/* * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. * Copyright (c) 2016-2017, Dave Watson . All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include "tls.h" MODULE_AUTHOR("Mellanox Technologies"); MODULE_DESCRIPTION("Transport Layer Security Support"); MODULE_LICENSE("Dual BSD/GPL"); MODULE_ALIAS_TCP_ULP("tls"); enum { TLSV4, TLSV6, TLS_NUM_PROTS, }; #define CHECK_CIPHER_DESC(cipher,ci) \ static_assert(cipher ## _IV_SIZE <= TLS_MAX_IV_SIZE); \ static_assert(cipher ## _SALT_SIZE <= TLS_MAX_SALT_SIZE); \ static_assert(cipher ## _REC_SEQ_SIZE <= TLS_MAX_REC_SEQ_SIZE); \ static_assert(cipher ## _TAG_SIZE == TLS_TAG_SIZE); \ static_assert(sizeof_field(struct ci, iv) == cipher ## _IV_SIZE); \ static_assert(sizeof_field(struct ci, key) == cipher ## _KEY_SIZE); \ static_assert(sizeof_field(struct ci, salt) == cipher ## _SALT_SIZE); \ static_assert(sizeof_field(struct ci, rec_seq) == cipher ## _REC_SEQ_SIZE); #define __CIPHER_DESC(ci) \ .iv_offset = offsetof(struct ci, iv), \ .key_offset = offsetof(struct ci, key), \ .salt_offset = offsetof(struct ci, salt), \ .rec_seq_offset = offsetof(struct ci, rec_seq), \ .crypto_info = sizeof(struct ci) #define CIPHER_DESC(cipher,ci,algname,_offloadable) [cipher - TLS_CIPHER_MIN] = { \ .nonce = cipher ## _IV_SIZE, \ .iv = cipher ## _IV_SIZE, \ .key = cipher ## _KEY_SIZE, \ .salt = cipher ## _SALT_SIZE, \ .tag = cipher ## _TAG_SIZE, \ .rec_seq = cipher ## _REC_SEQ_SIZE, \ .cipher_name = algname, \ .offloadable = _offloadable, \ __CIPHER_DESC(ci), \ } #define CIPHER_DESC_NONCE0(cipher,ci,algname,_offloadable) [cipher - TLS_CIPHER_MIN] = { \ .nonce = 0, \ .iv = cipher ## _IV_SIZE, \ .key = cipher ## _KEY_SIZE, \ .salt = cipher ## _SALT_SIZE, \ .tag = cipher ## _TAG_SIZE, \ .rec_seq = cipher ## _REC_SEQ_SIZE, \ .cipher_name = algname, \ .offloadable = _offloadable, \ __CIPHER_DESC(ci), \ } const struct tls_cipher_desc tls_cipher_desc[TLS_CIPHER_MAX + 1 - TLS_CIPHER_MIN] = { CIPHER_DESC(TLS_CIPHER_AES_GCM_128, tls12_crypto_info_aes_gcm_128, "gcm(aes)", true), CIPHER_DESC(TLS_CIPHER_AES_GCM_256, tls12_crypto_info_aes_gcm_256, "gcm(aes)", true), CIPHER_DESC(TLS_CIPHER_AES_CCM_128, tls12_crypto_info_aes_ccm_128, "ccm(aes)", false), CIPHER_DESC_NONCE0(TLS_CIPHER_CHACHA20_POLY1305, tls12_crypto_info_chacha20_poly1305, "rfc7539(chacha20,poly1305)", false), CIPHER_DESC(TLS_CIPHER_SM4_GCM, tls12_crypto_info_sm4_gcm, "gcm(sm4)", false), CIPHER_DESC(TLS_CIPHER_SM4_CCM, tls12_crypto_info_sm4_ccm, "ccm(sm4)", false), CIPHER_DESC(TLS_CIPHER_ARIA_GCM_128, tls12_crypto_info_aria_gcm_128, "gcm(aria)", false), CIPHER_DESC(TLS_CIPHER_ARIA_GCM_256, tls12_crypto_info_aria_gcm_256, "gcm(aria)", false), }; CHECK_CIPHER_DESC(TLS_CIPHER_AES_GCM_128, tls12_crypto_info_aes_gcm_128); CHECK_CIPHER_DESC(TLS_CIPHER_AES_GCM_256, tls12_crypto_info_aes_gcm_256); CHECK_CIPHER_DESC(TLS_CIPHER_AES_CCM_128, tls12_crypto_info_aes_ccm_128); CHECK_CIPHER_DESC(TLS_CIPHER_CHACHA20_POLY1305, tls12_crypto_info_chacha20_poly1305); CHECK_CIPHER_DESC(TLS_CIPHER_SM4_GCM, tls12_crypto_info_sm4_gcm); CHECK_CIPHER_DESC(TLS_CIPHER_SM4_CCM, tls12_crypto_info_sm4_ccm); CHECK_CIPHER_DESC(TLS_CIPHER_ARIA_GCM_128, tls12_crypto_info_aria_gcm_128); CHECK_CIPHER_DESC(TLS_CIPHER_ARIA_GCM_256, tls12_crypto_info_aria_gcm_256); static const struct proto *saved_tcpv6_prot; static DEFINE_MUTEX(tcpv6_prot_mutex); static const struct proto *saved_tcpv4_prot; static DEFINE_MUTEX(tcpv4_prot_mutex); static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG]; static struct proto_ops tls_proto_ops[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG]; static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], const struct proto *base); void update_sk_prot(struct sock *sk, struct tls_context *ctx) { int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; WRITE_ONCE(sk->sk_prot, &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]); WRITE_ONCE(sk->sk_socket->ops, &tls_proto_ops[ip_ver][ctx->tx_conf][ctx->rx_conf]); } int wait_on_pending_writer(struct sock *sk, long *timeo) { DEFINE_WAIT_FUNC(wait, woken_wake_function); int ret, rc = 0; add_wait_queue(sk_sleep(sk), &wait); while (1) { if (!