_wc_send - Invoked by RDMA provider for each polled Send WC * @cq: completion queue * @wc: completed WR * */ void svc_rdma_wc_send(struct ib_cq *cq, struct ib_wc *wc) { struct ib_cqe *cqe = wc->wr_cqe; struct svc_rdma_op_ctxt *ctxt; svc_rdma_send_wc_common_put(cq, wc, "send"); ctxt = container_of(cqe, struct svc_rdma_op_ctxt, cqe); svc_rdma_unmap_dma(ctxt); svc_rdma_put_context(ctxt, 1); } /** * svc_rdma_wc_write - Invoked by RDMA provider for each polled Write WC * @cq: completion queue * @wc: completed WR * */ void svc_rdma_wc_write(struct ib_cq *cq, struct ib_wc *wc) { struct ib_cqe *cqe = wc->wr_cqe; struct svc_rdma_op_ctxt *ctxt; svc_rdma_send_wc_common_put(cq, wc, "write"); ctxt = container_of(cqe, struct svc_rdma_op_ctxt, cqe); svc_rdma_unmap_dma(ctxt); svc_rdma_put_context(ctxt, 0); } /** * svc_rdma_wc_reg - Invoked by RDMA provider for each polled FASTREG WC * @cq: completion queue * @wc: completed WR * */ void svc_rdma_wc_reg(struct ib_cq *cq, struct ib_wc *wc) { svc_rdma_send_wc_common_put(cq, wc, "fastreg"); } /** * svc_rdma_wc_read - Invoked by RDMA provider for each polled Read WC * @cq: completion queue * @wc: completed WR * */ void svc_rdma_wc_read(struct ib_cq *cq, struct ib_wc *wc) { struct svcxprt_rdma *xprt = cq->cq_context; struct ib_cqe *cqe = wc->wr_cqe; struct svc_rdma_op_ctxt *ctxt; svc_rdma_send_wc_common(xprt, wc, "read"); ctxt = container_of(cqe, struct svc_rdma_op_ctxt, cqe); svc_rdma_unmap_dma(ctxt); svc_rdma_put_frmr(xprt, ctxt->frmr); if (test_bit(RDMACTXT_F_LAST_CTXT, &ctxt->flags)) { struct svc_rdma_op_ctxt *read_hdr; read_hdr = ctxt->read_hdr; spin_lock(&xprt->sc_rq_dto_lock); list_add_tail(&read_hdr->list, &xprt->sc_read_complete_q); spin_unlock(&xprt->sc_rq_dto_lock); set_bit(XPT_DATA, &xprt->sc_xprt.xpt_flags); svc_xprt_enqueue(&xprt->sc_xprt); } svc_rdma_put_context(ctxt, 0); svc_xprt_put(&xprt->sc_xprt); } /** * svc_rdma_wc_inv - Invoked by RDMA provider for each polled LOCAL_INV WC * @cq: completion queue * @wc: completed WR * */ void svc_rdma_wc_inv(struct ib_cq *cq, struct ib_wc *wc) { svc_rdma_send_wc_common_put(cq, wc, "localInv"); } static struct svcxprt_rdma *rdma_create_xprt(struct svc_serv *serv, int listener) { struct svcxprt_rdma *cma_xprt = kzalloc(sizeof *cma_xprt, GFP_KERNEL); if (!cma_xprt) return NULL; svc_xprt_init(&init_net, &svc_rdma_class, &cma_xprt->sc_xprt, serv); INIT_LIST_HEAD(&cma_xprt->sc_accept_q); INIT_LIST_HEAD(&cma_xprt->sc_rq_dto_q); INIT_LIST_HEAD(&cma_xprt->sc_read_complete_q); INIT_LIST_HEAD(&cma_xprt->sc_frmr_q); INIT_LIST_HEAD(&cma_xprt->sc_ctxts); INIT_LIST_HEAD(&cma_xprt->sc_maps); init_waitqueue_head(&cma_xprt->sc_send_wait); spin_lock_init(&cma_xprt->sc_lock); spin_lock_init(&cma_xprt->sc_rq_dto_lock); spin_lock_init(&cma_xprt->sc_frmr_q_lock); spin_lock_init(&cma_xprt->sc_ctxt_lock); spin_lock_init(&cma_xprt->sc_map_lock); /* * Note that this implies that the underlying transport support * has some form of congestion control (see RFC 7530 section 3.1 * paragraph 2). For now, we assume that all supported