/* * Copyright (c) 2016 Tom Herbert * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. * Copyright (c) 2016-2017, Dave Watson . All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef _TLS_INT_H #define _TLS_INT_H #include #include #include #include #include #define TLS_PAGE_ORDER (min_t(unsigned int, PAGE_ALLOC_COSTLY_ORDER, \ TLS_MAX_PAYLOAD_SIZE >> PAGE_SHIFT)) #define __TLS_INC_STATS(net, field) \ __SNMP_INC_STATS((net)->mib.tls_statistics, field) #define TLS_INC_STATS(net, field) \ SNMP_INC_STATS((net)->mib.tls_statistics, field) #define TLS_DEC_STATS(net, field) \ SNMP_DEC_STATS((net)->mib.tls_statistics, field) struct tls_cipher_desc { unsigned int nonce; unsigned int iv; unsigned int key; unsigned int salt; unsigned int tag; unsigned int rec_seq; unsigned int iv_offset; unsigned int key_offset; unsigned int salt_offset; unsigned int rec_seq_offset; char *cipher_name; bool offloadable; size_t crypto_info; }; #define TLS_CIPHER_MIN TLS_CIPHER_AES_GCM_128 #define TLS_CIPHER_MAX TLS_CIPHER_ARIA_GCM_256 extern const struct tls_cipher_desc tls_cipher_desc[TLS_CIPHER_MAX + 1 - TLS_CIPHER_MIN]; static inline const struct tls_cipher_desc *get_cipher_desc(u16 cipher_type) { if (cipher_type < TLS_CIPHER_MIN || cipher_type > TLS_CIPHER_MAX) return NULL; return &tls_cipher_desc[cipher_type - TLS_CIPHER_MIN]; } static inline char *crypto_info_iv(struct tls_crypto_info *crypto_info, const struct tls_cipher_desc *cipher_desc) { return (char *)crypto_info + cipher_desc->iv_offset; } static inline char *crypto_info_key(struct tls_crypto_info *crypto_info, const struct tls_cipher_desc *cipher_desc) { return (char *)crypto_info + cipher_desc->key_offset; } static inline char *crypto_info_salt(struct tls_crypto_info *crypto_info, const struct tls_cipher_desc *cipher_desc) { return (char *)crypto_info + cipher_desc->salt_offset; } static inline char *crypto_info_rec_seq(struct tls_crypto_info *crypto_info, const struct tls_cipher_desc *cipher_desc) { return (char *)crypto_info + cipher_desc->rec_seq_offset; } /* TLS records are maintained in 'struct tls_rec'. It stores the memory pages * allocated or mapped for each TLS record. After encryption, the records are * stores in a linked list. */ struct tls_rec { struct list_head list; int tx_ready; int tx_flags; struct sk_msg msg_plaintext; struct sk_msg msg_encrypted; /* AAD | msg_plaintext.sg.data | sg_tag */ struct scatterlist sg_aead_in[2]; /* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */ struct scatterlist sg_aead_out[2]; char content_type; struct scatterlist sg_content_type; struct sock *sk; char aad_space[TLS_AAD_SPACE_SIZE]; u8 iv_data[TLS_MAX_IV_SIZE]; struct aead_request aead_req; u8 aead_req_ctx[]; }; int __net_init tls_proc_init(struct net *net); void __net_exit tls_proc_fini(struct net *net); struct tls_context *tls_ctx_create(struct sock *sk); void tls_ctx_free(struct sock *sk, struct tls_context *ctx); void update_sk_prot(struct sock *sk, struct tls_context *ctx); int wait_on_pending_writer(struct sock *sk, long *timeo); void tls_err_abort(struct sock *sk, int err); int init_prot_info(struct tls_prot_info *prot, const struct tls_crypto_info *crypto_info, const struct tls_cipher_desc *cipher_desc); int tls_set_sw_offload(struct sock *sk, int tx); void tls_update_rx_zc_capable(struct tls_context *tls_ctx); void tls_sw_strparser_arm(struct sock *sk, struct tls_context *ctx); void tls_sw_strparser_done(struct tls_context *tls_ctx); int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); void tls_sw_splice_eof(struct socket *sock); void tls_sw_cancel_work_tx(struct tls_context *tls_ctx); void tls_sw_release_resources_tx(struct sock *sk); void tls_sw_free_ctx_tx(struct tls_context *tls_ctx); void tls_sw_free_resources_rx(struct sock *sk); void tls_sw_release_resources_rx(struct sock *sk); void tls_sw_free_ctx_rx(struct tls_context *tls_ctx); int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, int *addr_len); bool tls_sw_sock_is_readable(struct sock *sk); ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, struct pipe_inode_info *pipe, size_t len, unsigned int flags); int tls_sw_read_sock(struct sock *sk, read_descriptor_t *desc, sk_read_actor_t read_actor); int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); void tls_device_splice_eof(struct socket *sock); int tls_tx_records(struct sock *sk, int flags); void tls_sw_write_space(struct sock *sk, struct tls_context *ctx); void tls_device_write_space(struct sock *sk, struct tls_context *ctx); int tls_process_cmsg(struct sock *sk, struct msghdr *msg, unsigned char *record_type); int decrypt_skb(struct sock *sk, struct scatterlist *sgout); int tls_sw_fallback_init(struct sock *sk, struct tls_offload_context_tx *offload_ctx, struct tls_crypto_info *crypto_info); int tls_strp_dev_init(void); void tls_strp_dev_exit(void); void tls_strp_done(struct tls_strparser *strp); void tls_strp_stop(struct tls_strparser *strp); int