*timeo) { rc = -EAGAIN; break; } if (signal_pending(current)) { rc = sock_intr_errno(*timeo); break; } ret = sk_wait_event(sk, timeo, !READ_ONCE(sk->sk_write_pending), &wait); if (ret) { if (ret < 0) rc = ret; break; } } remove_wait_queue(sk_sleep(sk), &wait); return rc; } int tls_push_sg(struct sock *sk, struct tls_context *ctx, struct scatterlist *sg, u16 first_offset, int flags) { struct bio_vec bvec; struct msghdr msg = { .msg_flags = MSG_SPLICE_PAGES | flags, }; int ret = 0; struct page *p; size_t size; int offset = first_offset; size = sg->length - offset; offset += sg->offset; ctx->splicing_pages = true; while (1) { /* is sending application-limited? */ tcp_rate_check_app_limited(sk); p = sg_page(sg); retry: bvec_set_page(&bvec, p, size, offset); iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, size); ret = tcp_sendmsg_locked(sk, &msg, size); if (ret != size) { if (ret > 0) { offset += ret; size -= ret; goto retry; } offset -= sg->offset; ctx->partially_sent_offset = offset; ctx->partially_sent_record = (void *)sg; ctx->splicing_pages = false; return ret; } put_page(p); sk_mem_uncharge(sk, sg->length); sg = sg_next(sg); if (!sg) break; offset = sg->offset; size = sg->length; } ctx->splicing_pages = false; return 0; } static int tls_handle_open_record(struct sock *sk, int flags) { struct tls_context *ctx = tls_get_ctx(sk); if (tls_is_pending_open_record(ctx)) return ctx->push_pending_record(sk, flags); return 0; } int tls_process_cmsg(struct sock *sk, struct msghdr *msg, unsigned char *record_type) { struct cmsghdr *cmsg; int rc = -EINVAL; for_each_cmsghdr(cmsg, msg) { if (!CMSG_OK(msg, cmsg)) return -EINVAL; if (cmsg->cmsg_level != SOL_TLS) continue; switch (cmsg->cmsg_type) { case TLS_SET_RECORD_TYPE: if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type))) return -EINVAL; if (msg->msg_flags & MSG_MORE) return -EINVAL; rc = tls_handle_open_record(sk, msg->msg_flags); if (rc) return rc; *record_type = *(unsigned char *)CMSG_DATA(cmsg); rc = 0; break; default: return -EINVAL; } } return rc; } int tls_push_partial_record(struct sock *sk, struct tls_context *ctx, int flags) { struct scatterlist *sg; u16 offset; sg = ctx->partially_sent_record; offset = ctx->partially_sent_offset; ctx->partially_sent_record = NULL; return tls_push_sg(sk, ctx, sg, offset, flags); } void tls_free_partial_record(struct sock *sk, struct tls_context *ctx) { struct scatterlist *sg; for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) { put_page(sg_page(sg)); sk_mem_uncharge(sk, sg->length); } ctx->partially_sent_record = NULL; } static void tls_write_space(struct sock *sk) { struct tls_context *ctx = tls_get_ctx(sk); /* If splicing_pages call lower protocol write space handler * to ensure we wake up any waiting operations there. For example * if splicing pages where to call sk_wait_event. */ if (ctx->splicing_pages) { ctx->sk_write_space(sk); return; } #ifdef CONFIG_TLS_DEVICE if (ctx->tx_conf == TLS_HW) tls_device_write_space(sk, ctx); else #endif tls_sw_write_space(sk, ctx); ctx->sk_write_space(sk); } /** * tls_ctx_free() - free TLS ULP context * @sk: socket to with @ctx is attached * @ctx: TLS context structure * * Free TLS context. If @sk is %NULL caller guarantees that the socket * to which @ctx was attached has no outstanding references. */ void