RDMA * transports are suitable here. */ set_bit(XPT_CONG_CTRL, &cma_xprt->sc_xprt.xpt_flags); if (listener) set_bit(XPT_LISTENER, &cma_xprt->sc_xprt.xpt_flags); return cma_xprt; } int svc_rdma_post_recv(struct svcxprt_rdma *xprt, gfp_t flags) { struct ib_recv_wr recv_wr, *bad_recv_wr; struct svc_rdma_op_ctxt *ctxt; struct page *page; dma_addr_t pa; int sge_no; int buflen; int ret; ctxt = svc_rdma_get_context(xprt); buflen = 0; ctxt->direction = DMA_FROM_DEVICE; ctxt->cqe.done = svc_rdma_wc_receive; for (sge_no = 0; buflen < xprt->sc_max_req_size; sge_no++) { if (sge_no >= xprt->sc_max_sge) { pr_err("svcrdma: Too many sges (%d)\n", sge_no); goto err_put_ctxt; } page = alloc_page(flags); if (!page) goto err_put_ctxt; ctxt->pages[sge_no] = page; pa = ib_dma_map_page(xprt->sc_cm_id->device, page, 0, PAGE_SIZE, DMA_FROM_DEVICE); if (ib_dma_mapping_error(xprt->sc_cm_id->device, pa)) goto err_put_ctxt; svc_rdma_count_mappings(xprt, ctxt); ctxt->sge[sge_no].addr = pa; ctxt->sge[sge_no].length = PAGE_SIZE; ctxt->sge[sge_no].lkey = xprt->sc_pd->local_dma_lkey; ctxt->count = sge_no + 1; buflen += PAGE_SIZE; } recv_wr.next = NULL; recv_wr.sg_list = &ctxt->sge[0]; recv_wr.num_sge = ctxt->count; recv_wr.wr_cqe = &ctxt->cqe; svc_xprt_get(&xprt->sc_xprt); ret = ib_post_recv(xprt->sc_qp, &recv_wr, &bad_recv_wr); if (ret) { svc_rdma_unmap_dma(ctxt); svc_rdma_put_context(ctxt, 1); svc_xprt_put(&xprt->sc_xprt); } return ret; err_put_ctxt: svc_rdma_unmap_dma(ctxt); svc_rdma_put_context(ctxt, 1); return -ENOMEM; } int svc_rdma_repost_recv(struct svcxprt_rdma *xprt, gfp_t flags) { int ret = 0; ret = svc_rdma_post_recv(xprt, flags); if (ret) { pr_err("svcrdma: could not post a receive buffer, err=%d.\n", ret); pr_err("svcrdma: closing transport %p.\n", xprt); set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags); ret = -ENOTCONN; } return ret; } static void svc_rdma_parse_connect_private(struct svcxprt_rdma *newxprt, struct rdma_conn_param *param) { const struct rpcrdma_connect_private *pmsg = param->private_data; if (pmsg && pmsg->cp_magic == rpcrdma_cmp_magic && pmsg->cp_version == RPCRDMA_CMP_VERSION) { newxprt->sc_snd_w_inv = pmsg->cp_flags & RPCRDMA_CMP_F_SND_W_INV_OK; dprintk("svcrdma: client send_size %u, recv_size %u " "remote inv %ssupported\n", rpcrdma_decode_buffer_size(pmsg->cp_send_size), rpcrdma_decode_buffer_size(pmsg->cp_recv_size), newxprt->sc_snd_w_inv ? "" : "un"); } } /* * This function handles the CONNECT_REQUEST event on a listening * endpoint. It is passed the cma_id for the _new_ connection. The context in * this cma_id is inherited from the listening cma_id and is the svc_xprt * structure for the listening endpoint. * * This function creates a new xprt for the new connection and enqueues it on * the accept queue for the listent xprt. When the listen thread is kicked, it * will call the recvfrom method on the listen xprt which will accept the new * connection. */ static void handle_connect_req(struct rdma_cm_id *new_cma_id, struct rdma_conn_param *param) { struct svcxprt_rdma *listen_xprt = new_cma_id->context; struct svcxprt_rdma *newxprt; struct sockaddr *sa; /* Create a new transport */ newxprt = rdma_create_xprt(listen_xprt->sc_xprt.xpt_server, 0); if (!newxprt) { dprintk("svcrdma: failed to create new transport\n"); return; } newxprt->sc_cm_id = new_cma_id; new_cma_id->context = newxprt; dprintk("svcrdma: Creating newxprt=%p, cm_id=%p, listenxprt=%p\n", newxprt, newxprt->sc_cm_id, listen_xprt); svc_rdma_parse_connect_private(newxprt, param); /* Save client advertised inbound read limit for use later in accept. */ newxprt->sc_ord = param->initiator_depth; /* Set the local and remote addresses in the transport */ sa = (struct sockaddr *)&newxprt->sc_cm_id->route.addr.dst_addr; svc_xprt_set_remote(&newxprt->sc_xprt, sa, svc_addr_len(sa)); sa = (struct sockaddr *)&newxprt->sc_cm_id->route.addr.src_addr; svc_xprt_set_local(&newxprt->sc_xprt, sa, svc_addr_len(sa)); /* * Enqueue the new transport on the accept queue of the listening * transport */ spin_lock_bh(&listen_xprt->sc_lock); list_add_tail(&newxprt->sc_accept_q, &listen_xprt->sc_accept_q); spin_unlock_bh(&listen_xprt->sc_lock); set_bit(XPT_CONN, &listen_xprt->sc_xprt.xpt_flags); svc_xprt_enqueue(&listen_xprt->sc_xprt); } /* * Handles events generated on the listening endpoint. These events will be * either be incoming connect requests or adapter removal events. */ static int rdma_listen_handler(struct rdma_cm_id *cma_id, struct rdma_cm_event *event) { struct svcxprt_rdma *xprt = cma_id->context; int ret = 0; switch (event->event) { case RDMA_CM_EVENT_CONNECT_REQUEST: dprintk("svcrdma: Connect request on cma_id=%p, xprt = %p, " "event = %s (%d)\n", cma_id, cma_id->context, rdma_event_msg(event->event), event->event); handle_connect_req(cma_id, &event->param.conn); break; case RDMA_CM_EVENT_ESTABLISHED: /* Accept complete */ dprintk("svcrdma: Connection completed on LISTEN xprt=%p, " "cm_id=%p\n", xprt, cma_id); break; case RDMA_CM_EVENT_DEVICE_REMOVAL: dprintk("svcrdma: Device removal xprt=%p, cm_id=%p\n", xprt, cma_id); if (xprt) set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags); break; default: dprintk("svcrdma: Unexpected event on listening endpoint %p, " "event = %s (%d)\n", cma_id, rdma_event_msg(event->event), event->event); break; } return ret; } static int rdma_cma_handler(struct rdma_cm_id *cma_id, struct rdma_cm_event *event) { struct svc_xprt *xprt = cma_id->context; struct svcxprt_rdma *rdma = container_of(xprt, struct svcxprt_rdma, sc_xprt); switch (event->event) { case RDMA_CM_EVENT_ESTABLISHED: /* Accept complete */ svc_xprt_get(xprt); dprintk("svcrdma: Connection completed on DTO xprt=%p, " "cm_id=%p\n", xprt, cma_id); clear_bit(RDMAXPRT_CONN_PENDING, &rdma->sc_flags); svc_xprt_enqueue(xprt); break; case RDMA_CM_EVENT_DISCONNECTED: dprintk("svcrdma: Disconnect on DTO xprt=%p, cm_id=%p\n", xprt, cma_id); if (xprt) { set_bit(XPT_CLOSE, &xprt->xpt_flags); svc_xprt_enqueue(xprt); svc_xprt_put(xprt); } break; case RDMA_CM_EVENT_DEVICE_REMOVAL: dprintk("svcrdma: Device removal