tls_strp_init(struct tls_strparser *strp, struct sock *sk); void tls_strp_data_ready(struct tls_strparser *strp); void tls_strp_check_rcv(struct tls_strparser *strp); void tls_strp_msg_done(struct tls_strparser *strp); int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb); void tls_rx_msg_ready(struct tls_strparser *strp); void tls_strp_msg_load(struct tls_strparser *strp, bool force_refresh); int tls_strp_msg_cow(struct tls_sw_context_rx *ctx); struct sk_buff *tls_strp_msg_detach(struct tls_sw_context_rx *ctx); int tls_strp_msg_hold(struct tls_strparser *strp, struct sk_buff_head *dst); static inline struct tls_msg *tls_msg(struct sk_buff *skb) { struct sk_skb_cb *scb = (struct sk_skb_cb *)skb->cb; return &scb->tls; } static inline struct sk_buff *tls_strp_msg(struct tls_sw_context_rx *ctx) { DEBUG_NET_WARN_ON_ONCE(!ctx->strp.msg_ready || !ctx->strp.anchor->len); return ctx->strp.anchor; } static inline bool tls_strp_msg_ready(struct tls_sw_context_rx *ctx) { return ctx->strp.msg_ready; } static inline bool tls_strp_msg_mixed_decrypted(struct tls_sw_context_rx *ctx) { return ctx->strp.mixed_decrypted; } #ifdef CONFIG_TLS_DEVICE int tls_device_init(void); void tls_device_cleanup(void); int tls_set_device_offload(struct sock *sk); void tls_device_free_resources_tx(struct sock *sk); int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx); void tls_device_offload_cleanup_rx(struct sock *sk); void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq); int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx); #else static inline int tls_device_init(void) { return 0; } static inline void tls_device_cleanup(void) {} static inline int tls_set_device_offload(struct sock *sk) { return -EOPNOTSUPP; } static inline void tls_device_free_resources_tx(struct sock *sk) {} static inline int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx) { return -EOPNOTSUPP; } static inline void tls_device_offload_cleanup_rx(struct sock *sk) {} static inline void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) {} static inline int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx) { return 0; } #endif int tls_push_sg(struct sock *sk, struct tls_context *ctx, struct scatterlist *sg, u16 first_offset, int flags); int tls_push_partial_record(struct sock *sk, struct tls_context *ctx, int flags); void tls_free_partial_record(struct sock *sk, struct tls_context *ctx); static inline bool tls_is_partially_sent_record(struct tls_context *ctx) { return !!ctx->partially_sent_record; } static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx) { return tls_ctx->pending_open_record_frags; } static inline bool tls_bigint_increment(unsigned char *seq, int len) { int i; for (i = len - 1; i >= 0; i--) { ++seq[i]; if (seq[i] != 0) break; } return (i == -1); } static inline void tls_bigint_subtract(unsigned char *seq, int n) { u64 rcd_sn; __be64 *p; BUILD_BUG_ON(TLS_MAX_REC_SEQ_SIZE != 8); p = (__be64 *)seq; rcd_sn = be64_to_cpu(*p); *p = cpu_to_be64(rcd_sn - n); } static inline void tls_advance_record_sn(struct sock *sk, struct tls_prot_info *prot, struct cipher_context *ctx) { if (tls_bigint_increment(ctx->rec_seq, prot->rec_seq_size)) tls_err_abort(sk, -EBADMSG); if (prot->version != TLS_1_3_VERSION && prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) tls_bigint_increment(ctx->iv + prot->salt_size, prot->iv_size); } static inline void tls_xor_iv_with_seq(struct tls_prot_info *prot, char *iv, char *seq) { int i; if (prot->version == TLS_1_3_VERSION || prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) { for (i = 0; i < 8; i++) iv[i + 4] ^= seq[i]; } } static inline void tls_fill_prepend(struct tls_context *ctx, char *buf, size_t plaintext_len, unsigned char record_type) { struct tls_prot_info *prot = &ctx->prot_info; size_t pkt_len, iv_size = prot->iv_size; pkt_len = plaintext_len + prot->tag_size; if (prot->version != TLS_1_3_VERSION && prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) { pkt_len += iv_size; memcpy(buf + TLS_NONCE_OFFSET, ctx->tx.iv + prot->salt_size, iv_size); } /* we cover nonce explicit here as well, so buf should be of * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE */ buf[0] = prot->version == TLS_1_3_VERSION ? TLS_RECORD_TYPE_DATA : record_type; /* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */ buf[1] = TLS_1_2_VERSION_MINOR; buf[2] = TLS_1_2_VERSION_MAJOR; /* we can use IV for nonce explicit according to spec */ buf[3] = pkt_len >> 8; buf[4] = pkt_len & 0xFF; } static inline void tls_make_aad(char *buf, size_t size, char *record_sequence, unsigned char record_type, struct tls_prot_info *prot) { if (prot->version != TLS_1_3_VERSION) { memcpy(buf, record_sequence, prot->rec_seq_size); buf += 8; } else { size += prot->tag_size; } buf[0] = prot->version == TLS_1_3_VERSION ? TLS_RECORD_TYPE_DATA : record_type; buf[1] = TLS_1_2_VERSION_MAJOR; buf[2] = TLS_1_2_VERSION_MINOR; buf[3] = size >> 8; buf[4] = size & 0xFF; } #endif