tls_ctx_free(struct sock *sk, struct tls_context *ctx) { if (!ctx) return; memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send)); memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv)); mutex_destroy(&ctx->tx_lock); if (sk) kfree_rcu(ctx, rcu); else kfree(ctx); } static void tls_sk_proto_cleanup(struct sock *sk, struct tls_context *ctx, long timeo) { if (unlikely(sk->sk_write_pending) && !wait_on_pending_writer(sk, &timeo)) tls_handle_open_record(sk, 0); /* We need these for tls_sw_fallback handling of other packets */ if (ctx->tx_conf == TLS_SW) { tls_sw_release_resources_tx(sk); TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW); } else if (ctx->tx_conf == TLS_HW) { tls_device_free_resources_tx(sk); TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE); } if (ctx->rx_conf == TLS_SW) { tls_sw_release_resources_rx(sk); TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW); } else if (ctx->rx_conf == TLS_HW) { tls_device_offload_cleanup_rx(sk); TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE); } } static void tls_sk_proto_close(struct sock *sk, long timeout) { struct inet_connection_sock *icsk = inet_csk(sk); struct tls_context *ctx = tls_get_ctx(sk); long timeo = sock_sndtimeo(sk, 0); bool free_ctx; if (ctx->tx_conf == TLS_SW) tls_sw_cancel_work_tx(ctx); lock_sock(sk); free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW; if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE) tls_sk_proto_cleanup(sk, ctx, timeo); write_lock_bh(&sk->sk_callback_lock); if (free_ctx) rcu_assign_pointer(icsk->icsk_ulp_data, NULL); WRITE_ONCE(sk->sk_prot, ctx->sk_proto); if (sk->sk_write_space == tls_write_space) sk->sk_write_space = ctx->sk_write_space; write_unlock_bh(&sk->sk_callback_lock); release_sock(sk); if (ctx->tx_conf == TLS_SW) tls_sw_free_ctx_tx(ctx); if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) tls_sw_strparser_done(ctx); if (ctx->rx_conf == TLS_SW) tls_sw_free_ctx_rx(ctx); ctx->sk_proto->close(sk, timeout); if (free_ctx) tls_ctx_free(sk, ctx); } static __poll_t tls_sk_poll(struct file *file, struct socket *sock, struct poll_table_struct *wait) { struct tls_sw_context_rx *ctx; struct tls_context *tls_ctx; struct sock *sk = sock->sk; struct sk_psock *psock; __poll_t mask = 0; u8 shutdown; int state; mask = tcp_poll(file, sock, wait); state = inet_sk_state_load(sk); shutdown = READ_ONCE(sk->sk_shutdown); if (unlikely(state != TCP_ESTABLISHED || shutdown & RCV_SHUTDOWN)) return mask; tls_ctx = tls_get_ctx(sk); ctx = tls_sw_ctx_rx(tls_ctx); psock = sk_psock_get(sk); if (skb_queue_empty_lockless(&ctx->rx_list) && !tls_strp_msg_ready(ctx) && sk_psock_queue_empty(psock)) mask &= ~(EPOLLIN | EPOLLRDNORM); if (psock) sk_psock_put(sk, psock); return mask; } static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval, int __user *optlen, int tx) { int rc = 0; const struct tls_cipher_desc *cipher_desc; struct tls_context *ctx = tls_get_ctx(sk); struct tls_crypto_info *crypto_info; struct cipher_context *cctx; int len; if (get_user(len, optlen)) return -EFAULT; if (!optval || (len < sizeof(*crypto_info))) { rc = -EINVAL; goto out; } if (!ctx) { rc = -EBUSY; goto out; } /* get user crypto info */ if (tx) { crypto_info = &ctx->crypto_send.info; cctx = &ctx->tx; } else { crypto_info = &ctx->crypto_recv.info; cctx = &ctx->rx; } if (!TLS_CRYPTO_INFO_READY(crypto_info)) { rc = -EBUSY; goto out; } if (len == sizeof(*crypto_info)) { if (copy_to_user(optval, crypto_info, sizeof(*crypto_info))) rc = -EFAULT; goto out; } cipher_desc = get_cipher_desc(crypto_info->cipher_type); if (!cipher_desc || len != cipher_desc->crypto_info) { rc = -EINVAL; goto out; } memcpy(crypto_info_iv(crypto_info, cipher_desc), cctx->iv + cipher_desc->salt, cipher_desc->iv); memcpy(crypto_info_rec_seq(crypto_info, cipher_desc), cctx->rec_seq, cipher_desc->rec_seq); if (copy_to_user(optval, crypto_info, cipher_desc->crypto_info)) rc = -EFAULT; out: return rc; } static int do_tls_getsockopt_tx_zc(struct sock *sk, char __user *optval, int __user *optlen) { struct tls_context *ctx = tls_get_ctx(sk); unsigned int value; int len; if (get_user(len, optlen)) return -EFAULT; if (len != sizeof(value)) return -EINVAL; value = ctx->zerocopy_sendfile; if (copy_to_user(optval, &value, sizeof(value))) return -EFAULT; return 0; } static int do_tls_getsockopt_no_pad(struct sock *sk, char __user *optval, int __user *optlen) { struct tls_context *ctx = tls_get_ctx(sk); int value, len; if (ctx->prot_info.version != TLS_1_3_VERSION) return -EINVAL; if (get_user(len, optlen)) return -EFAULT; if (len < sizeof(value)) return -EINVAL; value = -EINVAL; if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) value = ctx->rx_no_pad; if (value < 0) return value; if (put_user(sizeof(value), optlen)) return -EFAULT; if (copy_to_user(optval, &value, sizeof(value))) return -EFAULT; return 0; } static int do_tls_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen) { int rc = 0; lock_sock(sk); switch (optname) { case TLS_TX: case TLS_RX: rc = do_tls_getsockopt_conf(sk, optval, optlen, optname == TLS_TX); break; case TLS_TX_ZEROCOPY_RO: rc = do_tls_getsockopt_tx_zc(sk, optval, optlen); break; case TLS_RX_EXPECT_NO_PAD: rc = do_tls_getsockopt_no_pad(sk, optval, optlen); break; default: rc = -ENOPROTOOPT; break; } release_sock(sk); return rc; } static int tls_getsockopt(struct sock *sk, int level, int optname, char __user *optval, int __user *optlen) { struct tls_context *ctx = tls_get_ctx(sk); if (level != SOL_TLS) return ctx->sk_proto->getsockopt(sk, level, optname, optval, optlen); return do_tls_getsockopt(sk, optname, optval, optlen); } static int validate_crypto_info(const struct tls_crypto_info *crypto_info, const struct tls_crypto_info *alt_crypto_info) { if (crypto_info->version != TLS_1_2_VERSION && crypto_info->version != TLS_1_3_VERSION) return -EINVAL; switch (crypto_info->cipher_type) { case TLS_CIPHER_ARIA_GCM_128: case TLS_CIPHER_ARIA_GCM_256: if (crypto_info->version != TLS_1_2_VERSION) return -EINVAL; break; } /* Ensure that TLS version and ciphers are same in both directions */ if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) { if (alt_crypto_info->version != crypto_info->version || alt_crypto_info->cipher_type != crypto_info->cipher_type) return -EINVAL; } return 0; } static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval, unsigned int optlen, int tx) { struct tls_crypto_info *crypto_info; struct tls_crypto_info *alt_crypto_info; struct tls_context *ctx = tls_get_ctx(sk); const struct tls_cipher_desc *cipher_desc; int rc = 0; int conf; if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info))) return -EINVAL; if (tx) { crypto_info = &ctx->crypto_send.info; alt_crypto_info = &ctx->crypto_recv.info; } else { crypto_info = &ctx->crypto_recv.info; alt_crypto_info = &ctx->crypto_send.info; } /* Currently we don't support set crypto info more than one time */ if (TLS_CRYPTO_INFO_READY(crypto_info)) return -EBUSY; rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info)); if (rc) { rc = -EFAULT; goto err_crypto_info; } rc = validate_crypto_info(crypto_info, alt_crypto_info); if (rc) goto err_crypto_info; cipher_desc = get_cipher_desc(crypto_info->cipher_type); if (!cipher_desc) { rc = -EINVAL; goto err_crypto_info; } if (optlen != cipher_desc->crypto_info) { rc = -EINVAL; goto err_crypto_info; } rc = copy_from_sockptr_offset(crypto_info + 1, optval, sizeof(*crypto_info), optlen - sizeof(*crypto_info)); if (rc) { rc = -EFAULT; goto err_crypto_info; } if (tx) { rc = tls_set_device_offload(sk); conf = TLS_HW; if (!rc) { TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE); TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE); } else { rc = tls_set_sw_offload(sk, 1); if (rc) goto err_crypto_info; TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW); TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW); conf = TLS_SW; } } else { rc = tls_set_device_offload_rx(sk, ctx); conf = TLS_HW; if (!rc) { TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE); TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE); } else { rc = tls_set_sw_offload(sk, 0); if (rc) goto err_crypto_info; TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW); TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW); conf = TLS_SW; } tls_sw_strparser_arm(sk, ctx); } if (tx) ctx->tx_conf = conf; else ctx->rx_conf = conf; update_sk_prot(sk, ctx); if (tx) { ctx->sk_write_space = sk->sk_write_space; sk->sk_write_space = tls_write_space; } else { struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(ctx); tls_strp_check_rcv(&rx_ctx->strp); } return 0; err_crypto_info: memzero_explicit(crypto_info, sizeof(union tls_crypto_context)); return rc; } static int do_tls_setsockopt_tx_zc(struct sock *sk, sockptr_t optval, unsigned int optlen) { struct tls_context *ctx = tls_get_ctx(sk); unsigned int value; if (sockptr_is_null(optval) || optlen != sizeof(value)) return -EINVAL; if (copy_from_sockptr(&value, optval, sizeof(value))) return -EFAULT; if (value > 1) return -EINVAL; ctx->zerocopy_sendfile = value; return 0; } static int do_tls_setsockopt_no_pad(struct sock *sk, sockptr_t optval, unsigned int optlen) { struct tls_context *ctx = tls_get_ctx(sk); u32 val; int rc; if (ctx->prot_info.version != TLS_1_3_VERSION || sockptr_is_null(optval) || optlen < sizeof(val)) return -EINVAL; rc = copy_from_sockptr(&val, optval, sizeof(val)); if (rc) return -EFAULT; if (val > 1) return -EINVAL; rc = check_zeroed_sockptr(optval, sizeof(val), optlen - sizeof(val)); if (rc < 1) return rc == 0 ? -EINVAL : rc; lock_sock(sk); rc = -EINVAL; if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) { ctx->rx_no_pad = val; tls_update_rx_zc_capable(ctx); rc = 0; } release_sock(sk); return rc; } static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval, unsigned int optlen) { int rc = 0; switch (optname) { case TLS_TX: case TLS_RX: lock_sock(sk); rc = do_tls_setsockopt_conf(sk, optval, optlen, optname == TLS_TX); release_sock(sk); break; case TLS_TX_ZEROCOPY_RO: lock_sock(sk); rc = do_tls_setsockopt_tx_zc(sk, optval, optlen); release_sock(sk); break; case TLS_RX_EXPECT_NO_PAD: rc = do_tls_setsockopt_no_pad(sk, optval, optlen); break; default: rc = -ENOPROTOOPT; break; } return rc; } static int tls_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, unsigned int optlen) { struct tls_context *ctx = tls_get_ctx(sk); if (level != SOL_TLS) return ctx->sk_proto->setsockopt(sk, level, optname, optval, optlen); return do_tls_setsockopt(sk, optname, optval, optlen); } struct tls_context *tls_ctx_create(struct sock *sk) { struct inet_connection_sock *icsk = inet_csk(sk); struct tls_context *ctx; ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC); if (!ctx) return NULL; mutex_init(&ctx->tx_lock); rcu_assign_pointer(icsk->icsk_ulp_data, ctx); ctx->sk_proto = READ_ONCE(sk->sk_prot); ctx->sk = sk; return ctx; } static void build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG], const struct proto_ops *base) { ops[TLS_BASE][TLS_BASE] = *base; ops[TLS_SW ][TLS_BASE] = ops[TLS_BASE][TLS_BASE]; ops[TLS_SW ][TLS_BASE].splice_eof = tls_sw_splice_eof; ops[TLS_BASE][TLS_SW ] = ops[TLS_BASE][TLS_BASE]; ops[TLS_BASE][TLS_SW ].splice_read = tls_sw_splice_read; ops[TLS_BASE][TLS_SW ].poll = tls_sk_poll; ops[TLS_BASE][TLS_SW ].read_sock = tls_sw_read_sock; ops[TLS_SW ][TLS_SW ] = ops[TLS_SW ][TLS_BASE]; ops[TLS_SW ][TLS_SW ].splice_read = tls_sw_splice_read; ops[TLS_SW ][TLS_SW ].poll = tls_sk_poll; ops[TLS_SW ][TLS_SW ].read_sock = tls_sw_read_sock; #ifdef CONFIG_TLS_DEVICE ops[TLS_HW ][TLS_BASE] = ops[TLS_BASE][TLS_BASE]; ops[TLS_HW ][TLS_SW ] = ops[TLS_BASE][TLS_SW ]; ops[TLS_BASE][TLS_HW ] = ops[TLS_BASE][TLS_SW ]; ops[TLS_SW ][TLS_HW ] = ops[TLS_SW ][TLS_SW ]; ops[TLS_HW ][TLS_HW ] = ops[TLS_HW ][TLS_SW ]; #endif #ifdef CONFIG_TLS_TOE ops[TLS_HW_RECORD][TLS_HW_RECORD] = *base; #endif } static void tls_build_proto(struct sock *sk) { int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; struct proto *prot = READ_ONCE(sk->sk_prot); /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */ if (ip_ver == TLSV6 && unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) { mutex_lock(&tcpv6_prot_mutex); if (likely(prot != saved_tcpv6_prot)) { build_protos(tls_prots[TLSV6], prot); build_proto_ops(tls_proto_ops[TLSV6], sk->sk_socket->ops); smp_store_release(&saved_tcpv6_prot, prot); } mutex_unlock(&tcpv6_prot_mutex); } if (ip_ver == TLSV4 && unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) { mutex_lock(&tcpv4_prot_mutex); if (likely(prot != saved_tcpv4_prot)) { build_protos(tls_prots[TLSV4], prot); build_proto_ops(tls_proto_ops[TLSV4], sk->sk_socket->ops); smp_store_release(&saved_tcpv4_prot, prot); } mutex_unlock(&tcpv4_prot_mutex); } } static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], const struct proto *base) { prot[TLS_BASE][TLS_BASE] = *base; prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt; prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt; prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close; prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg; prot[TLS_SW][TLS_BASE].splice_eof = tls_sw_splice_eof; prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE]; prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg; prot[TLS_BASE][TLS_SW].sock_is_readable = tls_sw_sock_is_readable; prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close; prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE]; prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg; prot[TLS_SW][TLS_SW].sock_is_readable = tls_sw_sock_is_readable; prot[TLS_SW][TLS_SW].close = tls_sk_proto_close; #ifdef CONFIG_TLS_DEVICE prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg; prot[TLS_HW][TLS_BASE].splice_eof = tls_device_splice_eof; prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW]; prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg; prot[TLS_HW][TLS_SW].splice_eof = tls_device_splice_eof; prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW]; prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW]; prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW]; #endif #ifdef CONFIG_TLS_TOE prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base; prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_toe_hash; prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_toe_unhash; #endif } static int tls_init(struct sock *sk) { struct tls_context *ctx; int rc = 0; tls_build_proto(sk); #ifdef CONFIG_TLS_TOE if (tls_toe_bypass(sk)) return 0; #endif /* The TLS ulp is currently supported only for TCP sockets * in ESTABLISHED state. * Supporting sockets in LISTEN state will require us * to modify the accept implementation to clone rather then * share the ulp context. */ if (sk->sk_state != TCP_ESTABLISHED) return -ENOTCONN; /* allocate tls context */ write_lock_bh(&sk->sk_callback_lock); ctx = tls_ctx_create(sk); if (!ctx) { rc = -ENOMEM; goto