cma_id=%p, xprt = %p, " "event = %s (%d)\n", cma_id, xprt, rdma_event_msg(event->event), event->event); if (xprt) { set_bit(XPT_CLOSE, &xprt->xpt_flags); svc_xprt_enqueue(xprt); svc_xprt_put(xprt); } break; default: dprintk("svcrdma: Unexpected event on DTO endpoint %p, " "event = %s (%d)\n", cma_id, rdma_event_msg(event->event), event->event); break; } return 0; } /* * Create a listening RDMA service endpoint. */ static struct svc_xprt *svc_rdma_create(struct svc_serv *serv, struct net *net, struct sockaddr *sa, int salen, int flags) { struct rdma_cm_id *listen_id; struct svcxprt_rdma *cma_xprt; int ret; dprintk("svcrdma: Creating RDMA socket\n"); if ((sa->sa_family != AF_INET) && (sa->sa_family != AF_INET6)) { dprintk("svcrdma: Address family %d is not supported.\n", sa->sa_family); return ERR_PTR(-EAFNOSUPPORT); } cma_xprt = rdma_create_xprt(serv, 1); if (!cma_xprt) return ERR_PTR(-ENOMEM); listen_id = rdma_create_id(&init_net, rdma_listen_handler, cma_xprt, RDMA_PS_TCP, IB_QPT_RC); if (IS_ERR(listen_id)) { ret = PTR_ERR(listen_id); dprintk("svcrdma: rdma_create_id failed = %d\n", ret); goto err0; } /* Allow both IPv4 and IPv6 sockets to bind a single port * at the same time. */ #if IS_ENABLED(CONFIG_IPV6) ret = rdma_set_afonly(listen_id, 1); if (ret) { dprintk("svcrdma: rdma_set_afonly failed = %d\n", ret); goto err1; } #endif ret = rdma_bind_addr(listen_id, sa); if (ret) { dprintk("svcrdma: rdma_bind_addr failed = %d\n", ret); goto err1; } cma_xprt->sc_cm_id = listen_id; ret = rdma_listen(listen_id, RPCRDMA_LISTEN_BACKLOG); if (ret) { dprintk("svcrdma: rdma_listen failed = %d\n", ret); goto err1; } /* * We need to use the address from the cm_id in case the * caller specified 0 for the port number. */ sa = (struct sockaddr *)&cma_xprt->sc_cm_id->route.addr.src_addr; svc_xprt_set_local(&cma_xprt->sc_xprt, sa, salen); return &cma_xprt->sc_xprt; err1: rdma_destroy_id(listen_id); err0: kfree(cma_xprt); return ERR_PTR(ret); } static struct svc_rdma_fastreg_mr *rdma_alloc_frmr(struct svcxprt_rdma *xprt) { struct ib_mr *mr; struct scatterlist *sg; struct svc_rdma_fastreg_mr *frmr; u32 num_sg; frmr = kmalloc(sizeof(*frmr), GFP_KERNEL); if (!frmr) goto err; num_sg = min_t(u32, RPCSVC_MAXPAGES, xprt->sc_frmr_pg_list_len); mr = ib_alloc_mr(xprt->sc_pd, IB_MR_TYPE_MEM_REG, num_sg); if (IS_ERR(mr)) goto err_free_frmr; sg = kcalloc(RPCSVC_MAXPAGES, sizeof(*sg), GFP_KERNEL); if (!sg) goto err_free_mr; sg_init_table(sg, RPCSVC_MAXPAGES); frmr->mr = mr; frmr->sg = sg; INIT_LIST_HEAD(&frmr->frmr_list); return frmr; err_free_mr: ib_dereg_mr(mr); err_free_frmr: kfree(frmr); err: return ERR_PTR(-ENOMEM); } static void rdma_dealloc_frmr_q(struct svcxprt_rdma *xprt) { struct svc_rdma_fastreg_mr *frmr; while (!list_empty(&xprt->sc_frmr_q)) { frmr = list_entry(xprt->sc_frmr_q.next, struct svc_rdma_fastreg_mr, frmr_list); list_del_init(&frmr->frmr_list); kfree(frmr->sg); ib_dereg_mr(frmr->mr); kfree(frmr); } } struct svc_rdma_fastreg_mr *svc_rdma_get_frmr(struct svcxprt_rdma *rdma) { struct svc_rdma_fastreg_mr *frmr = NULL; spin_lock(&rdma->sc_frmr_q_lock); if (!list_empty(&rdma->sc_frmr_q)) { frmr = list_entry(rdma->sc_frmr_q.next, struct svc_rdma_fastreg_mr, frmr_list); list_del_init(&frmr->frmr_list); frmr->sg_nents = 0; } spin_unlock(&rdma->sc_frmr_q_lock); if (frmr) return frmr; return rdma_alloc_frmr(rdma); } void svc_rdma_put_frmr(struct svcxprt_rdma *rdma, struct svc_rdma_fastreg_mr *frmr) { if (frmr) { ib_dma_unmap_sg(rdma->sc_cm_id->device, frmr->sg, frmr->sg_nents, frmr->direction); spin_lock(&rdma->sc_frmr_q_lock); WARN_ON_ONCE(!list_empty(&frmr->frmr_list)); list_add(&frmr->frmr_list, &rdma->sc_frmr_q); spin_unlock(&rdma->sc_frmr_q_lock); } } /* * This is the xpo_recvfrom function for listening endpoints. Its * purpose is to accept incoming connections. The CMA callback handler * has already created a new transport and attached it to the new CMA * ID. * * There is a queue of pending connections hung on the listening * transport. This queue contains the new svc_xprt structure. This * function takes svc_xprt structures off the accept_q and completes * the connection. */ static struct svc_xprt *svc_rdma_accept(struct svc_xprt *xprt) { struct svcxprt_rdma *listen_rdma; struct svcxprt_rdma *newxprt = NULL; struct rdma_conn_param conn_param; struct rpcrdma_connect_private pmsg; struct ib_qp_init_attr qp_attr; struct ib_device *dev; struct sockaddr *sap; unsigned int i; int ret = 0; listen_rdma = container_of(xprt, struct svcxprt_rdma, sc_xprt); clear_bit(XPT_CONN, &xprt->xpt_flags); /* Get the next entry off the accept list */ spin_lock_bh(&listen_rdma->sc_lock); if (!list_empty(&listen_rdma->sc_accept_q)) { newxprt = list_entry(listen_rdma->sc_accept_q.next, struct svcxprt_rdma, sc_accept_q); list_del_init(&newxprt->sc_accept_q); } if (!list_empty(&listen_rdma->sc_accept_q)) set_bit(XPT_CONN, &listen_rdma->sc_xprt.xpt_flags); spin_unlock_bh(&listen_rdma->sc_lock); if (!newxprt) return NULL; dprintk("svcrdma: newxprt from accept queue = %p, cm_id=%p\n", newxprt, newxprt->sc_cm_id); dev = newxprt->sc_cm_id->device; /* Qualify the transport resource defaults with the * capabilities of this particular device */ newxprt->sc_max_sge = min((size_t)dev->attrs.max_sge, (size_t)RPCSVC_MAXPAGES); newxprt->sc_max_sge_rd = min_t(size_t, dev->attrs.max_sge_rd, RPCSVC_MAXPAGES); newxprt->sc_max_req_size = svcrdma_max_req_size; newxprt->sc_max_requests = min_t(u32, dev->attrs.max_qp_wr, svcrdma_max_requests); newxprt->sc_fc_credits = cpu_to_be32(newxprt->sc_max_requests); newxprt->sc_max_bc_requests = min_t(u32, dev->attrs.max_qp_wr, svcrdma_max_bc_requests); newxprt->sc_rq_depth = newxprt->sc_max_requests + newxprt->sc_max_bc_requests; newxprt->sc_sq_depth = RPCRDMA_SQ_DEPTH_MULT * newxprt->sc_rq_depth; atomic_set(&newxprt->sc_sq_avail, newxprt->sc_sq_depth); if (!svc_rdma_prealloc_ctxts(newxprt)) goto errout; if (!svc_rdma_prealloc_maps(newxprt)) goto errout; /* * Limit ORD based on client limit, local device limit, and * configured svcrdma limit. */ newxprt->sc_ord = min_t(size_t, dev->attrs.max_qp_rd_atom, newxprt->sc_ord); newxprt->sc_ord = min_t(size_t, svcrdma_ord, newxprt->sc_ord); newxprt->sc_pd = ib_alloc_pd(dev, 0); if (IS_ERR(newxprt->sc_pd)) { dprintk("svcrdma: error creating PD for connect request\n"); goto errout; } newxprt->sc_sq_cq = ib_alloc_cq(dev, newxprt, newxprt->sc_sq_depth, 0, IB_POLL_WORKQUEUE); if (IS_ERR(newxprt->sc_sq_cq)) { dprintk("svcrdma: error creating SQ CQ for connect request\n"); goto errout; } newxprt->sc_rq_cq = ib_alloc_cq(dev, newxprt, newxprt->sc_rq_depth, 0, IB_POLL_WORKQUEUE); if (IS_ERR(newxprt->sc_rq_cq)) { dprintk("svcrdma: error creating RQ CQ for connect request\n"); goto errout; } memset(&qp_attr, 0, sizeof qp_attr); qp_attr.event_handler = qp_event_handler; qp_attr.qp_context = &newxprt->sc_xprt; qp_attr.cap.max_send_wr = newxprt->sc_sq_depth; qp_attr.cap.max_recv_wr = newxprt->sc_rq_depth; qp_attr.cap.max_send_sge = newxprt->sc_max_sge; qp_attr.cap.max_recv_sge = newxprt->sc_max_sge; qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR; qp_attr.qp_type = IB_QPT_RC; qp_attr.send_cq = newxprt->sc_sq_cq; qp_attr.recv_cq = newxprt->sc_rq_cq; dprintk("svcrdma: newxprt->sc_cm_id=%p, newxprt->sc_pd=%p\n", newxprt->sc_cm_id, newxprt->sc_pd); dprintk(" cap.max_send_wr = %d, cap.max_recv_wr = %d\n", qp_attr.cap.max_send_wr, qp_attr.cap.max_recv_wr); dprintk(" cap.max_send_sge = %d, cap.max_recv_sge = %d\n", qp_attr.cap.max_send_sge, qp_attr.cap.max_recv_sge); ret = rdma_create_qp(newxprt->sc_cm_id, newxprt->sc_pd, &qp_attr); if (ret) { dprintk("svcrdma: failed to create QP, ret=%d\n", ret); goto errout; } newxprt->sc_qp = newxprt->sc_cm_id->qp; /* * Use the most secure set of MR resources based on the * transport type and available memory management features in * the device. Here's the table implemented below: * * Fast Global DMA Remote WR * Reg LKEY MR Access * Sup'd Sup'd Needed Needed * * IWARP N N Y Y * N Y Y Y * Y N Y N * Y Y N - * * IB N N Y N * N Y N - * Y N Y N * Y Y N - * * NB: iWARP requires remote write access for the data sink * of an RDMA_READ. IB does not. */ newxprt->sc_reader = rdma_read_chunk_lcl; if (dev->attrs.device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS) { newxprt->sc_frmr_pg_list_len = dev->attrs.max_fast_reg_page_list_len; newxprt->sc_dev_caps |= SVCRDMA_DEVCAP_FAST_REG; newxprt->sc_reader = rdma_read_chunk_frmr; } else newxprt->sc_snd_w_inv = false; /* * Determine if a DMA MR is required and if so, what privs are required */ if (!rdma_protocol_iwarp(dev, newxprt->sc_cm_id->port_num) && !rdma_ib_or_roce(dev, newxprt->sc_cm_id->port_num)) goto errout; if (rdma_protocol_iwarp(dev, newxprt->sc_cm_id->port_num)) newxprt->sc_dev_caps |= SVCRDMA_DEVCAP_READ_W_INV; /* Post receive buffers */ for (i = 0; i < newxprt->sc_max_requests; i++) { ret = svc_rdma_post_recv(newxprt, GFP_KERNEL); if (ret) { dprintk("svcrdma: failure posting receive buffers\n"); goto errout; } } /* Swap out the handler */ newxprt->sc_cm_id->event_handler = rdma_cma_handler; /* Construct RDMA-CM private message */ pmsg.cp_magic = rpcrdma_cmp_magic; pmsg.cp_version = RPCRDMA_CMP_VERSION; pmsg.cp_flags = 0; pmsg.cp_send_size = pmsg.cp_recv_size = rpcrdma_encode_buffer_size(newxprt->sc_max_req_size); /* Accept Connection */ set_bit(RDMAXPRT_CONN_PENDING, &newxprt->sc_flags); memset(&conn_param, 0, sizeof conn_param); conn_param.responder_resources = 0; conn_param.initiator_depth = newxprt->sc_ord; conn_param.private_data = &pmsg; conn_param.private_data_len = sizeof(pmsg); ret = rdma_accept(newxprt->sc_cm_id, &conn_param); if (ret) { dprintk("svcrdma: failed to accept new connection, ret=%d\n", ret); goto errout; } dprintk("svcrdma: new connection %p accepted:\n", newxprt); sap = (struct sockaddr *)&newxprt->sc_cm_id->route.addr.src_addr; dprintk(" local address : %pIS:%u\n", sap, rpc_get_port(sap)); sap = (struct sockaddr *)&newxprt->sc_cm_id->route.addr.dst_addr; dprintk(" remote address : %pIS:%u\n", sap, rpc_get_port(sap)); dprintk(" max_sge : %d\n", newxprt->sc_max_sge); dprintk(" max_sge_rd : %d\n", newxprt->sc_max_sge_rd); dprintk(" sq_depth : %d\n", newxprt->sc_sq_depth); dprintk(" max_requests : %d\n", newxprt->sc_max_requests); dprintk(" ord : %d\n", newxprt->sc_ord); return &newxprt->sc_xprt; errout: dprintk("svcrdma: failure accepting new connection rc=%d.\n", ret); /* Take a reference in case the DTO handler runs */ svc_xprt_get(&newxprt->sc_xprt); if (newxprt->sc_qp && !IS_ERR(newxprt->sc_qp)) ib_destroy_qp(newxprt->sc_qp); rdma_destroy_id(newxprt->sc_cm_id); /* This call to put will destroy the transport */ svc_xprt_put(&newxprt->sc_xprt); return NULL; } static void svc_rdma_release_rqst(struct svc_rqst *rqstp) { } /* * When connected, an svc_xprt has at least two references: * * - A reference held by the cm_id between the ESTABLISHED and * DISCONNECTED events. If the remote peer disconnected first, this * reference could be gone. * * - A reference held by the svc_recv code that called this function * as part of close processing. * * At a minimum one references should still be held. */ static void svc_rdma_detach(struct svc_xprt *xprt) { struct svcxprt_rdma *rdma = container_of(xprt, struct svcxprt_rdma, sc_xprt); dprintk("svc: svc_rdma_detach(%p)\n", xprt); /* Disconnect and flush posted WQE */ rdma_disconnect(rdma->sc_cm_id); } static void __svc_rdma_free(struct work_struct *work) { struct svcxprt_rdma *rdma = container_of(work, struct svcxprt_rdma, sc_work); struct svc_xprt *xprt = &rdma->sc_xprt; dprintk("svcrdma: %s(%p)\n", __func__, rdma); if (rdma->sc_qp && !IS_ERR(rdma->sc_qp)) ib_drain_qp(rdma->sc_qp); /* We should only be called from kref_put */ if (kref_read(&xprt->xpt_ref) != 0) pr_err("svcrdma: sc_xprt still in use? (%d)\n", kref_read(&xprt->xpt_ref)); /* * Destroy queued, but not processed read completions. Note * that this cleanup has to be done before destroying the * cm_id because the device ptr is needed to unmap the dma in * svc_rdma_put_context. */ while (!list_empty(&rdma->sc_read_complete_q)) { struct svc_rdma_op_ctxt *ctxt; ctxt = list_first_entry(&rdma->sc_read_complete_q, struct