out; } ctx->tx_conf = TLS_BASE; ctx->rx_conf = TLS_BASE; update_sk_prot(sk, ctx); out: write_unlock_bh(&sk->sk_callback_lock); return rc; } static void tls_update(struct sock *sk, struct proto *p, void (*write_space)(struct sock *sk)) { struct tls_context *ctx; WARN_ON_ONCE(sk->sk_prot == p); ctx = tls_get_ctx(sk); if (likely(ctx)) { ctx->sk_write_space = write_space; ctx->sk_proto = p; } else { /* Pairs with lockless read in sk_clone_lock(). */ WRITE_ONCE(sk->sk_prot, p); sk->sk_write_space = write_space; } } static u16 tls_user_config(struct tls_context *ctx, bool tx) { u16 config = tx ? ctx->tx_conf : ctx->rx_conf; switch (config) { case TLS_BASE: return TLS_CONF_BASE; case TLS_SW: return TLS_CONF_SW; case TLS_HW: return TLS_CONF_HW; case TLS_HW_RECORD: return TLS_CONF_HW_RECORD; } return 0; } static int tls_get_info(struct sock *sk, struct sk_buff *skb) { u16 version, cipher_type; struct tls_context *ctx; struct nlattr *start; int err; start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS); if (!start) return -EMSGSIZE; rcu_read_lock(); ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data); if (!ctx) { err = 0; goto nla_failure; } version = ctx->prot_info.version; if (version) { err = nla_put_u16(skb, TLS_INFO_VERSION, version); if (err) goto nla_failure; } cipher_type = ctx->prot_info.cipher_type; if (cipher_type) { err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type); if (err) goto nla_failure; } err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true)); if (err) goto nla_failure; err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false)); if (err) goto nla_failure; if (ctx->tx_conf == TLS_HW && ctx->zerocopy_sendfile) { err = nla_put_flag(skb, TLS_INFO_ZC_RO_TX); if (err) goto nla_failure; } if (ctx->rx_no_pad) { err = nla_put_flag(skb, TLS_INFO_RX_NO_PAD); if (err) goto nla_failure; } rcu_read_unlock(); nla_nest_end(skb, start); return 0; nla_failure: rcu_read_unlock(); nla_nest_cancel(skb, start); return err; } static size_t tls_get_info_size(const struct sock *sk) { size_t size = 0; size += nla_total_size(0) + /* INET_ULP_INFO_TLS */ nla_total_size(sizeof(u16)) + /* TLS_INFO_VERSION */ nla_total_size(sizeof(u16)) + /* TLS_INFO_CIPHER */ nla_total_size(sizeof(u16)) + /* TLS_INFO_RXCONF */ nla_total_size(sizeof(u16)) + /* TLS_INFO_TXCONF */ nla_total_size(0) + /* TLS_INFO_ZC_RO_TX */ nla_total_size(0) + /* TLS_INFO_RX_NO_PAD */ 0; return size; } static int __net_init tls_init_net(struct net *net) { int err; net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib); if (!net->mib.tls_statistics) return -ENOMEM; err = tls_proc_init(net); if (err) goto err_free_stats; return 0; err_free_stats: free_percpu(net->mib.tls_statistics); return err; } static void __net_exit tls_exit_net(struct net *net) { tls_proc_fini(net); free_percpu(net->mib.tls_statistics); } static struct pernet_operations tls_proc_ops = { .init = tls_init_net, .exit = tls_exit_net, }; static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = { .name = "tls", .owner = THIS_MODULE, .init = tls_init, .update = tls_update, .get_info = tls_get_info, .get_info_size = tls_get_info_size, }; static int __init tls_register(void) { int err; err = register_pernet_subsys(&tls_proc_ops); if (err) return err; err = tls_strp_dev_init(); if (err) goto err_pernet; err = tls_device_init(); if (err) goto err_strp; tcp_register_ulp(&tcp_tls_ulp_ops); return 0; err_strp: tls_strp_dev_exit(); err_pernet: unregister_pernet_subsys(&tls_proc_ops); return err; } static void __exit tls_unregister(void) { tcp_unregister_ulp(&tcp_tls_ulp_ops); tls_strp_dev_exit(); tls_device_cleanup(); unregister_pernet_subsys(&tls_proc_ops); } module_init(tls_register); module_exit(tls_unregister);