svc_rdma_op_ctxt, list); list_del(&ctxt->list); svc_rdma_put_context(ctxt, 1); } /* Destroy queued, but not processed recv completions */ while (!list_empty(&rdma->sc_rq_dto_q)) { struct svc_rdma_op_ctxt *ctxt; ctxt = list_first_entry(&rdma->sc_rq_dto_q, struct svc_rdma_op_ctxt, list); list_del(&ctxt->list); svc_rdma_put_context(ctxt, 1); } /* Warn if we leaked a resource or under-referenced */ if (rdma->sc_ctxt_used != 0) pr_err("svcrdma: ctxt still in use? (%d)\n", rdma->sc_ctxt_used); /* Final put of backchannel client transport */ if (xprt->xpt_bc_xprt) { xprt_put(xprt->xpt_bc_xprt); xprt->xpt_bc_xprt = NULL; } rdma_dealloc_frmr_q(rdma); svc_rdma_destroy_ctxts(rdma); svc_rdma_destroy_maps(rdma); /* Destroy the QP if present (not a listener) */ if (rdma->sc_qp && !IS_ERR(rdma->sc_qp)) ib_destroy_qp(rdma->sc_qp); if (rdma->sc_sq_cq && !IS_ERR(rdma->sc_sq_cq)) ib_free_cq(rdma->sc_sq_cq); if (rdma->sc_rq_cq && !IS_ERR(rdma->sc_rq_cq)) ib_free_cq(rdma->sc_rq_cq); if (rdma->sc_pd && !IS_ERR(rdma->sc_pd)) ib_dealloc_pd(rdma->sc_pd); /* Destroy the CM ID */ rdma_destroy_id(rdma->sc_cm_id); kfree(rdma); } static void svc_rdma_free(struct svc_xprt *xprt) { struct svcxprt_rdma *rdma = container_of(xprt, struct svcxprt_rdma, sc_xprt); INIT_WORK(&rdma->sc_work, __svc_rdma_free); queue_work(svc_rdma_wq, &rdma->sc_work); } static int svc_rdma_has_wspace(struct svc_xprt *xprt) { struct svcxprt_rdma *rdma = container_of(xprt, struct svcxprt_rdma, sc_xprt); /* * If there are already waiters on the SQ, * return false. */ if (waitqueue_active(&rdma->sc_send_wait)) return 0; /* Otherwise return true. */ return 1; } static int svc_rdma_secure_port(struct svc_rqst *rqstp) { return 1; } static void svc_rdma_kill_temp_xprt(struct svc_xprt *xprt) { } int svc_rdma_send(struct svcxprt_rdma *xprt, struct ib_send_wr *wr) { struct ib_send_wr *bad_wr, *n_wr; int wr_count; int i; int ret; if (test_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags)) return -ENOTCONN; wr_count = 1; for (n_wr = wr->next; n_wr; n_wr = n_wr->next) wr_count++; /* If the SQ is full, wait until an SQ entry is available */ while (1) { if ((atomic_sub_return(wr_count, &xprt->sc_sq_avail) < 0)) { atomic_inc(&rdma_stat_sq_starve); /* Wait until SQ WR available if SQ still full */ atomic_add(wr_count, &xprt->sc_sq_avail); wait_event(xprt->sc_send_wait, atomic_read(&xprt->sc_sq_avail) > wr_count); if (test_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags)) return -ENOTCONN; continue; } /* Take a transport ref for each WR posted */ for (i = 0; i < wr_count; i++) svc_xprt_get(&xprt->sc_xprt); /* Bump used SQ WR count and post */ ret = ib_post_send(xprt->sc_qp, wr, &bad_wr); if (ret) { set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags); for (i = 0; i < wr_count; i ++) svc_xprt_put(&xprt->sc_xprt); dprintk("svcrdma: failed to post SQ WR rc=%d\n", ret); dprintk(" sc_sq_avail=%d, sc_sq_depth=%d\n", atomic_read(&xprt->sc_sq_avail), xprt->sc_sq_depth); wake_up(&xprt->sc_send_wait); } break; } return ret; }